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High chromium cast steel alloys are being used extensively in many industrial services where dry or wet abrasion resistance is
required. Such steel castings are demanded for cement, stoneware pipes, and earthmoving industries. In this research, five steel heats
were prepared in 100 kg and one-tonmedium frequency induction furnaces and then sand cast in both Y-block and final impact arm
spare parts, respectively. Vanadium (0.5–2.5%) and boron (120–150 ppm) were added to the 18Cr-1.9C-0.5Mo steel heats to examine
their effects on the steel microstructure, mechanical properties especially impact, fracture toughness and abrasion resistance.
Changes in the phase transformation after heat treatment were examined using inverted, SEM-EDX microscopy; however, the
abrasion resistance was measured in dry basis using the real tonnage of crushed and milled stoneware clay to less than 0.1mm size
distribution.

1. Introduction

Steel designers and researchers seek always to develop alloys
that can give a balanced strength and toughness, for example,
high wear resistant together with high fracture toughness [1,
2]. One of thewell-known abrasion resistant ferrousmaterials
is high chromiumwhite cast iron (20–30% Cr, 3.5–4% C, and
1–5% Mo) which has excellent wear resistance, but unfortu-
nately poor toughness or ductility due to the bigger matrix
grain size and the massive brittle leduburitic eutectic carbide
precipitations that occur in a continuous, three-dimensional
network surrounding the dendrite matrix grains [3–5]. The
fracture toughness of the cast iron showsminimal values (10–
25Mpa⋅m1/2) as a result of brittle carbide precipitations [6].
Many researches were trying to increase the abrasion resis-
tance of cast iron by alloyingwithwolfram, vanadium, or nio-
bium but the product toughness was always deteriorated [7–
9]. In this research and aiming to keep high wear resistance
andmore toughmatrices, trials to design cast steel alloys with

lower carbon content, well-distributed harder carbides, and a
matrix of tempered martensite and some retained austenite
were studied.

The idea of producing steel alloys with lower carbon
content together with vanadium and boron additions can
be a promising solution to increase the toughness and wear
resistance of such alloys.

2. Experimental Procedure

In this investigation, five steel heats were prepared using core-
less, medium frequency, induction furnace. The alloys under
investigation are the products of melting and casting special
tool steel scraps collected from used tools and dies ( DIN
X210Cr12) scrap offered by Universal Engineering Group.
Ferroalloys, low sulfur graphite, and clean steel scrap were
used to adjust the final compositions designed in this
investigation. Ferroalloys used comprised low-carbon fer-
rochromium (0.1% C, 80% Cr), ferrovanadium (80% V),
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Figure 1: Overall plan of melting, casting, and testing of experimental alloys.

ferroboron (35% B), ferromolybdenum (80% Mo), and pure
aluminum (99.9% Al). Fresh slag materials were used in
composition of lowmelting calcium aluminates together with
Al-CaSi powder. The region of low melting Ca-aluminates of
compositions 12CaO⋅7Al

2
O
3
in binary CaO-Al

2
O
3
system,

which is liquid at about 1415∘C, was chosen to form the
slag constituents. Thermite mixture of aluminum and iron
oxide powders was also added to the top of slag under the
furnace cover to give exothermic heat to keep continuous
metal/slag active mass transfer. The lining was chosen to be
high alumina one not only to withstand melting temperature
but also to not interact chemically with both slag and the alloy
melt. The furnace cover was also rammed from high alumina
bonded powder, to preserve the heat of the top slag to ensure
good metal protection and better mass transfer through
metal/slag interface. After complete melting (1520∘C), first
oxidizing slag (negligible) was removed and the other 3–
5 kg fresh slag materials were added to refine melt from
any impurities. Ferroalloys were then added to correct the
required final analysis of every alloy.The overall plan of work
is projected as shown in Figure 1, where addition of correcting
ferroalloys, carbon and aluminum, was performed to adjust
the final alloy compositions. The final casting temperature

was adjusted at 1530∘Cusing dipping thermocouple or optical
pyrometer. Every melt was tapped and cast in designed cavity
and experimental Y-block as well, preheated (250∘C) sand
moulds sprayed with refractory ZrO

