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In rock engineering projects, statically determined parameters are more reflective of actual load conditions than dynamic
parameters. This study reports a new and efficient approach to the formulation of the static modulus of elasticity 𝐸

𝑠
applying gene

expression programming (GEP) with nondestructive testing (NDT) methods. The results obtained using GEP are compared with
the results of multivariable linear regression analysis (MRA), univariate nonlinear regression analysis (URA), and the dynamic
elasticity modulus (𝐸

𝑑
). The GEP model was found to produce the most accurate calculation of 𝐸

𝑠
. The proposed approach is a

simple, nondestructive, and practical way to determine 𝐸
𝑠
for anisotropic and heterogeneous rocks.

1. Introduction

Strength and deformation features play an important role
in the design of rock structures [1]. The elasticity modulus
is an important parameter in understanding stress-strain
behaviour and is one of the most mechanical characteristics
of rocks in regarding their using area [2]. This parameter
is decisive in tunnel project, rock destruction and drilling,
slope consistency, pillar configuration, embankments, and
many other civil andmining applications [3]. It has been used
extensively for the analysis of structural deformations, creep,
shrinkage, crack control, and so forth [4–6].

Either static or dynamic various numbers of methods
are available for determination of deformation parameters.
The static elasticity modulus (𝐸

𝑠
) can be obtained from

conventional laboratory procedures, for example, from the
incline of tensile test stress-strain diagrams, but as they are
generally time consuming and expensive even on a laboratory
applications, the number of tests in many projects is limited.
On the other hand, the dynamic elasticity modulus (𝐸

𝑑
) can

be determined from compression (𝑉
𝑝
) and shear (𝑉

𝑠
) wave

velocities, and knowledge of the rock density (𝜌) is based
essentially on rapidly applied nondestructive loads; in many
cases this requires simple and easy operations.

During the design of rocks inside structures, statically
achieved parameters are preferred rather than those obtained
by dynamic methods as the statically determined ones are
more reflective of real loading situations [1]. The values of
elastic constants often disagree with those determined by
static laboratory methods. Hence, the true 𝐸

𝑠
is usually

different from values determined by either static or dynamic
methods. According to ASTM-D2845-08 [7], elastic con-
stants are not to be calculated using procedures described in
the test method for rocks with pronounced anisotropy. For
these reasons, 𝐸

𝑑
measurements are not common in rock

engineering projects. Most rock materials do not behave in
completely linear elastic, homogenous, isotropic mode, and
hence there is a difference between 𝐸

𝑠
and 𝐸

𝑑
. Dynamic test

methods therefore supply data that are only meaningful for
the designing stage in rock engineering [8].

Because of the advantages of 𝐸
𝑑
and the validity of 𝐸

𝑠
,

many researchers have aimed to predict 𝐸
𝑠
from 𝐸

𝑑
using

multivariable linear regression analysis (MRA). Someof these
authors include [9–11]. According to these studies, the 𝐸

𝑑

determined is generally higher than 𝐸
𝑠
. MRA modelling in

particular has been used for some time because it has the
advantage of performing easy-to-use regression constants
to facilitate estimation of the significance of various input
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variables and is established by precharacterization of the
construction of a model with a limited number of linear or
nonlinear equations.

Lama and Vutkuri [12] reported that 𝐸
𝑑
is greater than

𝐸
𝑠
by up to 300%. It must be appreciated that predicting

𝐸
𝑠
from 𝐸

𝑑
is ultimately an inverse problem. To cope

with these limitations and challenges, several alternative soft
computing techniques have been used considerably to model
human activities in various areas of engineering. Learning
from experience and deriving the information is one of the
essential properties of soft computing techniques. Artificial
neural networks, adaptive neurofuzzy inference systems, and
fuzzy logicmethods are commonly used inmany engineering
applications. A major disadvantage of these systems is that
they are not able to provide practical prevision equations
[4, 13]. To overwhelm the restrictions of these techniques,
genetic programming (GP) and its variants, such as linear
genetic programming (LGP) and gene expression program-
ming (GEP), have been used in engineering applications in
recent years. In civil engineering applications, GP, LGP, and
GEP have been applied successfully to behavioural modelling
of the elastic modulus of concrete [4, 14].

