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This article is a review regarding recently developed inverse strategies coupled with finite element simulations for the identification
of the parameters of constitutive laws that describe the plastic behaviour of metal sheets. It highlights that the identification
procedure is dictated by the loading conditions, the geometry of the sample, the type of experimental results selected for the analysis,
the cost function, and optimization algorithm used. Also, the type of constitutive law (isotropic and/or kinematic hardening laws
and/or anisotropic yield criterion), whose parameters are intended to be identified, affects the whole identification procedure.

1. Introduction

Finite Element Analysis (FEA) is now a well-established
computational tool in industry for the optimization of sheet
metal forming processes. The accurate modelling of these
processes is a complex task due to the nonlinearities involved,
such as those associated with (i) the kinematics of large
deformations, (ii) the contact between the sheet and the tools,
and (iii) the plastic behaviour of the metal sheet.

The description of the plastic behaviour of metal sheets
is usually performed using phenomenological constitutive
models. In this context, the emergence of new steels and
aluminium, magnesium, and other alloys, as well as their
increasingly widespread use in the automotive and aeronau-
tical industries, has encouraged the development of more
reliable models, with increasing flexibility associated with a
larger number of parameters to identify [1–14]. In fact, the
accuracy of the numerical simulation results of sheet metal
forming processes depends on the flexibility of a constitutive
material model but also on the procedure adopted to identify
its parameters. The complex nature of the plastic behaviour
of metal sheets makes their characterization dependent upon
factors such as (i) the constitutive model; (ii) the experi-
mental tests performed, comprising the sample geometry, the
testing conditions, and the analysis methodologies; (iii) the
strategy for identifying the constitutive parameters.

The strategy for identifying the model parameters is
generally seen as an optimization problem, where the pur-
pose is to minimise the difference between computed and
experimental results of one or more experiments. Two main
types of strategies for the identification of the constitutive
parameters can be recognised in literature: classical and
inverse strategies. The classical identification strategies for
the constitutive parameters make use of a large number of
standardised mechanical tests, with well-defined geometry
and loading conditions, such that homogeneous stress and
strain distribution develop in the region of interest (e.g.,
[15, 16]); nonstandardmechanical tests can also be performed
to properly describe other biaxial stress states in the sheet
plane (e.g., [17, 18]). However, sheet metal forming processes
are carried out under strongly nonhomogeneous stresses and
strains fields. Therefore, limiting the characterization of the
mechanical behaviour of metal sheets to a restricted number
of tests with linear strain paths and homogeneous deforma-
tion can lead to a somewhat incomplete characterization of
the overall plastic behaviour of the material [19].

Recent developments and accessibility of optical full-field
measurement techniques, such as digital image correlation
(DIC) technique coupled with FEA, make the inverse iden-
tification strategies a common current place. The full-field
measurements allow the acquisition of enriched information
frommechanical tests, such as displacement and strain fields;
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an overview on this topic can be found in [20]. This allows
attenuating the constraints on the geometry and loading
conditions of the mechanical tests used for the identification
of materials parameters, so that nonhomogeneous stress and
strain distributions can be developed in the region of interest
(e.g., [21–29]). In this sense, the identification of constitutive
parameters from nonhomogeneous strain fields and complex
loading conditions provides amore reliable description of the
material behaviour during real sheet metal forming processes
[21]. In such complexmechanical tests, it is no longer possible
to identify the constitutive parameters based on simple
assumptions on the stress and/or strain states, as in the clas-
sical identification strategies. Instead, a finite element model
of the mechanical test is established and cost functions
are defined to minimise the gap between numerical and
experimental results of the mechanical test, which demands
efficient optimization algorithms. However, the efficiency
of any inverse identification strategy directly depends on
the information contained by the objective function. In
the context of constitutive parameters identification, this is
related to the type of experimental results included (e.g.,
loads, displacements, and strains) but also to the strain paths
and levels of deformation attained by the experimental test. It
turns out that there is no consensus about the experimental
tests (sample geometry and loading conditions), the cost
functions, and the optimization procedure that will lead
to accurate constitutive parameters identification. Also, a
major obstacle to thewidespread use of advanced constitutive
models in industrial simulations seems to result from the
lack of an efficient strategy for parameters identification.
In this sense, the developed strategy must be simple, from
an experimental point of view, and allow evaluating to
what extent the selected constitutive model allows perfectly
describing the behaviour of a given material.

The present paper describes recent inverse strategies
coupled with FE simulations for the identification of the
parameters of constitutive laws that describe the plastic
behaviour of metal sheets, resorting to mechanical tests
leading to nonuniform strain and stress states. Following
this introduction, the paper addresses general concepts for
the constitutive modelling and the optimization problem.
Afterwards, an overview of inverse identification strategies
for the constitutive parameters is presented, with emphasis on
inverse identification strategies resorting to FE simulations.

2. Constitutive Modelling

Constitutivemodels have been developed to predict the onset
and evolution of the plastic deformation of a deformable body
undergoing a general state of stress. A phenomenological
constitutive model is typically a combination of the following
components:

(i) Yield criterion that describes the yield surface of
the material in a multidimensional stress space: The
metal sheets are usually assumed to be orthotropic,
with invariant anisotropy during plastic deformation.
With high incidence in the last decades, the emer-
gence of anisotropic yield criteria with an increasing

number of material parameters has been witnessed.
They provide the flexibility required for accurately
modelling the plastic behaviour of advanced metallic
alloys, which are frequently used in automotive and
aeronautical industries. Several approaches have been
used for deriving yield criteria, based on

(1) high-order polynomial functions (e.g., [1, 2]);
(2) the generalization to anisotropy of the second

and third invariants of the deviatoric stress
tensor, 𝐽

2
and 𝐽
3
, respectively (e.g., [3]);

(3) one or more isotropic yield functions, using the
linear Isotropic Plasticity Equivalent (IPE) stress
space concept (e.g., [3–9]);

(4) the construction of weighted sums of anisotrop-
ic yield criteria (e.g., [7]);

(5) the capability tomodel the tension-compression
asymmetry, particularly devoted to specific
magnesium and titanium alloys (e.g., [3, 6, 10]);

(6) the capability to model kinematic hardening
[11];

(7) the interpolation of second-order Bézier curves
[12].

