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Several zigzag and armchair single-walled carbon nanotubes (CNTs) were modeled by a commercial finite element package and
their vibrational behavior was studied. Numerous computational tests with different boundary conditions and different bending
angles were performed. Both computational and analytical results were compared. It was shown that the computational results
are in good agreement with the analytical calculations in the case of straight tubes. In addition, it was concluded that the natural
frequency of straight armchair and zigzag CNTs increases by increasing the chiral number of both armchair and zigzag CNTs. It
was also revealed that the natural frequency of CNTs with higher chirality decreases by introducing bending angles. Nevertheless,
the influence of increasing bending angle on the natural frequency of armchair and zigzag CNTs with lower chiral number is almost
negligible.

1. Introduction

Since the discovery of carbon nanotubes (CNTs) by Iijima in
1991 [1], these nanostructures have been the focus of many
investigations. CNTs are important to industrial applications
because of their outstanding mechanical and physical prop-
erties such as strength and lightness. The investigations on
CNTs can be divided into two groups of experimental and
computational approaches. Molecular dynamics (MD) and
continuum mechanics approach such as the finite element
method (FEM) have been the most popular approaches to
study the behavior, for example, the vibrational behavior, of
these nanoparticles [2]. In the following, the results of several
studies on the evaluation of CNTs vibrational properties are
presented.

In 2009, Georgantzinos et al. [3] proposed a linear spring-
based element formulation for the computation of vibrational
characteristics of single-walled carbon nanotubes (SWC-
NTs).They developed three-dimensional nanoscale elements
and corresponding elemental equations for the numerical
treatment of the dynamic behavior, that is, appropriate stiff-
ness and mass characteristics, of SWCNTs. They also assem-
bled the elemental equations and constructed the dynamic
equilibrium equation, applying the atomic microstructure of
CNTs. The developed elements in their investigations sim-
ulated the relative translations and relation between atoms.
Consequently, they could apply the molecular mechanics
theory directly due to the modeling of atomic bonds, apply-
ing physical variables such as bond stretching. Based on
their results, new natural frequencies and mode shapes for
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numerous CNTs under different boundary conditions were
found.They also showed that their results indicated very good
agreement compared to numerical predictions from the liter-
ature. In 2010, Xia and Wang [4] investigated the vibration
characteristics of fluid-conveying carbon nanotubes with a
curved longitudinal structure. They could obtain the natural
frequencies of curved carbon nanotubes conveying fluid and
compared them with those of straight CNTs. Their findings
revealed that CNTs with circular curved longitudinal shape
are unconditionally stable even for a system with sufficiently
high flow velocity. In 2011, Arghavan and Singh [5] presented
a detailed numerical study on the free and forced vibration of
straight SWCNTs. They analyzed both armchair and zigzag
CNTs with clamped-clamped and clamped-free boundary
conditions in order to find their natural frequencies and
corresponding mode shapes. Their results indicated the
appearance of thesemodes of vibration in the eigenvalues and
eigenvectors without any distinction. They finally concluded
that in the case of zigzag CNTs, the axial modes appeared
to be decoupled whereas the armchair nanotubes show
coupling between such modes. Although they thoroughly
investigated the behavior of straight CNTs, the study on
the behavior of curved nanotubes is only rarely addressed.
Ghavamian and Öchsner [6] investigated the eigenvalues and
eigenfrequencies of CNTs under the influence of defects in
2013. After simulating armchair and zigzag configurations
of zigzag and armchair CNTs based on the FEM, they
introduced three most likely defects to the models in order
to represent defective forms of SWCNTs. These defects are
carbon vacancy, Si-doping, and perturbation. Finally they
examined and also compared the vibrational behavior of
perfect and defective CNTs. According to their findings,
SWCNTs have a natural frequency in the range of 18.69 to
24.01 GHz. In addition, it was pointed out that the existence of
any type of defects leads to a lower value of natural frequency
and vibrational stability. The aim of this study is to continue
the previous investigations and to focus on the evaluation
and comparison of vibrational behavior of curved CNTs with
different bending angles. Since experimental observations
(e.g., based on electronmicroscopes) show that CNTs are not
usually straight, but rather have certain degree of curvature
or waviness along the nanotubes length [7, 8], we focus in the
following on the investigation of the effect of the curvature
on the dynamic behavior. All our simulationswere performed
with the commercial finite element code MSC.MARC (MSC
Software Corporation, Santa Ana, CA, USA).

