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Polymer foams have acoustic absorption properties that play an important role in reducing noise level. When the skeleton is set to
motion, it is necessary to use generalized Biot-Allard model which takes into account the deformation of the skeleton and the fluid
and the interactions between them.The aim of this work is to study the quality of acoustic absorption in polyurethane foam and to
show the importance of the structural vibration of this foam on the absorption by varyingmechanical parameters (Young’smodulus
𝐸, Poisson’s coefficient ], structural damping factor 𝜂, and the density 𝜌

1
). We calculated the absorption coefficient analytically

using classical Biot formulation (𝑢𝑠, 𝑢𝑓) and numerically using Biot mixed formulation (𝑢𝑠, 𝑝) in 3D COMSOL Multiphysics.
The obtained results are compared together and show an excellent agreement. Afterwards, we studied the effect of varying each
mechanical parameter independently on the absorption in interval of ±20%. The simulations show that these parameters have an
influence on the sound absorption around the resonance frequency 𝑓

𝑟
.

1. Introduction

Porousmaterials arematerialswell known for their promising
applications in many areas, for example, in automotive and
aeronautics; they are mainly used to reduce noise level.
According to their frame state, they can be classified to three
types: elastic, rigid, or limp.Metallic foams andfiber layers are
common examples of materials having limp or rigid frame,
respectively. Because of the huge rigidity in their frames, only
longitudinal waves can propagate inside the fluid phase. The
“equivalent fluid” model is often used to model these types
of materials [1]. This model is characterized by the effective
density and the compression modulus. Many works have
been done to evaluate these effective properties to predict
the behavior of these types of materials [2–7]. Polymer foams
(polyurethane) are well known porous materials with elastic
frame. In a poroelastic medium, acoustic wave propagation is
described by a generalized Biot-Allard model [8–10]. Unlike
rigid or limpmaterials, waves can propagate in both phases of
the poroelastic medium, that is, a longitudinal acoustic wave

in the fluid phase and both longitudinal and transversal waves
in the solid phase.

In this work, we are interested in studying the acoustic
behavior of poroelastic materials (polymer foams), specifi-
cally polyurethane. To know the quality of absorption of this
material, it is necessary to have all the properties that define
every phase, that is, fluid and solid, and the interconnection
between them and to know other parameters that can
influence this quality. A lot of works have been done to study
these properties, such as the porosity, resistivity, tortuosity,
and viscous and thermal characteristic lengths [11–13].

In this paper, we calculate the surface impedance and
the absorption coefficient versus frequency, and we study
the influence of the mechanical parameters on the quality of
the absorption. We use the classical (𝑢𝑠, 𝑢𝑓) formulation of
Biot-Allard model for the analytical calculations and a com-
bination of (𝑢𝑠, 𝑝) formulation and finite element approach
for the numerical calculation using COMSOL environment
[14, 15].
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2. Modeling of Sound Absorbing Materials

In this section, we will present two important formulations,
which with we can study and predict the acoustic behavior
of poroelastic medium. These formulations are the classic
formulation of Biot known as displacement-displacement
formulation (𝑢𝑠, 𝑢𝑓) which uses 6 variables for 3D space, 3
for solid phase and 3 for fluid phase, and amixed formulation
that uses 4 space variables; it had been developed by Atalla
et al. [16]. This formulation is used to describe the fluid
phase and the acoustic pressure 𝑝 in the pores. It is called
displacement-pressure formulation (𝑢𝑠, 𝑝).

2.1. The (𝑢𝑠, 𝑢𝑓) Formulation for Poroelastic Material. For a
monochromatic acoustic wave, of pulsation 𝜔, incident on
porous medium with elastic structure, the wave equation in
the solid skeleton, and saturating fluid are obtained from the
energetic considerations [1]. With the conventional 𝑒+𝑗𝜔𝑡, the
equations can be written as follows:

(i) In the solid phase,

𝑁∇
2
𝑢
𝑠
+ (𝑃 − 𝑁)∇∇𝑢

𝑠
+ 𝑄∇ (∇𝑢

𝑓
)

+ 𝜔
2
(𝜌
11
𝑢
𝑠
+ 𝜌
12
𝑢
𝑓
) = 0.