2
according to DIN EN

1536 type 3. Figure 2 represents a schematic drawing of the
experimental cast Y-block and casting pattern. Before casting
of the first heat, addition of scrap and/or ferroalloys was
performed to adjust the composition of the final alloy. The
cover lid of the furnace was always kept closed, to ensure
no further oxidation of the melt by atmospheric air; more-
over, inert atmosphere under the furnace lid was achieved
using Argon lancing. This is to ensure effective removal of
shrinkage cavity from the main cast blocks.

3. Results and Discussions

The final chemical analysis of the five experimental steel
patches is shown in Table 1.

In this investigation, the melting procedure was designed
to get final steel casts different in vanadium and boron con-
tent, but with nearly the same basic composition. It is evident
that the content of dissolved aluminum in all steel ranged
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Table 1: Chemical analysis of the steel patches.

Material C Mn Si Cr Mo V B Al
GS-1 1.98 0.63 0.80 18.56 0.57 — — 0.031
GS-2 1.99 0.73 0.79 18.91 0.61 0.59 — 0.027
GS-3 1.98 0.76 0.83 18.56 0.59 1.51 — 0.035
GS-4 1.94 0.69 0.76 18.32 0.63 1.56 0.012 0.032
GS-5 1.97 0.80 0.81 18.69 0.59 2.56 0.015 0.029
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Figure 2: Geometry of casting Y-block mould.

from 0.027 to 0.039 as an indication that the experimental
melts were killed to have 3–5 ppm maximum dissolved
oxygen; this ensures minimized casting cavities.

3.1. Microstructure Investigation

3.1.1. As-Cast Conditions. Vanadium, chromium, molybde-
num, and boron are reported to affect the transformation
behavior of austenite [10]. The as-cast microstructures of
hypereutectoid 18% Cr-1.9% C-0.5% Mo experimental GS.1–
5 alloys consist of mainly metastable dendrites of primary
austenite (dark phase) +mixed primary and eutectic carbides
(white phase) and martensite as shown in Figures 3, 4, 5(a),
and 5(b). Emission-diffractionX-ray (EDX) analyses revealed
that the primary carbides consists mainly of chromium
carbides of type Cr

7
C
3
colonies which have a hexagonal

structure with lattice parameters 𝑎= 13.982 Å and 𝑐= 4.507 Å;
this type of carbide has many structural defaults and forms
during solidification as austenite rejects some of its carbon.
The morphology of such complex carbides depends to a
great extent on the solidification and casting technology;
however, rod or blade (multiple rods) and radiating shaped
carbides of type Cr

7
C
3
are normally formed during and after

solidification as shown in Figures 6(a) and 6(b).The austenite
phase remains in metastable condition at room temperature
as in alloy GS-1 due to suppression of martensite start
temperature; however, by alloying with vanadium and boron
more carbides are formed by reacting with adjacent carbon,
this creates in turn areas of depleted carbon that transforms in

turn to martensite during further cooling depending on the
content of vanadium added.

The grain refinement of dendrites as well as type and
morphology of carbides changed to some extent on adding
vanadium as in alloys GS-2 and GS-3 having 0.59% and
1.51% vanadium, respectively, where vanadium-rich carbide
is identified by EDX analysis as V

6
C
5
or complex Fe-Cr-V

depending on the content of vanadium in the alloy.
During solidification, austenite dendrite forms first and

rejects some of its saturation carbon which reacts in sequence
with vanadium, chromium, and iron to form primary single
or complex carbide depending on their affinity, diffusivity,
temperature, and concentration. The carbide phases nucleate
side by side with/within the austenite dendrites forming rods
or blades. In alloy GS-3 where vanadium content is about
1.5%, the volume fraction of primary austenite (as detected
by X-ray diffraction) is decreased to some extent and a
massive precipitation of V

6
C
5
andCr

7
C
3
(as detected by EDX

analyzer) resulting in narrowing dendrite arm spacing; this
can be noticed by comparing themicrostructure of GS-3 with
GS-1 and GS-2.