2. Methodology

2.1. Geometric Definition. CNTs are assumed to be some kind
of hollow cylinder shape configurations, as shown in Figure 1.
These special nanostructures can be imagined by rolling a
graphene sheet into a cylinder. They possess a length over
10 𝜇m and diameters ranging from 1 to 50 nm. The geometry
of aCNT is defined by the chiral vector 𝐶⃗ℎ and the chiral angle
𝜃. The chiral vector is presented by two unit vectors ⃗𝑎1 and ⃗𝑎2

and two integers 𝑚 and 𝑛 as it is presented by the following
equation [9]:

𝐶⃗ℎ = 𝑛 ⃗𝑎1 + 𝑚 ⃗𝑎2. (1)

The construction of CNTs is defined based on the chiral
vector or angle by which the sheet is rolled into a cylinder,
in three different configurations including chiral, zigzag, and
armchair. In the case of (𝜃 = 0∘) or (𝑚 = 0) the zigzag CNT is
constructed. An armchair CNT is obtained in terms of chiral
vector (𝑚 = 𝑛) or in terms of chiral angle (𝜃 = 30∘), and
finally a chiral CNT is shaped if 0∘ < 𝜃 < 30∘ or𝑚 ̸= 𝑛 ̸= 0 [9].

Based on the following equation, the diameter of the CNT
can be calculated:

𝑑CNT =
𝑎0
√𝑚2 + 𝑚𝑛 + 𝑛2

𝜋
, (2)

where 𝑎0 = √3𝑏 and 𝑏 = 0.142 nm is the length of the C–C
bond [9].

The modeling method presented in this study follows
the idea first suggested in [10] where the theory of classical
structural mechanics was extended into the modeling of
CNTs. In a CNT, carbon atoms are bonded together by
covalent bonds which have their characteristic lengths and
angles in a three-dimensional space. Afterwards, it was
suggested that CNTs, when subjected to loading, act as space-
frame structures.Therefore, the bonds between carbon atoms
are considered as connecting load-carrying generalized beam
members, while the carbon atoms behave as joints of the
members. This idea is schematically shown in Figure 1.

In this study, the configurations of both armchair and
zigzag SWCNTs were simulated by the CoNTub software
[11]. Defining the chirality and the length of the tubes, the
spatial coordinates of the C-atoms and the corresponding
connectivities (i.e., the primary bonds between two nearest-
neighboring atoms) were calculated. Then the gathered data
was transferred to a commercial finite element package,
where C–C bonds were modeled as circular beam elements
[12]. Afterwards, the FE analyses were conducted and vibra-
tional behavior of different armchair and zigzag CNTs was
evaluated.

The natural frequency is the frequency of a vibrating
system at which the system oscillates at greater amplitude
due to existence of the resonance phenomenon. Geometry,
mass, and applied boundary conditions are the factors which
influence these quantities. The natural frequency is mainly
evaluated to examine the vibrational behavior of structural
members. The first natural frequency of an Euler-Bernoulli
beam element under different boundary condition is defined
by the following equation [13]:

𝑓 = (
𝐴

2𝜋
)√
𝐸𝐼

𝑚𝐿4
, (3)

where 𝐸, 𝐼, 𝑚, and 𝐿 are the Young’s modulus, the second
moment of area, the mass per unit length, and the length of
the nanotube, respectively. The 𝐴 value for fixed-free, fixed-
fixed, and free-free boundary condition is 3.5156, 22.373, and
22.4, respectively.
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Figure 1: Side view of the (11, 11) CNT as a space-frame structure.
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Figure 2: (16, 0) zigzag CNT with (a) fixed-free, (b) fixed-fixed, and (c) free-free boundary conditions.