Engineers in different countries are keen on nondestruc-
tive testing (NDT) to assess rock properties. These types
of tests are simple to conduct as they need less or no
specimen preparation and the test device is also simple [15,
16]. NDT methods, ultrasonic pulse velocity (UPV), and
rebound hammer (RN) testers among preferable methods
are the most generally used in application to determine rock
characteristics. A number of researchers, including [17–20],
have studied the relationship between rock properties and
NDT.

The present study mainly aimed to investigate the use
of GEP in predicting 𝐸

𝑠
for rock materials. Application of

the GP methods pointed out higher amount of nonlinear
relationship between experimental and estimated values with
high precision and comparatively low error. Because GEP put
together the advantages of genetic algorithms (GA) andGP, it
has verified to be an effective modelling instrument for solv-
ing complex real-world problems, and complex relationships
between parameters affecting 𝐸

𝑠
can be modelled easily by

using a GEP approach [21]. In contrast to dynamic elasticity,
there is no definitive formulation for anticipating the 𝐸

𝑠

of rock. For this reason, the GEP approach is preferred to
build empirical models. To build the model, 𝐸

𝑠
results of 317

specimens were used in training, testing, and validation. The
data sets were derived from an experimental study performed
as part of this project. Three main parameters that clearly
influenced 𝐸

𝑠
were selected as input variables: compression

wave velocity (𝑉
𝑝
), Schmidt rebound hardness (RN), and

rock density (𝜌). The results obtained were compared with
those of other approaches to demonstrate the superiority and
practicality of the proposed approach.

2. Materials and Methods

Samples of the rock materials were collected from various
locations, mostly in Turkey but also from various other

Table 1: Mechanical and physical features of rocks used in experi-
ments.

Min Max Mean Standard deviation
𝜌 (g/cm3) 1.91 3.24 2.65 0.28
𝑉
𝑝
(km/s) 0.74 6.48 4.23 1.26

𝑉
𝑠
(km/s) 0.48 5.13 2.71 0.99

RN 0.5 70.6 41.44 16.85
𝑓
𝑐
(MPa) 1.32 183 72.34 39.60

𝐸
𝑠
(GPa) 0.51 94 31.14 22.68

regions of the world. The rock blocks consisted mainly of
marble, limestone, and igneous andmagmatic rock.The rock
samples used in the research program were received in the
form of cylindrical pieces of NX-sized cores. The specimen
density (𝜌) was calculated from their dimensions and weights
at a temperature of 20 ± 3

∘C.
The velocities of compression (𝑉

𝑝
) and shear (𝑉

𝑠
) waves

were recorded in cylindrical core samples applying the high-
frequency ultrasonic pulse technique proposed by ASTM [7].
The Schmidt hammer rebound (RN) test method is used
crustily to examine the strength and quality of rock and
hardened concrete. There is a strong relationship between
the RN and the uniaxial compressive strength (𝑓

𝑐
) of rock.

The RN values of the rock specimens were obtained using
an N-type Digi-Schmidt 2000 apparatus according to the
procedures described in ASTM C 805 [22]. At least 20
measurements were taken at different points on eachmixture
sample.

Rock’s most important parameter is its compressive
strength (𝑓

𝑐
) as it was indicated earlier [3]. The 𝑓

𝑐
properties

of rocks were determined related with standards proposed
by ASTM D7012-14 [23]. At least five core samples from
each rock were subjected to strength tests performed by
a fully automatic, instrumented, and computer-controlled
pressmachine. For determination of𝐸

𝑠
, full bridged electrical

resistance strain gauges were used. Two strain gauge rosettes,
consisting of two gauges each, were bonded to the surface of
each specimen at two directly opposite points located half-
way between the specimen ends for the measurement of
axial and circumferential strains, which were recorded at 1-
s gaps performing a static data logger. The tangential 𝐸

𝑠
was

calculated according to the stress-strain curves derived. The
mechanical and physical properties of the rocks are presented
in Table 1.

3. Regression Analysis

SPSS packet programming was used for statistical analysis.
For modelling, multivariable linear (MRA) and univariate
nonlinear regression analysis (URA)were applied.The reason
to apply MRA is to detect simultaneously more independent
variables that justify variations in the dependent variable.
𝐸
𝑠
is considered to be the dependent variable and the rock

properties 𝑉
𝑝
, 𝑉
𝑠
, RN, 𝑓

𝑐
, and 𝜌 are independent variables.

MRA was performed to detect the relationships among
five independent variables thought to be relevant to 𝐸

𝑠
.
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Table 2: Summary statistics for the five models of multivariable
linear regression analysis.