(1)

(ii) In the fluid phase,

𝑄∇ (∇𝑢
𝑠
) − 𝑅∇ (∇𝑢

𝑠
) + 𝜔 (𝜌

12
𝑢
𝑠
+ 𝜌
22
𝑢
𝑓
) = 0. (2)

𝑢
𝑠 and 𝑢𝑓 are, respectively, the displacement vector in the

structure and the macroscopic displacement vector in the
saturating fluid. The coefficients, 𝜌

11
, 𝜌
12
, and 𝜌

22
in (3), are

defined from mass coupling factors, 𝜌
11
, 𝜌
12
, and 𝜌

22
in (4),

and from viscous coupling parameter 𝑏 in (5). Consider

𝜌
11
= 𝜌
11
− 𝑗

𝑏

𝜔
,

𝜌
12
= 𝜌
12
+ 𝑗

𝑏

𝜔
,

𝜌
22
= 𝜌
22
− 𝑗

𝑏

𝜔
.

(3)

Mass coupling factors [17] are as follows:

𝜌
11
= 𝜌
1
− 𝜌
22
,

𝜌
12
= −𝜙𝜌

0
(𝛼
∞
− 1) ,

𝜌
22
= 𝜙𝜌
0
− 𝜌
12
.

(4)

Viscous coupling parameter [18] is as follows:

𝑏 = 𝜎𝜙
2
(1 +

𝑗4𝛼
2

∞
𝜂𝜌
0
𝜔

𝜎2∧2𝜙2
)

1/2

. (5)

𝜙 is the porosity of the considered medium. The elasticity
coefficients 𝑃, 𝑁, 𝑄, and 𝑅 introduced by Biot model

are evaluated by three Gedenken experiments [1]. In the
case where the material which composes the solid skeleton
is less compressible, the four elasticity coefficients can be
approximated by the following relations:

𝑃 =
4

3
𝑁 + 𝐾

𝑏
+
(1 − 𝜙)

2

𝜙
𝐾
𝑓
,

𝑁 =
3𝐾
𝑏
(1 − 2])

2 (] + 1)
,

𝑄 = (1 − 𝜙)𝐾
𝑓
,

𝑅 = 𝜙𝐾
𝑓
.

(6)

𝐾
𝑏
is the compressibility modulus of the solid frame (in

vacuum) which can be evaluated by formulation (7) [1]. 𝐾
𝑓

is the compressibility modulus of the fluid contained in the
material pores and corresponds to the dynamic compressibil-
ity established for the equivalent fluid (porous material with
rigid frame) in the Johnson et al. model [3] (8). Consider

𝐾
𝑏
=

𝐸

3 (1 − 2])
, (7)

𝐾
𝑓
=

𝛾𝑃
0

𝛾 − (𝛾 − 1)𝐻
𝑓

, (8)

𝐻
𝑓
=

1

1 + (8𝜂/𝑗∧󸀠2𝜌
0
𝑃
𝑟
𝜔) (1 + 𝑗∧󸀠2𝜌

0
𝑃
𝑟
𝜔/16𝜂)

1/2
. (9)

𝐸 and ] are, respectively, Young’s modulus and the Poisson
coefficient of the deformable solid matrix. 𝜎, 𝛼

∞
, and ∧ are

the characteristic parameters of the studied porous medium.
𝜌
1
represents the density of the solid frame and 𝜌

2
is the

effective density defined in the case of the equivalent fluid
(10). Consider

𝜌
2
= 𝛼
∞
𝜌
0
[1 −

𝑗𝜎𝜙𝐺
𝜔

𝜌
0
𝛼
∞
𝜔
] , (10)

𝐺
𝜔
= (1 +

4𝑗𝛼
2

∞
𝜂𝜌
0
𝜔

𝜎2𝜙2∧2
)