2.2. Material Parameters and Boundary Conditions. In this
study, the vibrational behavior of numerous types of armchair
and zigzag SWCNTs under fixed-free, fixed-fixed, and free-
free boundary conditions is investigated, in which one end is
either free or fully fixed while the other end is fixed in the first
two cases and for the third case both ends are completely free,
as illustrated in Figure 2.

Figure 3 illustrates an armchair CNT under fixed-free
boundary condition. The models of CNTs were simulated
from straight CNT to curved CNT with 45∘ bending angle,
as shown in Figure 3.

For defining the properties of the equivalent beam ele-
ments for the CNT bonds, no such classical examinations
or geometric derivations are available. As a result, the same
values for the equivalent beam elements are assumed as in
the approach proposed in [10, 15, 16]. These effective material
and geometrical properties were found in the mentioned
references based on a molecular mechanics method. Their
motions are regulated by a force field, which is generated by
electron-nucleus interactions and nucleus-nucleus interac-
tions, and frequently expressed in the form of steric potential
energy. This steric potential energy is in general the sum
of contributions from bond stretch interaction, bond angle
bending, dihedral angle torsion, and improper (out of plane)
torsion as illustrated in Figure 4.

The introduced constants and the element properties of
CNTs (armchair and zigzag) are listed in Table 1.

3. Results and Discussion

The vibrational behavior of different armchair and zigzag
SWCNTs was investigated for different curvatures from 0∘
to 45∘ bending angle (fixed-free, fixed-fixed, and free-free
boundary condition). After evaluating their natural frequen-
cies from FEM, the results were compared to analytical
calculations given by (3) in the case of straight configurations
in order to have some kind of validation of the FE approach.
Figure 5 illustrates the first mode of vibration of a (16-0)
armchair CNT under different boundary conditions.

The relative difference between the analytical solution and
FEM results of straight CNTs was defined by the following
equation:

Relative difference in %

=

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

FEM result − analytical solution
analytical solution

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
× 100.

(4)

This difference is listed in Table 2 for the case of the
fixed-free boundary condition. Based on the results, it
can be concluded that the computational solutions are in
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Figure 3: (7-7) armchair CNTs with fixed-free boundary condition and different forms from 0∘ to 45∘ bending angle.
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Figure 4: Equivalence of molecular mechanics and structural mechanics for covalent and noncovalent interactions between carbon atoms.
Molecular mechanics model (up) and structural mechanics model (down).

Table 1: Material and geometric properties of C–C covalent bonds [14].

Corresponding force field constants

𝑘𝑟 = 651.97 nN/nm

𝑘𝜃 = 0.8758 nNnm/rad2

𝑘𝜑 = 0.2780 nNnm/rad2

𝐸 = Young’s modulus =
𝑘𝑟
2
𝑏

4𝜋𝑘𝜃

5.484 × 10
−6N/nm2

𝐺 = shear modulus = 𝐸
2(𝜐 + 1)

2.159 × 10
−6N/nm2

𝑅𝑏 = bond radius = 2√
𝑘
𝜃

𝑘𝑟

0.0733 nm

𝐼
𝑥𝑥
= 𝐼
𝑦𝑦
= second moments of area =

𝜋𝑅𝑏
4

4
2.2661 × 10

−5 nm4
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Figure 5: First eigenmode of a (16-0) straight CNT under (a) fixed-free, (b) fixed-fixed, and (c) free-free boundary conditions.

Table 2: Characteristics of simulated straight CNTs.