Model
number

Independent variables
that contribute to model 𝑅

2 Std. error of
estimate

1 𝑉
𝑝

0.570 14.88615
2 𝑉

𝑝
, RN 0.654 13.37531

3 𝑉
𝑝
, RN, 𝜌 0.683 12.82088

4 𝑉
𝑝
, RN, 𝜌, 𝑓

𝑐
0.691 12.67647

Table 3: Regression coefficient values for univariate nonlinear
regression analysis.

Models Independent variable
𝜌 RN 𝑓

𝑐
𝑉
𝑝

Linear 0.518 0.356 0.409 0.570
Logarithmic 0.494 0.262 0.373 0.507
Inverse 0.463 0.071 0.094 0.350
Quadratic 0.548 0.356 0.419 0.576
Cubic 0.547 0.358 0.421 0.582
Compound 0.580 0.415 0.453 0.667
Power 0.589 0.530 0.613 0.719
S 0.588 0.282 0.299 0.639
Growth 0.580 0.415 0.453 0.667
Exponential 0.580 0.415 0.453 0.667
Logistic 0.580 0.415 0.453 0.667

Regression analyses were carried out using SPSS 16 statistical
software, which offers a stepwise regressionmethod. Stepwise
regression provides insight into which independent variables
are significant by identifying good (although not necessarily
the best) subset models, resulting in considerably less com-
puting time than would be required to calculate all possible
regressions.

During the MRA and URA, 5 and 55 different mod-
els were created, respectively. Linear, logarithmic, inverse,
quadratic, cubic, compound, power, S-curve, growth, expo-
nential, and logistic models were formed and tested individ-
ually for nonlinear regression analysis. In these multivariable
and univariate models, the highest regression coefficient (𝑅2)
value is 0.69 for model 4 (Table 2) and 0.72 for the power-
type model (Table 3), where 𝑉

𝑝
is an independent variable.

The results of the multivariable and univariate regression
coefficients (𝑅2) for these models exist to range within an
plausible extent. Because of these results, there is no need to
assess the validity of these models further.

4. Gene Expression Programming

GEP is a new evolutionary artificial intelligence method
developed by Ferreira [24]. It is a strong evolutionary
algorithm that includes both simple linear chromosomes of
arranged length, similar to those performed in genetic algo-
rithms (GA), and separated structures of different sizes and
structures, similar to the parsing trees of genetic program-
ming (GP). Its evaluation system for any type of knowledge

mirrors that of biological evaluation and is encoded as a
computer program in linear chromosomes of fixed length.
In this method, a mathematical function identified as a
chromosome with multiple genes is developed using the data
presented to it. Although GEP mainly executes symbolic
regression through most of the genetic operators of GA and
GP, there are some differences between GA, GP, and GEP.
GP represents it as nonlinear essences of different sizes and
shapes (parsing trees) while any mathematical expression is
adopted as a symbolic string of fixed length (chromosomes)
in GA. However, in GEP it is encoded as simple strings of
fixed length, which are subsequently expressed as expression
trees of different sizes and shapes [25, 26]. One such gene,
expression tree (ET), and its algebraic expression can be
represented in Figure 1. For more detailed information, the
reader is referred to Ferreira [24, 27]:

Mathematical Equation: √(𝑎 − 𝑏) (𝑐 + 𝑑). (1)

4.1. GEP Model. The principle in the development of GEP
models was to generate a mathematical function for predict-
ing𝐸
𝑠
using onlyNDTmethods (RN,𝑉

𝑝
) and 𝜌.When select-

ing these variables, it has been noted that they are used in the
estimation of 𝐸

𝑑
, which is provided by well-known methods

to determine the deformation characteristics of materials.
The widely used parameters in the determination of 𝐸

𝑑
are

𝑉
𝑝
,𝑉
𝑠
, and 𝜌. Previous researchers have demonstrated that𝑉

𝑝

and𝑉
𝑠
[28, 29] as well as compressive strength andRN [30, 31]

are highly correlated. Multicollinearity, a strong correlation
between independent variables, might result in problems
with the analysis. For example, variables do not contribute
sufficiently to themodel. Because of multicollinearity and the
fact that measurements of 𝑉

𝑠
are more difficult than those of

𝑉
𝑝
, and because RN is a nondestructive technique that does

not damage the sample, 𝐸
𝑠
is formulated as a function of 𝑉

𝑝
,

RN, and 𝜌 values of rocks.
The GEP model was developed using data sets of 317

rock specimens obtained from an experimental study. Both
the practicing and examination data were randomly selected
from these data. The numbers of experimental data sets used
for initial practices and testing/validation in this model were
212 and 105, respectively. The parameters used in GEP model
development are summarized in Table 4.