1/2

. (11)

2.2. Acoustic Wave Propagation. Two categories of waves
propagate at a time across the solid skeleton of the material
and in the saturating fluid inside the pores: compression
waves and shear waves. In order to determine the character-
istics associated to these two types of waves, the displacement
vectors 𝑢𝑠 and 𝑢𝑓 are replaced in (1) and (2) with a scalar
potential𝑢𝑖 = ∇𝜙𝑖 (𝑖 = 𝑠, 𝑓), in the case of compressionwaves,
and with a vector potential 𝑢𝑖 = ∇ ∧ 𝜓𝑖 in the case of shear
waves. The calculations are detailed in [1].

The results show that only two compression waves prop-
agate simultaneously in the fluid phase and the solid phase
of the porous material with elastic structure. The medium is
then characterized by two wavenumbers 𝑘

1
and 𝑘

2
in (12)

and four characteristic impedances 𝑍𝑓
1
and 𝑍𝑓

2
in (14) in
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the saturating fluid aswell as𝑍𝑠
1
and𝑍𝑠

2
in (15) in the deforma-

ble matrix. Consider

𝑘
2

1
=

𝜔
2

2 (𝑃𝑅 − 𝑄2)
[𝑃𝜌
22
+ 𝑅𝜌
11
− 2𝑄𝜌

12
− √∇] ,

𝑘
2

2
=

𝜔
2

2 (𝑃𝑅 − 𝑄2)
[𝑃𝜌
22
+ 𝑅𝜌
11
− 2𝑄𝜌

12
+ √∇] ,

(12)

where

∇ = (𝑃𝜌
22
+ 𝑅𝜌
11
− 2𝑄𝜌

12
)
2

− 4 (𝑃𝑅 − 𝑄
2
(𝜌
11
𝜌
22
𝜌
12
)) .

(13)

(i) In the fluid phase,

𝑍
𝑓

1
= (𝑅 +

𝑄

𝜇
1

)
𝑘
1

𝜙𝜔
,

𝑍
𝑓

2
= (𝑅 +

𝑄

𝜇
2

)
𝑘
2

𝜙𝜔
.

(14)

(ii) In the solid phase,

𝑍
𝑠

1
= (𝑅 + 𝑄𝜇

1
)
𝑘
1

𝜔
,

𝑍
𝑠

2
= (𝑅 + 𝑄𝜇

2
)
𝑘
2

𝜔
.

(15)

The reports 𝜇
1
and 𝜇

2
(16) between the speed in the solid

frame and the speed in air, for the two compression waves,
indicate in whichmedium, solid or fluid, the waves propagate
preferentially:

𝜇
𝑖
=
𝜙
𝑓

𝑖

𝜙
𝑠

𝑖

=
𝑃𝑘
2

𝑖
− 𝜔
2
𝜌
11

𝜔2𝜌
11
− 𝑄𝑘
2

𝑖

𝑖 = 1, 2. (16)

In contrast, only one shear wave propagates in the two medi-
ums composing the porousmaterial.These characteristics are
given by

𝑘
2

3
=
𝜔
2

𝑁
(
𝜌
11
𝜌
22
− 𝜌
2

12

𝜌
22

) ,

𝜇
3
= −

𝜌
12

𝜌
22

.

(17)

In air at 18∘C, atmospheric pressure 𝑃
0
= 1.0132 × 10

5 Pa,
with density of fluid 𝜌

0
= 1.213Kg/m3, sound wave speed

𝑐
0
= 342.2m/s, ration of specific heats 𝛾 = 1.4, the Prandtl

number 𝐵2 = 0.71, and air viscosity 𝜂 = 1.84 × 10−5 [1].

2.3. The (𝑢𝑠, 𝑝) Mixed Formulation for Poroelastic Material.
From Biot equations, Atalla et al. [16] have implanted an
equivalent mixed formulation (𝑢𝑠, 𝑝). This formulation is
valid only for harmonic oscillations. It is derived from
the classic formulation which is equivalent mathematically.