CNT type Chirality (n,m) Length (nm) Diameter (nm) Young’s modulus (TPa)
Natural frequency (GHz) Relative

difference in (%)Analytical
solution FEM result

Armchair (3, 3) 15.00 0.407 1.039 10.01 8.47 15.30
Armchair (5, 5) 15.00 0.678 1.039 14.30 13.90 2.98
Armchair (6, 6) 15.00 0.814 1.039 16.59 16.63 0.24
Armchair (7, 7) 15.00 0.949 1.039 19.01 19.30 1.50
Armchair (9, 9) 15.00 1.220 1.039 23.91 24.67 3.23
Armchair (10, 10) 15.00 1.356 1.039 26.37 27.34 3.70
Armchair (11, 11) 15.00 1.492 1.039 28.85 29.98 3.90
Armchair (14, 14) 15.00 1.898 1.039 36.37 37.80 3.92
Armchair (16, 16) 15.00 2.171 1.039 41.42 42.89 3.56
Zigzag (8, 0) 15.05 0.626 1.021 13.26 12.56 5.27
Zigzag (9, 0) 15.05 0.705 1.025 14.59 14.17 2.85
Zigzag (10, 0) 15.05 0.783 1.028 15.94 15.76 1.11
Zigzag (11, 0) 15.05 0.861 1.031 17.31 17.35 0.24
Zigzag (12, 0) 15.05 0.939 1.032 18.69 18.94 1.35
Zigzag (16, 0) 15.05 1.253 1.037 24.33 25.20 3.57
Zigzag (20, 0) 15.05 1.566 1.039 30.06 31.36 4.31

good agreement with the analytical calculations for the
cantilevered boundary condition.

Each mode shape shows a significant natural frequency
and eigenmode based on the boundary condition of the
CNTs. For instance, the first four eigenmodes of a (7, 7)
armchair CNT are shown in Figure 6.

Having a closer look on the results, it was revealed that
the natural frequency of straight armchair and zigzag CNTs
increases by increasing the chiral number of both armchair
and zigzag CNTs, as illustrated in Figure 7.

It is also obvious that the natural frequency of both
armchair and zigzag CNTs varied in a high value range.
Comparison with other computational approaches based on
a linear spring-based element formulation for straight CNTs
[3] indicates a similar range of the frequencies.

It is clear that the existence of any geometrical imperfec-
tion, bending angle in particular, in the structure of armchair
and zigzag straight CNTs results in a reduction in the natural
frequency by increasing the bending angle, as illustrated in
Figure 8. The natural frequency decreases for all cases of



6 Advances in Materials Science and Engineering

y x

z

(a)

xy

z

(b)

xy

z

(c)

xy

z

(d)

Figure 6: First four eigenmodes of a (7-7) straight CNT.
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Figure 7: (a) Change in natural frequency for straight armchair CNTs. (b) Change in natural frequency for straight zigzag CNTs.Themarkers
represent the results of the computation; the straight lines are linear regressions.

boundary conditions. However, it should be noted that this
trend is more obvious for the CNTs with higher chirality,
as the decrease of natural frequency for both armchair and
zigzag CNTs with lower chirality is almost negligible. It is
also indicated that the gradual decrease for the fixed-fixed
and free-free case of boundary condition is more significant
compared to the fixed-free case at higher curvatures. In
addition, this trend is more obvious for the armchair CNTs.

Since higher natural frequencies may be important in
some applications such as mass sensing at nanoscale [17], we
exemplarily evaluated the second and third natural frequency
and the corresponding mode shapes for the case of three
armchair nanotubes, see Figure 9.

Comparison with Figure 8(a) shows that the second
natural frequency is practically the same as the first one.

However, the third natural frequency is approximately five
times higher than the first natural frequency. Furthermore,
the trend line for the higher frequencies is similar to the
one from the first natural frequency. An example of the
corresponding mode shapes is presented in Figure 10.

4. Conclusions

In this study, numerous CNTs (zigzag and armchair) were
simulated by an FE approach and their vibrational behavior
was examined through performing several computational
testswith different boundary conditions and variable bending
angles. Towards achieving the most accurate results the
vibrational behaviors of these CNTs were evaluated ana-
lytically and computationally and were compared together.
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Figure 8: Change in natural frequency with (a) armchair and (b) zigzag CNTs for fixed-free, with (c) armchair and (d) zigzag CNTs for
fixed-fixed and with (e) armchair and (f) zigzag for free-free boundary conditions. The markers represent the results of the computation; the
straight lines are linear regressions.
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third natural frequency. The markers represent the results of the computation; the straight lines are linear regressions.