For GEP formulation, the fitness 𝑓
𝑖
of an individual

program is measured by

𝑓
𝑖
=

𝐶
𝑡

∑

𝑗=1

(𝑀 −

𝐶
𝑖𝑗
− 𝑇
𝑗


) , (2)

where𝑀 is the range of selection,𝐶(𝑖, 𝑗) is the value returned
by the individual chromosome for performance case 𝑗 (out of
𝐶
𝑡
fitness cases), and 𝑇

𝑗
is the target value for fitness case 𝑗. If

|𝐶
(𝑖𝑗)

−𝑇
𝑗
| (the precision) is less than or equal to 0.01, then the

accuracy is equal to zero, and 𝑓
𝑖
= 𝑓max = 𝐶

𝑡
𝑀. In this case,

𝑀 = 100 was used; therefore, 𝑓max = 1000. Since the system
can find the optimal solution by itself, it can be considered as
the advantage of this type of fitness function [24, 32, 33]. Next,
the set of terminals “𝑇” and the set of functions “𝐹” used to
create the chromosomes are chosen, namely,𝑇 = {𝑉

𝑝
,RN, 𝜌},
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Mathematical equation: √(a − b)(c + d)

Figure 1: Example of GEP expression tree and mathematical equation.

and four basic arithmetic operators (+, −, ∗, /) and some basic
mathematical functions (Sqrt, Cubic Root, 4Rt, Sub3, Exp,𝑥3,
1/𝑥, Ln) were used.

For choosing the chromosomal tree, that is, the length of
the head and the number of genes, the GEP approach model
initially used a single gene and two lengths of heads and
increased the number of genes and heads, one after another,
during each run, while monitoring the training and testing
performance of eachmodel. In the present study, after several

trials, to achieve the best results the number of genes and
length of heads were found to be 4 and 17, respectively. The
sub-ETs (genes) were linked by multiplication.

Finally, a combination of all genetic operators (mutation,
transposition, and crossover) was utilized as the set of genetic
operators. Parameters used for training the GEP approach
model are given in Table 1. Chromosome 20 was observed
to be the best generation of individuals in predicting 𝐸

𝑠
.

The definitive formulation of 𝐸
𝑠
based on the GEP approach

model is given by

𝐸
𝑠
=

{{

{{

{

1

[
3
√ 4√𝑑
2
∗ 𝑑
1
∗ 𝑐
1
∗ [(𝑐
3
/𝑐
2
) − (𝑑

0
/𝑐
4
)
3

]] − Arctan [(𝑑
0
− 𝑐
2
) ∗ 𝑐
0
]

}}

}}

}

∗ {[
5
√𝑑
2
− 𝑑
2

2
] − [Arctan 5√[Arctan (1/𝑑

1
)] + [𝑑

2
+ (𝑑
0
− 𝑐
1
)] ∗ Ln 4√𝑑

1
]}

∗ {𝑑
0
− [𝑑
1
− [𝑐
4
∗ [𝑑
0
− 2√𝑐
1
] − [(

𝑑
2

𝑐
2

− 𝑑
0
)]] ∗ [(𝑐

3
∗ 𝑑
2
) − (𝑑

0
∗ 𝑐
3
)]
5

]}

∗

{

{

{

𝑑
0
+ Tanh [[(𝑐

2
∗ 𝑐
1
) ∗ (𝑐
0
− 𝑑
2
)] − 𝑑

1
] ∗ [

1

(𝑑
2

0
)
3
] ∗ [

[

2
√(

2
√(𝑑
2
∗ 𝑐
2
))

5

]

]

}

}

}

.

(3)

The representation tree of the formulation is also shown
in Figure 2, where 𝑑

0
, 𝑑
1
, and 𝑑

2
refer to 𝜌, RN, and 𝑉

𝑝
,

respectively. The constants in the formulation are given in
Table 5.