The equilibrium modified equations (for small harmonic
oscillations) are as follows:

∇𝜎̃
𝑠
(𝑢
𝑠
) + 𝜔
2
𝜌𝑢
𝑠
+ 𝛾∇𝑝 = 0,

∇
2
𝑝 +

𝜔
2
𝜌
22
𝑝

𝑅
− 𝜔
2
(
𝜌
22
𝛾

𝜙2
)∇𝑢
𝑠
= 0,

(18)

where the tilde symbol (∼) indicates that the associated
physical property is complex and frequency dependent. In
(18),𝜔 is the angular frequency; 𝑢𝑠 and 𝑝, respectively, denote
the solid macroscopic displacement vector and the fluid
sound pressure. 𝜎̃𝑠 denotes the modified partial stress tensor
associated with the skeleton particle and only depends on
the displacement of the solid phase. 𝜙 stands for the porosity
defined as the ratio between the volume of the fluid phase
and the total volume of the porous material, and 𝜌

22
, 𝜌
12
, and

𝜌
11
are given in the previous section. 𝜌 is the effective density

given by 𝜌 = 𝜌
11
− (𝜌
12
/𝜌
22
). The coefficient 𝛾 is given by

𝛾 = 𝜙(𝜌
12
/𝜌
22
− 𝑄/𝑅).

3. Modeling Poroelastic Materials in
COMSOL Multiphysics

In this part, we will focus on the implementation of two
equations from the Biot mixed formulation (𝑢𝑠, 𝑝) proposed
by Atalla in COMSOL Multiphysics. We choose this for-
mulation because it allows reducing the number of liberty
degrees to four by a node instead of six liberty degrees
when we use the classic Biot formulation. This gives a
considerable reduction in calculation time. COMSOL is a
tool for finite element analysis designed specifically to treat
the multiphysics problems. The user combines a couple of
predefined physics modules in COMSOL and introduces
additional coupling terms to the constitutive equations. Of
course, each physics mode can be used individually in
the case of resolution of nonmultiphysics classic problems.
Concerning porous materials, COMSOL does not provide a
specific module. But, with the fact that these materials have a
rigid structure and they can be modeled as equivalent fluid,
the fluid dynamic module and acoustic module in COMSOL
can be used. Moreover, porous materials have an elastic
structure that can not be modeled multiphysically, that is,
using solidmechanics and fluidmechanicsmodules tomodel
solid and fluid phase, respectively. This is not only for not
knowing the coupling terms but also for the high coupling
in the equilibrium equations. As a result, the need of using
EDP module is necessary to implement, for example, either
the classic formulation or Biot mixed formulation, which are
made in the form of differential equations. In COMSOL,
the general form of PDE (for temporal analysis) must be
expressed in the following matrix form:

Γ∇ = 𝐹, (19)

where Γ is the flux vector matrix and 𝐹 is the right part of
the vector (the two can be functions of spatial coordinates,
the unknown variables 𝑢, and/or their derivatives in space),
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and ∇ is the gradient/divergence operator.The dimensions of
these quantities are as follows:

dim Γ = 𝑀 ×𝑁,

dim∇ = 𝑁 × 1,

dim𝐹 = 𝑀 × 1.

(20)

Here 𝑀 is the number of equations equal to the unknowns
number (dim 𝑢 = 𝑀 × 1), whereas𝑁 is the space dimension
and then depends of the problem; it can be 1, 2, or 3.
In Cartesian coordinates, the gradient/divergence operator
vector ∇, for𝑁 = 3, is defined as follows:

∇ =

[
[
[
[
[
[
[
[
[
[
[
[

[

𝜗

𝜗𝑥
1

𝜗

𝜗𝑥
2

𝜗

𝜗𝑥
3

]
]
]
]
]
]
]
]
]
]
]
]

]

. (21)

The limit conditions in the case of PDE in the general form
are as follows:

0 = 𝑅,

−Γ𝑛 = 𝐺 + [
𝜗𝑅

𝜗𝑢
]

𝑇

𝜇,

(22)

where the vector 𝑅 and Γ can be functions of space coordi-
nates, the unknown variable 𝑢, and/or their spatial deriva-
tives, whereas 𝑛 is the normal unit vector outgoing from the
limit surface. These are, respectively, the limit conditions of
Dirichlet and Neumann. The term 𝜇 in the Neumann limit
condition is a synonym of Lagrangemultiplier. To analyze the
harmonic behavior of a porous medium, we use the mixed
formulation of Biot (18). The latter depends on 4 variables
(𝑀 = 4): the displacements of the solid phase, 𝑢

𝑖
, and the

fluid pressure, 𝑝. From these two equations, the matrices Γ
and 𝐹, constituting the form (19), are identified as [14, 15, 19]

Γ = [

Γ
𝑖𝑗

Γ
4𝑗

] = [

𝜎̂
𝑠
(𝑢
𝑠
)

∇𝑝
] ,

𝐹 = [

𝐹
𝑖

𝐹
4

] =
[
[

[

−𝜔
2
𝜌𝑢
𝑠
− 𝛾∇𝑝

−
𝜔
2
𝜌
22
𝑝

𝑅
+ 𝜔
2
(
𝜌
22
Γ̃

𝜙2
)∇𝑢
𝑠

]
]

]

.

(23)

According to the definition in [16], the expression of 𝜎̃𝑠(𝑢𝑠)
can be written as

𝜎̃ (𝑢
𝑠
) = (𝐴 −

𝑄
2

𝑅
)∇𝑢
𝑠
+ 2𝑁𝜖

𝑠
, (24)

where 𝐴 is the Lamé coefficient for the elastic solid.

Define

𝑢
𝑠

𝑘,𝑘
= ∇𝑢
𝑠
=
𝜕𝑢

𝜕𝑥
+
𝜕V
𝜕𝑦
+
𝜕𝑤

𝜕𝑥
. (25)

Γ and 𝐹 can be rewritten in detail as

Γ

=

[
[
[
[
[
[

[

2𝑁𝑢
𝑥
+ 𝐴𝑢
𝑠

𝑘,𝑘
𝑁(𝑢
𝑦
+ V
𝑥
) 𝑁 (𝑢

𝑧
+ 𝑤
𝑥
)

𝑁 (𝑢
𝑦
+ V
𝑥
) 2𝑁V

𝑦
+ 𝐴𝑢
𝑠

𝑘,𝑘
𝑁(𝑤
𝑦
+ V
𝑧
)

𝑁 (𝑢
𝑧
+ 𝑤
𝑥
) 𝑁 (V

𝑧
+ 𝑤
𝑦
) 2𝑁𝑤

𝑧
+ 𝐴𝑢
𝑠

𝑘,𝑘

𝑝
𝑥

𝑝
𝑦

𝑝
𝑧

]
]
]
]
]
]

]

,

𝐹 =

[
[
[
[
[
[
[
[

[

−𝜔
2
𝜌𝑢 − 𝛾𝑝

𝑥

−𝜔
2
𝜌V − 𝛾𝑝

𝑦

−𝜔
2
𝜌𝑤 − 𝛾𝑝

𝑧

−
𝜔
2
𝜌
22
𝑝

𝑅
+
𝜔
2
𝛾𝜌
22
𝑢
𝑠

𝑘,𝑘

𝜙2

]
]
]
]
]
]
]
]

]

.

(26)

3.1. Poroelastic/Air Coupling. In the case of poroelastic medi-
um bound to an acoustic medium, (27) describes the conti-
nuity conditions of the total normal stress, acoustic pressure,
and fluid flow. Consider

𝜎
𝑡
𝑛 = −𝑝

𝑎
𝑛,

𝑃 = 𝑝
𝑎
,

(1 − 𝜙) 𝑢
𝑠
𝑛 + 𝜙𝑢

𝑓
𝑛 = (𝜌

0
𝜔
2
)
−1

∇𝑝
𝑎
𝑛.