(ii) Hardening laws that express the evolution of the
yield surface during plastic deformation, as schema-
tized in Figure 1: The isotropic hardening law refers
to the homothetic expansion of the yield surface
(see Figure 1(a)) while the kinematic hardening law
describes its translation in the stress space (see
Figure 1(b)). Kinematic hardening laws are recom-
mended for describing plastic deformation under
strain path changes, mainly strain path reversal, in
materials that exhibit Bauschinger effect (e.g., [14]).
The combination of isotropic and kinematic harden-
ing laws provides a flexible model, for simultaneously
describing the change in size and the position of the
centre of the yield surface, during plastic deformation.
Isotropic hardening laws described by power laws
(e.g., [32–37]), saturation laws (e.g., [38, 39]), and
weighted combinations of isotropic hardening laws
(e.g., [40, 41]) have been proposed. Linear (e.g., [42,
43]) and nonlinear (e.g., [13, 14, 44–47]) kinematic
hardening laws were proposed, with the latter being
more appropriate to describe the Bauschinger effect.

(iii) Flow rule, to establish a relationship between the
stress state and the plastic strain increment: Typically,
an associated flow rule is adopted, that is, using the
yield function as plastic potential, although some
exceptions can be found in literature (see, e.g., [48]).

The general representation of a constitutive model can be
described through a functionF = F(𝜎 − X, 𝜀p, 𝛼, 𝛽):

F (𝜎

− X, 𝜀p, 𝛼, 𝛽) = 𝜎 (𝜎 − X, 𝛼) − 𝑌 (𝜀p, 𝛽) , (1)

where 𝜎(𝜎 − X, 𝛼) is the equivalent stress defined by
a given yield criterion and 𝑌(𝜀p, 𝛽) is the hardening law
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Figure 1: Representation of the plastic behaviour of materials in tension-compression. The left side shows generic yield surfaces in the plane
(𝜎
1
; 𝜎
2
) and the right side shows the corresponding hardening law: (a) isotropic hardening and (b) kinematic hardening. See text for details.

Adapted from [30].

that represents the evolution of the yield stress during the
deformation. The equivalent stress, 𝜎(𝜎 − X, 𝛼) = 𝜎, is a
function of the effective stress tensor, (𝜎 −X), that includes
the parameters of the yield criterion, 𝛼, for describing the
anisotropy (𝜎 and X are the deviatoric Cauchy stress and
the deviatoric backstress tensors, resp.) and 𝑌(𝜀p, 𝛽) = 𝑌 is
a function of the equivalent plastic strain, 𝜀p, in which the
parameters are represented by𝛽.The yielding is defined based
on the functionF of (1) and can be written as follows:

F = 𝜎 − 𝑌 = 0 ⇒

𝜎 = 𝑌.
(2)

If 𝜎 < 𝑌, the stress state of the material remains inside
the yield surface and only elastic deformation occurs. When
plastic deformation occurs, the associated flow rule states that
the increment of the plastic strain tensor is normal to the yield
surface, for a stress state such that 𝜎 = 𝑌. The normality
condition, defined by the associated flow rule, assumes that
the increment of the plastic strain tensor is normal to the yield
surface and is expressed by

d𝜀p = d𝜆
𝜕𝜎 (𝜎


− X)

𝜕 (𝜎 − X)
, (3)

where d𝜀p is the increment of the plastic strain tensor, d𝜆 is a
scalar multiplier, and 𝜎(𝜎 − X) = 𝜎 is the equivalent stress
function, representing the plastic potential.

Even though a number of advanced constitutive models
are available in literature, sheetmetal forming simulations are
still mostly performed in industry not taking into account
kinematic hardening and with the well-known Hill’48 yield
criterion [49], whose parameters identification can be easily
assessed by uniaxial tensile tests. Mattiasson and Sigvant [50]
mentioned some plausible explanations, still valid today, for
this reality:

(i) The relative simplicity of theHill’48model thatmakes
it attractive to use

(ii) The unavailability of industry analysts for under-
standing to what extent the modelling of the material
influences the simulation results

(iii) The lack of knowledge, time, andmoney for perform-
ing the multiaxial tests required to identify reliable
hardening curves and parameters of advanced yield
criteria

(iv) The additional cost in terms of CPU time for using
more advanced constitutive models which is consid-
ered to be an effort that is not worth it.

Nevertheless, in our view, the major obstacle to the
widespread use of advanced constitutive models in industrial
simulations comes from the large number of linear strain
path tests, including multiaxial tests, required for the param-
eters identification. To overcome this barrier, a potential
approach is to look for new constitutive parameters identi-
fication strategies that are alternative to the classical ones.
In this sense, an accurate description of the material plastic
behaviour could be attained from (i) a minimum number of
mechanical tests and experimental data; (ii) flexible and user-
friendly constitutivemodels; and (iii) an accessible identifica-
tion procedure for the constitutive parameters, coupled with
robust optimization algorithms. Therefore, Section 4 will
discuss some identification procedures for the constitutive
parameters based on inverse analysis, as an alternative to the
classical approaches.

3. The Optimization Problem

The inverse identification of constitutive model parameters
is generally seen as an optimization problem. The purpose
is to minimise the difference between computed and exper-
imental results of one or more experiments. This difference
is expressed by a cost function and its minimisation is per-
formed using optimization algorithms, which automatically
operate on the values of the constitutive parameters.