5. Results and Discussion

This study is supposed to find out possible the pertinence
of GEP, MRA, and URA in predicting the 𝐸

𝑠
value of rocks,

which has great significance in rock mechanics and founda-
tion engineering.The developedmodels were compared with
𝐸
𝑑
. This part relatively presents the analysis results derived

from these approaches and quantitative evaluations of the
predictive capabilities of the models.

Of the 317 data sets, 212 were used for training the models
and the 105 that were not used in training were used to
test the models. To determine the success of the developed
models, the regression coefficient (𝑅2), root-mean-square
error (RMSE), and average absolute percentage error (MAPE)
were used as criteria to assess compatibility between the
experimental and predicted values. The statistical success of
the developed models and 𝐸

𝑑
values is shown in Table 6.

The𝑅2 value relating the experimental and predicted data
using the GEP model is 0.90, implying that the GEP model
has good performance. On the other hand, the 𝑅

2 values of
the MRA, URA (a power model where𝑉

𝑝
is the independent

variable), and 𝐸
𝑑
models are 0.68, 0.72, and 0.43, respectively.
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for data used to validate the

GEP model.

These values are not sufficient for confident validation of
these models.

The 𝐸
𝑠
values predicted from GEP methods for training

and testing are compared graphically with their experimental
counterparts in Figures 3 and 4, respectively. As can be seen
from these figures, there is a close compatibility between real
and anticipated values.

Figure 5 shows the comparison between 𝐸
𝑠
and 𝐸

𝑑

values. As can be clearly seen in these figures, there is no
relationship between the predicted and observed variables,
and the results obtained by these methods are very different
from the experimental results (𝑅2 = 0.43). In fact, for 𝐸

𝑑
in

this study, even negative values are observed. As a result of the
evaluation of these results, the GEP model was determined
as the best applicable model for predicting 𝐸

𝑠
in comparison

with MRA and 𝐸
𝑑
.

6. Conclusions

Findings of the presented study reported a new and efficient
approach to the formulation of 𝐸

𝑠
using GEP with NDT and
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Figure 5: Comparison of static and dynamic elasticity.

Table 4: GEP parameters used for the developed model.

Parameter definition GEP model
Program size 95
Literals 23
Number of generations 10,024,415
Arithmetic operators +, −, ∗, /

Mathematical functions
Inv, sgrt, 3Rt, 4Rt, 5Rt, 𝑋2, 𝑋3,

𝑋
4, 𝑋5, arctangent and
hyperbolic tangent

Number of chromosomes 20
Head size 17
Tail size 18
Gene size 53
Number of genes 4
Linking function Multiplication
Mutation rate 0.00138
Inversion rate 0.00546
One-point recombination rate 0.00277
Two-point recombination rate 0.00277
Gene recombination rate 0.00277
Gene transposition rate 0.00277

Table 5: Constants in the GEP model.

Constant Sub-ET 1 Sub-ET 2 Sub-ET 3 Sub-ET 4
𝐶
0

3.61 −4.31 7.18 5.91
𝐶
1

11.19 6.00 16.88 6.98
𝐶
2

3.07 5.51 5.85 10.29
𝐶
3

3.20 5.81 −0.58 −6.25
𝐶
4

−4.00 −8.86 −0.68 5.70

led to compare findings ofMRA, URA, and𝐸
𝑑
.The proposed

model is empirical, and data for its development were derived
from the experimental study conducted. It was shown that
the GEP model considerably outperforms compared to other
soft computing systemsmentioned above.Thiswas supported
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Table 6: Statistical parameters for predicting 𝐸
𝑠
.

GEP model Best MRA
model

Best URA
model 𝐸

𝑑Training Validation
𝑅
2 0.90 0.91 0.68 0.72 0.43

RMSE 7.02 6.66 12.27 46.10 26.53
MAPE 5.44 4.97 87.96 98.49 102.56

and proven by statistical fitness criteria used for evaluating
the models. The GEP model produced the highest 𝑅

2 value
(0.90) and lower RMSE and MAPE values (7.02 and 5.44,
resp.).

GEP is particularly suitable for predicting 𝐸
𝑠
values

of rocks from anisotropic and heterogeneous materials in
terms of calculating nonlinear functional relationships where
classicalmethods cannot be easily performed.Moreover, with
the use of GEP, 𝐸

𝑠
can be estimated without performing

sophisticated and time-consuming laboratory tests. The pro-
posed method is simple, does not damage the sample, and is
sufficiently accurate to be recommended for use in practice.
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