(27)

Here, 𝑝𝑎 is the pressure in the acoustic medium, 𝜎𝑡 is the
total stress tensor in the poroelastic material, 𝑢𝑓 is the
displacement of the fluid phase in the (𝑢𝑠, 𝑢𝑓) formulation,
and 𝑛 is the outward normal unit vector. The detailed
expressions for 𝑢𝑓 and 𝜎𝑡 were given by Atalla et al. [16]. After
some substitution, the vectors 𝐺 and 𝑅 can be expressed as

𝐺 =

[
[
[
[
[
[
[
[
[

[

[1 − 𝜙(1 +
𝑄

𝑅
)]𝑝
𝑎
𝑛
𝑥

[1 − 𝜙 (1 +
𝑄

𝑅
)]𝑝
𝑎
𝑛
𝑦

[1 − 𝜙 (1 +
𝑄

𝑅
)]𝑝
𝑎
𝑛
𝑧

0

]
]
]
]
]
]
]
]
]

]

,

𝑅 =

[
[
[
[
[

[

0

0

0

𝑝 − 𝑝
𝑎

]
]
]
]
]

]

.

(28)

4. Acoustic Absorption Coefficient

In this section, we consider a structure composed of a
poroelastic medium glued on a rigid wall (the rigid wall is
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Table 1: Poroelastic properties of polyurethane foam.

(a)

Porosity Resistivity Tortuosity VCL TCL Density skeleton
𝜙 𝜎 𝛼

∞
∧ ∧

󸀠
𝜌
0

0.97 87KN s/m4 2.52 37 ∗ 10
−6m 119 ∗ 10

−6m 31Kg/m3

(b)

Loss factor Poisson’s coefficient Shear modulus
𝜂 ] 𝑁

0.055 0.3 55(1 + V𝑗)KPa
VCL: viscous characteristic length.
TCL: thermal characteristic length.

a condition to the rear boundary); the surface impedance of
this structure was introduced by Allard [1] and given by

𝑍
𝑠
= −𝑗

𝑍
𝑠

1
𝑍
𝑓

2
𝜇
2
− 𝑍
𝑠

2
𝑍
𝑓

1
𝜇
1

𝐷
𝑚𝑟

,

𝐷
𝑚𝑟

= (1 − 𝜙 + 𝜙𝜇
2
) [𝑍
𝑠

1
− (1 − 𝜙)𝑍

𝑓

1
𝜇
1
] tan (𝑘

2
𝑒)

+ (1 − 𝜙 + 𝜙𝜇
1
) [𝑍
𝑠

2
𝜇
2
− (1 − 𝜙)𝑍

𝑓

1
] tan (𝑘

1
𝑒) .

(29)

𝑍
𝑠

1
, 𝑍
𝑠

2
and 𝑍𝑓

1
, 𝑍
𝑓

2
are the characteristic impedances of the

poroelastic medium and the fluid, respectively [1]. 𝜇
1
, 𝜇
2
are

the ratios between the speeds in poroelastic material and
fluid, respectively [1]. However, in COMSOL environment,
𝑍
𝑠 is defined as the ratio of the acoustic pressure and the total

velocity at the impinged face [20], and it can be written as

𝑍
𝑠
(𝜔) =

𝑝

𝑗𝜔 (𝜙𝑢
𝑓

3
+ (1 − 𝜙) 𝑢

𝑠

3
)

= 𝑝(𝑗𝜔 [
𝜙

𝜔2𝜌
22

𝑝
𝑧
+ (1 − 𝜙(1 +

𝜌
12

𝜌
22

))𝜔])

−1

.