3.1. Cost Function. A wide number of cost function formu-
lations for the identification of constitutive parameters have
been proposed in literature (e.g., [57, 58]). According to Cao
and Lin [57], the cost function should operate as an “efficient
guide” of the optimization procedure, in order to search for
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the best fit to the experimental results; therefore, the ideal cost
function should comprise the following conditions:

(i) All measured points of a given experiment should
be part of the optimization procedure and have
equal opportunity to be optimized, provided that
experimental errors are eliminated.

(ii) All experiments should have equal opportunity to be
equally optimized, and so the optimization should not
depend on the number of points considered in each
experiment.

(iii) Different units of measure in the cost function should
not affect the performance of the optimization.

(iv) The identification procedure should not be dependent
of the user, and so the values of the weighting factors
should be optimized to achieve the abovementioned
conditions.

Cost functions are typically formulated under the concept of
weighted least-squares, as follows:

𝐹 (A) = 1

𝑚

1

𝑛

𝑚

∑

𝑖=1

𝑤
𝑖

𝑛

∑

𝑗=1

𝑤
𝑗
[𝑟
𝑖𝑗
(A)]
2

, (4)

where𝐹(A) is the cost function tominimise;A is the vector of
constitutive parameters to optimize;m is the total number of
experiments and 𝑛 is the total number of points, considered
in each experiment 𝑖; 𝑟

𝑖𝑗
(A) is the residual between the

numerically predicted results and those of the experiment
𝑖 at point 𝑗; 𝑤

𝑖
and 𝑤

𝑗
are the weighting factors for each

experiment 𝑖 and for each point 𝑗, respectively. Within
the context of inverse parameter identification, 𝑟

𝑖𝑗
(A) can

contain variables such as loads, pressures, angular moments,
or those arising from full-field measurements (displacements
or strains), as will be seen in detail later.

The residuals can be expressed in terms of relative
differences,

𝑟
𝑖𝑗
(A) =

𝑢
Num
𝑖𝑗

(A) − 𝑢Exp
𝑖𝑗

𝑢
Exp
𝑖𝑗

,

with 𝑖 = 1, . . . , 𝑚, 𝑗 = 1, . . . , 𝑛,

(5)

or in terms of absolute differences,

𝑟
𝑖𝑗
(A) = 𝑢Num

𝑖𝑗
(A) − 𝑢Exp

𝑖𝑗
, (6)

where 𝑢Num
𝑖𝑗

and 𝑢Exp
𝑖𝑗

are, respectively, the numerically pre-
dicted and the experimental results at point 𝑗 of experiment
𝑖. Residuals are often expressed using relative differences,
which allows the use, in the same cost function, of several
kinds of quantities exhibiting various orders of magnitude
and units of measure [59]. When 𝑢Exp

𝑖𝑗
admits values close

to or equal to zero, the residuals should be expressed using
absolute differences.

3.2. Optimization Algorithms. Theminimization of the least-
squares cost function, presented in (4), requires efficient
and robust optimization algorithms, due to the strongly
nonlinear nature of the least-squares cost function [60]. For
this purpose, several optimization algorithms are described
in the literature, which are commonly divided into two
categories: gradient-free algorithms and gradient-based algo-
rithms. Hybrid optimization strategies using both gradient-
free and gradient-based algorithms are also proposed (e.g.,
[15, 60]).

Gradient-free algorithms, such as evolutionary and SIM-
PLEX algorithms, have a great probability of achieving a
global minimum due to their random search capability. They
require a large number of cost function evaluations (i.e.,
iterations) and therefore the convergence can be very time-
consuming. Because of this, gradient-free algorithms are not
recommended within the context of inverse identification
strategies, since they require a large number of finite element
simulations and analyses [61].

Gradient-based algorithms are most popular within
inverse identification strategies, as they require far less cost
function evaluations than gradient-free algorithms. As local
optimizers, these algorithms use information of the gradient
to update the vector of constitutive parameters in an adequate
search direction [62]. Therefore, there is no guarantee that
these algorithms converge to the global minimum, with the
possibility of converging to undesirable local minima. This
makes the optimization procedure dependent on the initial
estimate for the parameters, and therefore the choice of
convenient initial estimates for the constitutive parameters
can be essential.

Examples of gradient-based algorithms commonly used
within the context of inverse identification strategies are the
Gauss-Newton and Levenberg-Marquardt algorithms. The
Gauss-Newton algorithm is described as follows:

A𝑠+1 = A𝑠 − (JTWJ)
−1

JTWr (Α𝑠) , (7)

where 𝑠 is the iteration step, A is the vector of constitutive
parameters, W is the vector of weighting factors, J is the
Jacobianmatrix that expresses the sensitivity of the computed
results to the constitutive parameters, and r(Α𝑠) is the vector
of residuals, which can be expressed in terms of relative or
absolute differences (see (5) and (6), resp.). The dimension
of the vector of residuals depends on the total number
of experiments 𝑚 and the total number of points 𝑛, in
each experiment, that is, the dimension 𝑛

𝑟
= 𝑚 × 𝑛.

Considering that the total number of constitutive parameters
to be identified is 𝑛

𝑝
, with 𝑛

𝑟
≥ 𝑛
𝑝
, the Jacobian containing

the partial derivatives of the residuals with respect to the
constitutive parameters is defined:

𝐽
𝑙,𝑝
=
𝜕𝑟
𝑙
(𝐴
𝑝
)

𝜕𝐴
𝑝

, with 𝑙 = 1, . . . , 𝑛
𝑟
, 𝑝 = 1, . . . , 𝑛

𝑝
. (8)

An efficient method to compute the Jacobian matrix is finite
differentiation. In order to improve convergence, the Jacobian
matrix must be updated at each iteration step 𝑠. However, the
calculation in each step requires high computational cost (at
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least one numerical simulation per constitutive parameter).
To overcome this inconvenient, Endelt et al. [63, 64] and
Cooreman [62] highlighted the possibility of computing the
sensitivity matrix analytically, with the latter author having
concluded the inability of this approach for computing the
sensitivities of strain fields to the material parameters, in
mechanical tests involving complex and/or heterogeneous
deformation.