The as-cast microstructures of alloy GS-5 having 2.5%
vanadium togetherwith 0.012 and 0.015%boron showedmas-
sive precipitation of both primary and secondary carbides
hindering grain growth of dendrite arms. Volume fraction of
austenite and carbides for the cast alloys, as detected using
X-ray diffraction and EDX analyzer, is shown in Table 2.

3.1.2. Heat TreatedMetalMatrix. Theexperimental heats GS-
1 to GS-5 were heat treated using the published data on
cooling curves for near compositions [11] where the start of
transformation during cooling is retarded for about 3–5 h
depending on the contents of carbon and alloying elements
of the steel. For the overall heat treatment cycle used in this
research, the annealing temperature, suitable to machine the
test samples, was chosen at 870∘C for two hours, while hard-
ening temperatures were chosen in the range 950–1000∘C for
30 minutes, quenching in still air or oil and then tempering
in the range 400–600∘C for 2 h. The overall microstructure
of the alloys consists of tempered martensite, metastable or
retained austenite, complex primary carbides, and secondary
carbides as shown in Figures 7 and 8(a)–8(d). Alloying of the
steels with variable amounts of vanadium and boron retards
the grain growth of primary carbides as in (a) and (d) micro-
structures as compared with alloy GS-1 having (c) micro-
structure.

The presence of more alloying elements of vanadium and
boron as in alloy GS-5 leads to dispersive carbide colonies
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Table 2: Volume fraction of austenite and carbides in cast alloys.

Heat Condition Vol.%
𝛾 + 𝛼

Vol.%
M
7
C
3

Vol.%
V
6
C
5
+ BC Dendrite arm spacing, 𝜇m

GS-1 As cast 42.3 28.7 — 18.4
GS-2 As cast 37.9 21.2 8.5 15.1
GS-3 As cast 30.7 19.5 10.4 14.9
GS-4 As cast 30.3 19.1 11.9 10.6
GS-5 As cast 27.8 21.6 17.5 8.3

Austenite

(

Secondary
carbides

𝛾

(a) GS-1

V6C5

(b) GS-2, 0.5% V, ×100

Figure 3: As-cast microstructure of GS-1 and GS-2 experimental steel.

Primary
carbides

(a) GS-3, 1.5% V (b) GS-4, 1.5

Cr7C3

% V + 0.012% B, ×100

Figure 4: As-cast microstructure of GS-3 and GS-4 experimental steel.

and the absence of dendrite structure and ensures more
fine distribution of carbides as in (b) microstructure. X-
ray diffraction techniques together with emission-diffraction
EDX scanning analyses were used to determine the types
and compositions of phases and carbides transformed after
heat treatment; however, it was not precise to determine
the volume fractions of phases due to the interference of
dominated martensite phase. More measurements for the
heat treated microstructures for such steels especially GS-
3, GS-4, and GS-5 need further investigation in the coming
future researches.