(30)

The sound absorption of a poroelastic layer glued to a rigid
wall and submitted to plane acoustic wave propagating in the
air at the surface of the layer at normal incidence is calculated
from the surface impedance 𝑍

𝑠
and the impedance of air as

follows [1, 7, 21]:

𝛼
∞
= 1 −

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑍
𝑠
− 𝑍
0

𝑍
𝑠
+ 𝑍
0

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2

with 𝑍
0
= 𝜌
0
𝑐
0
. (31)

5. Numerical Results and Discussion

The acoustic properties of polyurethane foams are given in
Table 1 [22], the thickness of this foam is 16mm, and one of
its extremities is glued to a rigidwall, while the other is excited
with a normal incidence by a monochromatic pressure wave
of pulsation 𝜔. We have calculated analytically the real and
imaginary parts of surface impedance, shown in Figures
1 and 2, and the absorption coefficient versus frequency
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Figure 1: Real part of surface impedance.

(Figure 3). In order to validate the obtained results we made
a comparison with results calculated with COMSOL in 3D.
Indeed, we found an excellent agreement between the results
calculated by the two methods. Since the foam skeleton is
set to motion, which depends on the frequency, the study
of the absorption coefficient is made in three characteristic
frequency bands centered around the resonance frequency
(32) of the skeleton, which is the quart-wave frequency for
the materials glued to a rigid wall. In the vicinity of this
frequency, the rigidity of the frame can have a huge influence
on the absorption coefficient. The foam fluid phase (air) is
very light and has compressibility modulus much lesser than
the skeleton’s, which allows the estimation of this frequency
by simply considering the properties of the frame under
vacuum as follows [23]:

𝑓
𝑟
≈
1

4𝑒
√
𝐸 ((1 − V) / (1 + V) (1 − 2V))

𝜌
𝑠

, (32)
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Figure 3: Absorption coefficient of polyurethane foam.

where 𝑒 is the thickness of the porous layer (here 𝑒 =

16mm). 𝜌
𝑠
is the skeleton density (i.e., the density of the

porous material in vacuum). The estimation of quart wave
resonance frequency for the layer made of this foam is
𝑓
𝑟
= 1.23 kHz. From this frequency, we can find three

characteristic zones, the low frequencies range [LF] [1, 𝑓
𝑟
/2],

the medium frequencies range [MF] [𝑓
𝑟
/2, 2 𝑓

𝑟
], and the

high frequencies range [HF] [2 𝑓
𝑟
, 104]. In Figure 3, the

low frequencies zone (between 1 and 615Hz) and medium
frequencies (between 615 and 2462Hz), small absorption has
been observed, while, in the high frequencies zone (between
2462 and 104Hz), the absorption coefficient gets a maximal
value for certain frequencies and drops slightly each time
reaching the maximum.

5.1. Mechanical Behavior of Porous Materials. The skeleton
of porous materials generally has a mechanical behavior of
a viscoelastic type at room temperature and in the audible
frequency range 20Hz to 20 kHz. Therefore, its response to
mechanical stress depends on the time or the stress frequency
(or pulse 𝜔) and also the temperature; the two variables are
closely linked: the apparent stiffness of the polymer decreases
with increasing temperature or as the frequency decreases. As
part of this paper, the polymeric foam (polyurethane) will be
subject to normal conditions of temperature and pressure (𝑇

0

= 18∘C and 𝑃
0
= 1.0132 105Pa).

In the case of small deformations, the behavior can
be considered linear and described by Hooke’s law using
complex variables [24].Using a vector representation of strain
and stress field, we have

{𝜎̃
𝑠
} = [𝐻̃

𝐸
] {𝜖
𝑠
} , (33)

where 𝜎̃
𝑠
, 𝜖
𝑠, and 𝐻̃

𝐸
, respectively, are the stress, strain, and

the complex matrix of elasticity 𝐸 of the solid phase (the tilde
symbol for a complex and frequency-dependent quantity).
In the case of an isotropic model, the elastic matrix 𝐻̃

𝐸
can

be characterized from the Young modulus and the complex
Poisson coefficient. Consider