In some cases, the Gauss-Newton algorithm can become
unstable in the neighbourhood of theminimum, and so a sta-
bilisation procedure is required. The Levenberg-Marquardt
algorithm is similar to Gauss-Newton one, but includes a
stabilising term, as follows [65]:

A𝑠+1 = A𝑠 − (JTWJ + 𝜆 diag (JTWJ))
−1

JTWr (Α𝑠) , (9)

where 𝜆 is the stabilising parameter that is updated in each
iteration according to the convergence rate [65]. When the
Levenberg-Marquardt method shows stability, small values
for 𝜆 are recommended for fast convergence; otherwise, large
values of 𝜆 usually allow stable convergence, although slower,
towards the minimum. Note that for 𝜆 = 0 the Levenberg-
Marquardt algorithm is equal to the Gauss-Newton one.

A different type of optimization technique that has been
recently used in the identification of constitutive parameters
is the Response Surface Methodology (RSM) (e.g., [54, 66]).
RSM is an optimization technique for generating smooth
approximations of complex functions in a multidimensional
design space. In the context of parameter identification, the
design space contains all possible combinations for the con-
stitutive parameters and related values of the cost function.
The prohibitive size of the full design space requires a Design
of Experiments (DoE), to efficiently construct an approx-
imated design space from a few number of representative
points (i.e., sets of constitutive parameters). The responses of
the representative points (i.e., the values of the cost function)
are used to fit a response surface, which is typically obtained
from second-order polynomial regression, for the sake of
simplicity. Finally, the minimum of the response surface is
calculated using a gradient-based optimization procedure,
which leads to an estimate of the optimal set of constitutive
parameters. In brief, the RSM technique can be summarised
as follows:

(1) An initial guess for the design space for the material
parameters is selected.

(2) Numerical simulations are performed with the differ-
ent sets of parameters, representing the experimental
design points needed for filling the design space.

(3) For each simulation, the predicted results are com-
pared with the experimental ones, and the cost func-
tion values are calculated according to (4).

(4) A response surface is constructed to approximate the
values of the cost function; typically, least-squares
approximations are used to determine second-order
polynomials.

(5) An optimization algorithm is applied to determine
the minimum point of the response surface (i.e.,

where 𝐹(A) is minimum), providing the optimal set
of material parameters.

If a converged solution is not found, the process starts all over
again, adding a new region of interest to the design space.

4. Inverse Identification Strategies

While classical strategies make use of global measurements
from experiments to infer the values of the constitutive
parameters, using simple analytical relations to estimate the
material response under the assumption of homogeneous
stress and strain fields in the region of interest, the inverse
identification strategies are much more flexible [20]. They
make use of experiments allowing heterogeneous deforma-
tion and/or strain path changes, as close as possible of the
conditions usually found during real sheet metal forming
processes. In this perspective, some authors even proposed
tests involving contact with friction, such as the punch stretch
test (e.g., [67]) and the cylindrical cup test (e.g., [68]), for
performing the inverse parameter identification. In these
latter cases, the adequate description of the local contact with
friction is of paramount importance because it can affect the
final results of the parameter identification (e.g., see [69]).

The inverse identification strategies make use of global
measurements, such as tool loads and tool displacements,
which are usually coupled with local measurements, repre-
sented as full-field states of displacements and/or strains on
the surface of the sample. Then, a numerical analysis of the
mechanical test is performed, assuming a constitutive model
chosen a priori and an initial estimate for its parameters.
Finally, the experimental results of the mechanical test are
iteratively compared with numerical results by acting on
the values of the constitutive parameters until there is an
adequate agreement between experimental and numerical
results. Figure 2 shows a schematic representation of inverse
identification strategies based on the comparison between
experimental and numerical measurements using FE simu-
lations.

The advantages of this identification approaches include
substantial amount of reliable data extracted from a sin-
gle mechanical test, using full-field measurements, which
enables the accurate identification of large sets of constitutive
parameters taking into account a wide range of strain levels
and strain paths; therefore, it does not require uniform stress
and strain distributions, in the region of interest, and no
particular restrictions to the sample geometry and/or loading
conditions are imposed.

Nevertheless, due to the design of the sample geometry,
loading conditions, and induced strain paths, the inverse
identification requires proper computational strategies [20].
The most common strategy uses Finite Element Model
Updating (FEMU) and consists of performing successive
finite element (FE) simulations of the physical experiment;
the set of parameters are obtained by minimising the differ-
ence between the experimental and the numerical measure-
ments. This difference is expressed by a cost function and
itsminimisation is performed using optimization algorithms,
which automatically operate on the values of the constitutive
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Figure 2: Schematic representation of inverse identification strate-
gies. Adapted from [31].

parameters. Usually, cost functions compare the experimen-
tal and simulated loads and full-field measurements (e.g.,
[23, 59, 70–72]); less frequently, some authors propose to
use only the load (e.g., [54, 66]), or full-field displacements
(e.g., [24]) or strains (e.g., [21, 27–29]), at a given moment of
loading.

A promising alternative to the use of FEMU is the Virtual
Fields Method (VFM), which is based on the principle of
virtual work. This approach does not require using time-
consuming FE analysis and therefore avoids potential draw-
backs related to the accuracy of FEmodels, namely, the repre-
sentation of the geometry and boundary conditions [73].The
VFMwas successfully used in the identification of parameters
of constitutive laws describing the plastic behaviour of metal
sheets [73–76]. However, the accuracy of the parameter
identification using VFM depends on the adequate choice of
the virtual field, which is currently a challenge for problems
involving large heterogeneity of deformation of anisotropic
materials, as well as large plastic deformations. In fact, in this
type of problems, the optimal virtual field has to be evaluated
for each time increment, which makes it less attractive than
that for linear problems.