2nd mode1st mode 3rd mode

xy

z

xy

z

xy

z

Figure 10: First three eigenmodes of a (14-14) CNT with 10∘ bending angle.

It was concluded that the natural frequency of straight
CNTs increases by increasing the chiral number of both
armchair and zigzag CNTs. It was also revealed that the
natural frequency of CNTs (zigzag and armchair) with higher
chirality decreases by introducing bending angles for all cases
of boundary conditions. However, the change of increasing
the bending angle on the natural frequency of armchair
and zigzag CNTs with lower number of chirality is almost
negligible. The finding of this study may have useful effects
on further investigations of CNTs.
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[6] A. Ghavamian and A. Öchsner, “Numerical modeling of eigen-
modes and eigenfrequencies of single- andmulti-walled carbon
nanotubes under the influence of atomic defects,” Computa-
tional Materials Science, vol. 72, pp. 42–48, 2013.

[7] F. N. Mayoof and M. A. Hawwa, “Chaotic behavior of a curved
carbon nanotube under harmonic excitation,” Chaos, Solitons
and Fractals, vol. 42, no. 3, pp. 1860–1867, 2009.

[8] M. Farsadi, A. Öchsner, and M. Rahmandoust, “Numerical
investigation of composite materials reinforced with waved
carbon nanotubes,” Journal of Composite Materials, vol. 47, no.
11, pp. 1425–1434, 2013.

[9] M. S. Dresselhaus, G. Dresselhaus, and R. Saito, “Physics of
carbon nanotubes,” Carbon, vol. 33, no. 7, pp. 883–891, 1995.

[10] C. Li and T.-W. Chou, “A structural mechanics approach for the
analysis of carbon nanotubes,” International Journal of Solids
and Structures, vol. 40, no. 10, pp. 2487–2499, 2003.

[11] S. Melchor, F. J. Martin-Martinez, and J. A. Dobado, “CoNTub
v2.0—algorithms for constructing C3-symmetric models of
three-nanotube junctions,” Journal of Chemical Information and
Modeling, vol. 51, no. 6, pp. 1492–1505, 2011.

[12] Z. Kang, M. Li, and Q. Tang, “Buckling behavior of carbon
nanotube-based intramolecular junctions under compression:
molecular dynamics simulation and finite element analysis,”
Computational Materials Science, vol. 50, no. 1, pp. 253–259,
2010.

[13] T. Irvine, Application of the Newton-Raphson Method to Vibra-
tion Problems, Vibration Data Publications, Madison, Wis,
USA, 1999.

[14] J. P. Lu, “Elastic properties of carbon nanotubes and nanoropes,”
Physical Review Letters, vol. 79, no. 7, pp. 1297–1300, 1997.

[15] C.W. S. To, “Bending and shear moduli of single-walled carbon
nanotubes,” Finite Elements in Analysis and Design, vol. 42, no.
5, pp. 404–413, 2006.

[16] A. L. Kalamkarov, A. V. Georgiades, S. K. Rokkam, V. P. Veedu,
and M. N. Ghasemi-Nejhad, “Analytical and numerical tech-
niques to predict carbon nanotubes properties,” International
Journal of Solids and Structures, vol. 43, no. 22-23, pp. 6832–
6854, 2006.

[17] G. I. Giannopoulos, “Fullerenes as mass sensors: a numerical
investigation,” Physica E, vol. 56, pp. 36–42, 2014.



Submit your manuscripts at
http://www.hindawi.com

Scientifica
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Corrosion
International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Polymer Science
International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Ceramics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Composites
Journal of

Nanoparticles
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International Journal of

Biomaterials

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Nanoscience
Journal of

Textiles
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Journal of

Nanotechnology
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Crystallography
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Coatings
Journal of

Advances in 

Materials Science and Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Smart Materials 
Research

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Metallurgy
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

BioMed 
Research International

Materials
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

N
a
no

m
a
te
ri
a
ls

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal ofNanomaterials