𝐸 = 𝐸 (𝜔) + 𝑗𝐸
󸀠
(𝜔) = 𝐸 (𝜔) (1 + 𝑗𝜂 (𝜔)) ,

]̃ = ] (𝜔) + 𝑗]󸀠 (𝜔) ,
(34)

where 𝜂 is the loss factor defined as the ratio of the instanta-
neous response (real part of the matrix) on the quadrature
phase response (imaginary part). If we consider that the
skeleton is isotropic-transverse, in this case, five elastic
coefficient are necessary [25, 26]. 𝐸

𝐿
and 𝐸

𝑇
are, respectively,

the moduli of elasticity in the longitudinal and transverse
directions. 𝐺

𝐿𝑇
is shear modulus in the plane (𝑧, 𝑦). ]̃

𝐿𝑇

is the Poisson coefficient proportional to the deformation
in the transverse plane generated by a deformation in the
longitudinal plane, and ]̃

𝑇𝑇
is the Poisson coefficient in the

transverse plane.
Because of the difficulty of determining the above five

parameters and the real directions of symmetry, we will
focus in this paper on an isotropic model. This assumption
allows us the use of an analytical model to describe the
vibroacoustic behavior of the porous material. In addition,
Poisson’s coefficient is considered real and independent of
frequency ]̃ = ] [27]: this is fixed to 0.3 for polymers foams
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Figure 4: 𝐸 effects on absorption coefficient.

such as polyurethane. So, from this assumption, (34) are
written as follows:

𝐸 = 𝐸 (𝜔) (1 + 𝑗𝜂 (𝜔)) ,

]̃ = ] (𝜔) .
(35)

5.2. Influence of the Mechanical Parameters on the Acoustic
Absorption. In this part, we discuss the importance of the
structure vibration of the polyurethane foam on its absorp-
tion properties and study the mechanical parameters effects
on these properties (i.e., the Youngmodulus𝐸, structural loss
coefficient 𝜂, the Poisson coefficient ], and the density 𝜌

1
).

Figure 4 shows the variations of the absorption coefficient
by varying the Young modulus by ±20%; we notice that this
variation is found around the frequency of resonance given
by (32); when the value of the Young modulus increases or
decreases by ±20%, the maximum amplitude of resonance
increases and decreases with a value of 0.05, we also notice
that there is a shift in frequency of this maximum of a value
of 100Hz towards the higher frequencies in the casewhere the
Young modulus increases and towards the lower frequencies
when it decreases, without any modification in the quality
factor (Figure 5).

In the same way concerning the influence of the Poisson
coefficient on the absorption, the same variation has been
observed (Figure 6) except there is a small increase in the
resonance amplitude as the value of the Poisson coefficient
increases by 20% (Figure 7).

In Figure 8, a variation of 0.02 of the resonance amplitude
has been observed; a decrease or an increase occurs depend-
ing on the variation in the value of the material density, with
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a resonance frequency shift of 50Hz (Figure 9), while, in
Figure 10, we distinguish a small variation observed at level
of the resonance amplitude without any shift in the resonance
frequency (Figure 11).
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6. Conclusion

In this paper, we presented a study of the efficiency of acoustic
absorption in poroelastic medium of type polymer foam
(a case of polyurethane foam). Using the generalized Biot-
Allard model and combined formulation of Atalla et al.,
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the real and imaginary parts were calculated. The obtained
results show an excellent agreement between analytical cal-
culations and those numericals performed using COMSOL
environment. These results confirm that the foam has a
very good performance in absorbing noise at medium and
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high frequencies and less performance in low frequen-
cies. Afterwards, simulations have been done in COMSOL
Multiphysics to study the effect of mechanical parameters
such as the Young modulus 𝐸, the Poisson coefficient ],
structural damping factor 𝜂, and density of material 𝜌

1
on

the absorption coefficient. The simulations showed that the
Young modulus, the Poisson coefficient, and the density of
material play an important role in the absorption quality
of the polyurethane foam particularly around the resonant
frequency, while the structural damping factor plays a minor
role in the acoustic absorption. Determining experimentally
the mechanical parameters is needed to better understand
and predict the acoustic behavior of this foam.
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