4.1. Overview of FEMU Strategies. This subsection provides
an overview of the literature on inverse methodologies for
the identification of parameters of constitutive laws based
on inverse strategies coupled with FE simulations. These
cases highlight that the identification procedure is dictated
by the loading conditions, the geometry of the sample,
the type of experimental results selected for the analysis,
the cost functions, and the optimization algorithm used.

In this context, inverse strategies were developed for the
identification of the anisotropy and hardening behaviour of
metal sheets, simultaneously or separately. Table 1 shows a
comparative outline of these strategies, whose key details are
highlighted in the following subsections.

4.1.1. Identification of Isotropic Hardening and/or
Yield Criterion Parameters

(1) Strategies Using Cruciform Specimens. There has been a
steadily growing interest in developing inverse identification
strategies supported by the use of the biaxial tensile test of
cruciform specimens, coupled with full-field displacement
or strain measurements (e.g., [21, 24–29]). In general, this
test allows (i) strain paths ranging from uniaxial tension
(in the arms region of the specimen) to balanced biaxial
tension (in the centre section of the specimen), (ii) high
strain gradients from the centre region of the specimen to
the end of the arms region, and (iii) no contact between
surfaces and therefore no friction. Also, by changing the
load and/or displacement ratio over the two normal loading
axes, it is possible to achieve several biaxial stress states in
the central region of the specimen. However, this kind of
test only permits attaining low values of equivalent plastic
strain (close to those obtained in uniaxial tension) before
instability occurs and no occurrence of out-of-plane shear
stresses is observed (i.e., the test is insensitive to the material
parameters associated with these stresses). Figure 3 shows a
set of cruciform geometries proposed in the literature for
identifying material parameters using FEMU strategies.

In this context, Cooreman et al. [21] proposed the use of
the biaxial tensile test on a perforated cruciform specimen
(see Figure 3(b)), to simultaneously identify the material
parameters of Swift hardening law [34] and Hill’48 yield
criterion that describe the plastic behaviour of a 0.8mm thick
DC06 sheet steel. The identification makes use of strain field
data measured at the central region of the specimen (see
dashed area in Figure 3(b)) taken at 7 distinct load steps and
iteratively compared with their numerical counterparts using
Gauss-Newton algorithm, using the following cost function:

𝐹 (A) = 1

3𝑛
{
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𝑖=1
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where (𝜀Exp)
𝑖
and (𝜀Num(A))

𝑖
are the experimentally deter-

mined and numerical values of the strain components 𝜀
𝑥𝑥
,

𝜀
𝑦𝑦
, and 𝜀

𝑥𝑦
at point 𝑖, respectively, and 𝑛 is the total

number of measuring points. According to the authors, the
results from the inverse strategy are similar to those from
classical strategies, except for the parameter 𝜀

0
of the Swift

law, which leads to clearly different yield stress values. The
authors attribute the discrepancy of 𝜀

0
results to the use

of strain field results from loading steps that neglect the
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Figure 3: Cruciform specimen geometries proposed in the literature for FEMU strategies: (a) Schmaltz and Willner [24]; (b) Cooreman et
al. [21]; (c) Prates et al. [25, 26]; (d) Zhang et al. [27, 28]; and (e) Liu et al. [29].

beginning of the test. They suggest performing the inverse
identification using additional strain fields from loading steps
located near the onset of plastic deformation, which in our
opinion can lead to high relative errors. A simpler alternative,

from the experimental point of view, would be to include
in the identification a cost function considering the load-
displacement curves for both axes of the cruciform sample,
as adopted in other identification strategies later described.
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Schmaltz and Willner [24] explored the usability of the
biaxial tensile test on three cruciform specimen geometries,
promoting different types of heterogeneous strain fields (see
Figure 3(a)), in order to identify the plastic behaviour of a
2.0 mm thick DC04 sheet steel modelled via Hill’48 yield
criterion and Hockett-Sherby hardening law [39]. The exper-
imental and numerical displacement fields, in the regions in
red (see Figure 3(a)) were compared and their difference was
minimised using the Levenberg-Marquardt algorithm, with
the following cost function:

𝐹 (A) =
2

∑

𝑙=1

𝑛

∑

𝑖=1

[(𝑢
Exp
𝑙
)
𝑖
− (𝑢

Num
𝑙

(A))
𝑖
]
2

, (11)

where (𝑢Exp
𝑙
)
𝑖
and (𝑢Num

𝑙
(A))
𝑖
are the experimentally deter-

mined and the numerically predicted values of the displace-
ments at point 𝑖, respectively, in the 0𝑥 and 0𝑦 directions
of the sheet plane (𝑙 = 1, 2), at a given moment of the
test.

The optimization procedure starts with three different
initial sets of parameters that lead to quite similar optimized
values, for each test geometry, suggesting that the global
optimum is reached. Moreover, the identification is split in
two sequential steps (using the same cost function): (i) the
first step identifies two of the Hockett-Sherby hardening
law parameters (the yield stress and the saturation stress),
under the assumption of isotropic (von Mises) material;
the two remaining parameters of this law (contained in the
exponent) are obtained by fitting the experimental results
determined from the biaxial tensile test and are kept fixed
during the identification procedure; (ii) in the second step,
theHill’48 parameters are identified.The cruciformgeometry
with the central hole (in the middle of Figure 3(a)) allows
achieving the best results in terms of convergence of the
iterative procedure and accuracy of the identified material
parameters, which was assigned to the strong heterogeneity
of the kinematic field.