3.1.3. Mechanical Properties

(1) Hardness. The effect of obtained microstructures on the
hardness values of GS alloys is summarized as in Figure 9;
the bulk or microhardness of the GS improved indeed by
increasing the vanadium content in the as-cast, quenched,
and quenched tempered as compared with 25% Cr cast iron.
This can be attributed to the increased volume fraction of
the primary carbides Cr

7
C
3
and the secondary V

6
C
5
car-

bides; however, BC intermetallic precipitates harden the
matrix as well. After quenching and tempering at 400–600∘C,
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Figure 5: As-cast microstructure of GS-5 (2.5 V + 0.015 B) experimental steel.
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Figure 6: Morphology of rod-like primary carbides and radiating and secondary carbides.
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Figure 7: Typical microstructure of experimental steel after heat treatment, as revealed by X-ray diffraction [hardening 980∘C-AC, tempering
600∘C, 2 h].
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Figure 8: (a-b) Morphology of primary carbides in heat treated microstructures of experimental steel GS-4 and steel GS-5. (c-d) Appearance
of quenched and tempered microstructures.

the precipitation of carbides and the transformation of
primary and secondary austenite to martensite improve the
hardness of GS alloys.

3.2. Influence of V and B on Fracture Toughness. Due to non-
homogenous cast structures and their high volume fraction
of brittle carbides, the alloys under investigation showed low
ductility values (5–15 J/cm2); for those reasons the Charpy
V or U notch cannot give real measurements. Therefore and
from fracture mechanics point of view, the most straightfor-
ward parameter to characterize fracture toughness is the crit-
ical stress intensity factor (𝐾) or dynamic fracture parameter
(𝐾id). Fracture toughness 𝐾

𝑐
(Pa⋅√m) measurements were

made on primary carbide matrix at room temperature by the
indentation factor method [12] which can be calculated from
the width of crack induced on applying the Vickers Pyramid
hardness test as follows (Figure 12):

𝐾

𝑐
=

𝛼
√
𝐸𝑃 (𝑑/2)

3
√
𝑎2

,
(1)

where, for those cast alloys, there is total crack edge distance
(𝑚), 𝐸 Young’s modulus (310–350GPa), 𝑃 load (about 30 kg),

and a half length of crack (𝑚), 𝑑 is the diagonal length of
indentation, and 𝛼 is calibration factor (about 0.025 depend-
ing on the surface finish).

A comparison of calculated fracture toughness of pro-
duced alloys GS1–5 in as-cast, quenched tempered conditions
and 25% Cr cast iron, using bulk Vickers hardness testing
machine, is shown in Figure 10. It is evident that alloys having
vanadium content higher than 1.5% suffer from deteriorated
fracture toughness in as-cast or even in tempered conditions;
however, the toughness for all alloys in as-cast or heat
treated conditions is higher than that for chromium cast
iron. This can be attributed to the grain refinement of the
alloy matrix due to the pinning action caused by secondary
carbides precipitated and solid solution hardening caused by
vanadium and boron and the lower carbon contents as well.

3.3. Industrial Abrasion Monitoring. Impact arms and grind-
ing segments were produced from these experimental alloys
as spare parts for Hazemag and Eirich stoneware (lean
or fired) crushing and milling systems. The results were
collected as actual product of crushed and milled powders
(0.1mmmax). It is evident fromFigure 11 that themechanism
of reinforcing the produced alloys with vanadium and boron
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Figure 10: Influence of vanadium on fracture toughness coefficient
as measured for GS alloys in comparison with 25% Cr cast iron.

carbides at that lower carbon level resulted in much higher
wear resistance than that for high chromium cast iron.

4. Conclusions

From the abovemeasurements and discussions, the following
conclusions can be put as follows:

(1) Themicrostructures of the experimental steel GS-1 to
GS-5 in both as-cast and heat treated conditions are
more fine and homogeneous if compared with those
for white chromium cast iron; this is due to the lower
carbon content and the effects of adding vanadium
and boron. This leads to harder matrices than those
for cast iron.
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Figure 11: Industrial performance of GS alloys compared with Mn-
modified steel and Cr cast iron.
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(2) The fracture toughness of the experimental steels is
higher than that for cast iron due to refinement of
the overall matrices and the well distributed primary
and secondary carbides; this leads to high abrasion
resistance and higher productivity.

(3) The wear resistance of the experimental quenched
and tempered steel is 1.5 times higher than that for
25% Cr white cast iron.
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