Prates et al. [25, 26] designed a cruciform sample and
developed two strategies for simultaneously identifying the
parameters of the anisotropic yield criteria and isotropic
hardening law of sheet metals. Both strategies use the results
of the load evolution during the test and of the major
and minor principal strains distributions, along the axes of
the sample, at a given moment of the test, preceding the
maximum load. Both strategies were numerically tested. The
optimization of the design of the cruciform sample (see
Figure 3(c)) was performed by means of a numerical study
with the purpose of maximising the sensitivity of the test
results to the values of the constitutive parameters and for
allowing a wide range of strain paths, from uniaxial tension,
at the arms of the sample, to near equibiaxial tension, at the
centre of the sample.

The work was initially addressed for the identification of
the parameters of the Hill’48 yield criterion and the isotropic
Swift hardening law [25]. An inverse identification was
performed without resorting to the traditional optimization
algorithms (e.g., gradient-based algorithms, or others); that
is, a specific algorithm was built for this purpose.The inverse
analysis algorithm consists of a sequence of five optimization

steps, using the results of load evolution with the sample
boundaries displacement during the test, for the axes 0𝑥
and 0𝑦 (see Figure 3(c)) and the distributions of von Mises
equivalent strain along both axes of the sample, for an
instant preceding and close to the maximum load. At each
step, one or more parameters or a relationship between
them is identified. The strategy was tested using numerically
generated results of fictitious materials, which proved to be
competitive, when compared with classical strategies. This
allowed understanding that a sequential optimization, since
properly elaborated, is clearly advantageous when compared
to most commonly inverse identifications, consisting of
using a unique cost function including different types of
results.

The inverse analysis strategy mentioned above [25]
enabled a good understanding of the issues involved, namely,
concerning the delineation of the sequential algorithm lead-
ing to upper accuracy. This allowed extending the strategy
to more complex constitutive models (yield criteria and
isotropic hardening laws). Therefore, a general inverse iden-
tification strategy that sequentially uses three distinct cost
functions was developed [26]. It resorts to the Levenberg-
Marquardt algorithm for sequential optimization of the
parameters of the yield criteria and isotropic hardening laws.
More importantly, this strategy allows the identification of
parameters of several yield criteria and hardening laws. It can
be used directly for a given criterion or, sequentially, starting
from the Hill’48 yield criterion and then using the Hill’48
criterion solution as an initial estimate for identifying the
parameters of other criteria, on the condition that can be
converted into the Hill’48 yield criterion for particular values
of the parameters. In the last case, this strategy is detached in
two stages and has the advantage of enabling the assessment
of the adequacy of a number of constitutive models to
describe the experimental results, starting from a simple
anisotropic criterion, theHill’48.Thefirst stage consists of the
simultaneous identification of the hardening law, Swift and/or
Voce [38], in the case, and Hill’48 yield parameters, using the
results of the load evolution in function of the displacement
of the grips and the equivalent strain distribution at a given
moment of the test, along the axes of the sample. The
hardening parameters must be separately identified for the
Swift and Voce laws and the one (Swift or Voce) that better
describes the results of the cruciform test (if it is possible
to distinguish) is selected for further optimization. The first
stage involves the sequential minimisation of the following
cost functions:

𝐹
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1
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+
1

𝑅
2

𝑅
2

∑

𝑖=1

(
𝜀
Num
𝑖

(B) − 𝜀Exp
𝑖

𝜀
Exp
𝑖

)

2

0𝑦

,

(12)

where 𝑃Num
𝑖

(A) and 𝑃Exp
𝑖

are the experimentally determined
and numerical values of the load, respectively, and 𝜀Num

𝑖
(B)

and 𝜀Exp
𝑖

are the experimentally determined and numerical
values of the equivalent strain, respectively; 𝑄

1
, 𝑄
2
, 𝑅
1
, and

𝑅
2
are the total number of measuring points for axes 0𝑥 and

0𝑦 of the sample; A and B are vectors of isotropic hardening
law and yield criteria parameters, respectively.

The second stage allows extending the parameters iden-
tification procedure to more complex yield functions, such
as Barlat’91 [8], Karafillis and Boyce [9], and Drucker+L [3],
the cases studied in the work. This second stage should be
performedwhenever the identification carried out during the
first stage is found to be not enough satisfactory to capture
the experimental strain paths results, along the axes of the
sample, which are not considered inminimisation during the
first stage. The second stage of this inverse strategy involves
the minimisation of the following cost function:

𝐹
3
(C) = 1

𝑆
1

𝑆
1

∑

𝑖=1

(𝜌
Num
𝑖

(C) − 𝜌Exp
𝑖
)
2

0𝑥

+
1

𝑆
2

𝑆
2

∑

𝑖=1

(𝜌
Num
𝑖

(C) − 𝜌Exp
𝑖
)
2

0𝑦
,

(13)

where 𝜌Num
𝑖

(C) and 𝜌Exp
𝑖

are the experimentally determined
and numerical values of the strain path, respectively, 𝑆

1

and 𝑆
2
are the total number of measuring points for axes

0𝑥 and 0𝑦 of the sample, and C is the vector of yield
criteria parameters. This sequential optimization procedure
is a successful alternative to the parameter identification by
minimising a single cost function comprising all material
parameters and results of different types, as commonly
found in the literature. Namely, it is concluded that this
last approach can deteriorate the description of the material
behaviour, concerning the load versus displacement results,
and therefore the parameters and the choice of the hardening
law, without apparent improvement of the description of the
results of equivalent strain and strain path distributions.

Zhang et al. [28] identified the parameters of Bron
and Besson yield criterion [4] for both AA5086 aluminium
alloy and DP980 dual-phase steel sheets, using a cruciform
sample previously designed by the authors [27] and shown
in Figure 3(d). The inverse identification strategy consists of
minimising the gap between the experimental and numerical
distributions of the major and minor strains along the
diagonal direction of the sample central area, at an instant
immediately before rupture, using a SIMPLEX optimization
algorithm.The cost function used is defined as follows:

𝐹 (A) =
2

∑

𝑙=1

∑
𝑛

𝑖=1
((𝜀

Exp
𝑙
)
𝑖
− (𝜀

Num
𝑙

(A))
𝑖
)
2

∑
𝑛

𝑖=1
((𝜀

Exp
𝑙
)
𝑖
)
2

, (14)

where (𝜀Exp
𝑙
)
𝑖
and (𝜀Num

𝑙
(A))
𝑖
are the experimentally deter-

mined and numerical values of the principal strain compo-
nents (𝑙 = 1, 2) at point 𝑖, respectively, 𝑛 is the total number of
measuring points along the diagonal path, andA is the vector
of 13 parameters to be identified: four isotropy and eight
anisotropy parameters of the Bron and Besson yield model
and the yield stress value. The hardening of the material is
modelled with isotropic hardening described by the Voce law,
in case ofAA5086 aluminium, and an equation based on Swift
and Voce laws, for DP980 steel. In both cases, the hardening
parameters are directly identified from results of the tensile
test in the rolling direction and were kept fixed during the
inverse identification procedure (except the yield stress).

Liu et al. [29] designed a cruciform sample with a thick-
ness-reduced central zone and four slots at each arm (see
Figure 3(e)), to perform the parameters identification of a
modified Voce law, describing the hardening behaviour of
AA5086 aluminium sheet. The inverse analysis procedure
makes use of the SIMPLEX algorithm, tominimise the differ-
ence between experimental and numerical strains measured
at the centre region of the sample during the test, expressed
by the following cost function:

𝐹 (A) =
2

∑

𝑙=1

[

[

∑
𝑛

𝑖=1
((𝜀

Exp
𝑙
)
𝑖
− (𝜀

Num
𝑙

(A))
𝑖
)
2

∑
𝑛

𝑖=1
((𝜀

Exp
𝑙
)
𝑖
)
2

]

]

1/2

, (15)

where (𝜀Exp
𝑙
)
𝑖
and (𝜀Num

𝑙
(A))
𝑖
are the experimentally deter-

mined and numerical values of the principal strain compo-
nents (𝑙 = 1, 2) at point 𝑖, respectively, at the central point
of the sample, 𝑛 is the total number of the time points of
simulation, andA is the vector of three hardening parameters
of the modified Voce law. The experimental force evolution
along the two arms of the cruciform specimen was applied
to the FE model for the numerical simulations, taking into
account the lack of synchronization observed in the two
tensile forces on each axis of the sample. In this inverse
identification of the modified Voce law parameters, three
yield functions were considered: von Mises, Hill’48, and the
more advanced Bron and Besson criterion, whose parameters
were previously identified [27]. The identified biaxial flow
stress curves were then comparedwith an experimental curve
obtained from a uniaxial tensile test, showing that a good
agreement can be achieved if an adequate yield function is
used in the FE model.
(2) Strategies Using Bulge Test. Most of the strain paths
observed in deep-drawing components are in the range
between simple tension and balanced biaxial tension, which
justifies the widespread use of the cruciform specimen in
the framework of the methodologies of inverse analysis.
Nevertheless, this test has a strong drawback related to low
deformation levels achieved, particularly in the central region
of the sample, in which the strain and stress paths can be close
to equibiaxial, although being dependent on the applied load
or displacement ratios along the two axes of the specimen. In
contrast, the bulge test allows obtaining relatively high strain
values before necking, and so the flow stress curves can be
assessed up to large strain values, for several biaxial strain (or
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stress) paths depending on the geometry of the die (circular
or elliptical). In this context, a few cases of inverse analysis
methodologies were developed, with the aim of identifying
the parameters of work-hardening laws.

Chamekh et al. [51] describe an inverse approach, based
onArtificial Neural Networks (ANN), to identify thematerial
parameters of a stainless steel (AISI 304).They use the results
of the evolutions of pressure with the pole height, which are
transferred to the neural network. The ANN is trained by
means of curves of pressure versus displacement of the central
point of the cap, generated by finite element simulations of the
circular bulge test. During the training process, the network
computes the weight connections, minimising the total mean
squared error between the actual output and the desired out-
put. The neural network generates an approximated function
for the material parameters depending on the profile of the
evolution of pressure with the pole height curve. Then, it was
exploited for the identification of material parameters from
experimental results. The Ludwick hardening law [33] and
the Hill’48 yield criterion were selected. Therefore, the set
of parameters to be identified also comprise the Lankford
coefficients, 𝑟

0
, 𝑟
45
, and 𝑟

90
. The material parameters are

identified according to the following two steps: (i) the first
step, using the circular bulge test, is to find the Ludwick hard-
ening law parameters (assuming the knowledge of Lankford’s
coefficients determined from the tensile tests); (ii) the second
step, using the elliptical bulge test for an off axis angle of
0∘, is to recalculate the Lankford’s coefficients. An elliptical
die for an off axis angle of 45∘ is used for the validation
of the parameters identification. The authors conclude the
following: (i) the ANN methodology can predict acceptable
combination of the values of the material parameters; (ii)
once the ANN was trained, output results for a given set
of input data are available almost instantaneously. Despite
these conclusions, it should be noted that the values of the
experimental (from the tensile test) and identified hardening
coefficients are far away (the experimental and identified
values are 0.67 and 0.4, resp.).The remaining identified values
of the parameters differ between 20 and 30%when compared
with the tensile test except for the yield stress, whose values
are approximately equal.

Bambach [52] explored the usability of the circular
bulge test to identify the parameters of the Voce law of a
fictitious material, which is considered isotropic. Initially, the
membrane theory is applied to the results as in experimental
cases, in order to obtain a set of parameters of the Voce, by
fitting the stress versus strain results. The inverse analysis
strategy proposed resorts to a gradient-based optimization
algorithm, which is known for being sensitive to the initial
solution.Thus, by using an initial solution, the one previously
obtained with the membrane theory, it is expected to avoid
convergence problems. The work gives special focus on the
choice of the cost function to be minimised, making use,
separately or simultaneously, of results of pressure versus pole
height, pole strain versus pole height, and pole thickness
versus pole height, and formulated as follows:

𝐹
𝑝
(A) = ∫

ℎmax

0

[𝑝
Exp
(ℎ) − 𝑝

Num
(ℎ,A)]

2

𝑑ℎ,

𝐹
𝜀
(A) = ∫

ℎmax

0

[𝜀
Exp
(ℎ) − 𝜀

Num
(ℎ,A)]

2

𝑑ℎ,

𝐹
𝑡
(A) = ∫

ℎmax

0

[𝑡
Exp
(ℎ) − 𝑡

Num
(ℎ,A)]

2

𝑑ℎ,

(16)

where 𝐹
𝑝
(A), 𝐹

𝜀
(A), and 𝐹

𝑡
(A) are cost functions defined

by the pressure, 𝑝, strain, 𝜀, and thickness, 𝑡, with pole
height, ℎ, respectively. The author concluded that the reiden-
tification procedure (so called by the author) is significantly
improved when combining the first two types of results.
This significantly improves the reidentification, since it will
contribute to reducing the search area where the minimum
value of the objective function is located. It should be noted
that this proposal is a reidentification, which has its starting
point in the parameters previously obtained from the use of
the membrane theory, such as in the traditional procedure
recommended by the ISO standard [77]. Furthermore, it
needs to resort to strain results in the pole of the cap
during the test, which does not simplify the experimental
procedure.

Reis et al. [53] proposed an inverse methodology for
determining the hardening law of metal sheets, from the
results of pressure versus pole height obtained in the bulge
test, involving the identification of the parameters of the
Swift law. The starting point of this analysis was to realize
that it is possible to achieve a unified description (i.e.,
overlapping) of the evolution of the pressure with the pole
height, for a given value of the hardening parameter of the
Swift law, regardless of the yield stress and anisotropy of
the material and sheet thickness. To achieve the overlapping
of such curves, appropriate multiplying factors must be
used for the values of pressure and pole height, depending
on the yield stresses and thicknesses ratios of the sheets
and also on their anisotropy. Thereafter, an inverse analysis
methodology was developed, which consists in the search
for the best coincidence between pressure versus pole height
experimental and reference curves, with the latter being
obtained by numerical simulation assuming isotropic mate-
rial behaviourwith various values of the hardening parameter
in the range of the material under study. This methodology,
when compared with the classical strategy, proves to be an
efficient alternative avoiding the use of complex devices for
measuring the radius of curvature and strain at the pole of
the cap, during the bulge test. Moreover, the authors claim
that it is easy to implement and it is more efficient than
classical approach, since (i) a unique set of numerical curves
can be used within a relatively wide range of hardening
coefficients, that is, covering the values usually found within
one or several class of materials, without having to remake
the simulations every time an identification is performed;
(ii) it is not exposed to experimental errors related to the
evaluation of the strain at the pole of the bulge and the use of
membrane theory approach for assessment of the stress from
the radius of curvature, which is usually the major source of
errors.
(3) Other Specimens. Güner et al. [22] proposed an inverse
analysis procedure for the identification of the Yld2000-2D
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yield criterion parameters [7]. This study uses a notched
specimen submitted to a tensile test, in order to obtain
an inhomogeneous deformation field. Moreover, a layer
compression test is used in order to supply additional
information, that is, the equibiaxial yield stress. The required
data for the inverse identification are the major and minor
principal strains in the sheet plane and the load and the
equibiaxial yield stress. The cost function is minimised using
the Levenberg-Marquardt algorithm and is written as follows:

𝐹 (A)

=

𝑛inc
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𝑛elem
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2
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(A) − 𝜎Exp

𝑏
)
2

,

(17)

where 𝜀
1
and 𝜀
2
are the principal strains measured at each

tool displacement increment 𝑖, at each element of the optical
measurements, 𝑗; 𝑃 represents the load and 𝜎

𝑏
the equibiaxial

yield stress; 𝐶
1
and 𝐶

2
are scale factors. The value of 𝜎

𝑏
(A)

is analytically calculated at each iteration with the values
of A predicted by the optimization algorithm. Different
alternative orientations of the specimen with the rolling
direction (0∘, 45∘, and 90∘) and configurations of the cost
function (setting one of the three terms of the cost function
equal to zero) were considered to test the inverse procedure.
The authors highlight the importance of including strain
information and the equibiaxial stress on the cost function,
in order to improve the characterization of the anisotropy
coefficients.

Pottier et al. [23] developed an out-of-plane testing
procedure for the simultaneous identification of Hill’48 yield
criterion and Ludwick hardening law parameters of a rolled
titanium sheet. Figure 4 illustrates the experimental setup
and the geometry of the sample developed by the authors.
A hemispherical punch applies a prescribed displacement
normal to the sheet plane, at the centre of the surface of
the sample, using a simple uniaxial tensile test machine.
Two cameras are located on the opposite side of the sample
and the components of the displacement fields along the 0𝑥,
0𝑦, and 0𝑧 axes are captured during the test using stereo
digital image correlation.The samplewas designed in order to
exhibit multiaxial stress states, including shear, tension, and
biaxial stretching. The numerical displacements fields along
the 0𝑥, 0𝑦, and 0𝑧 axes and the global load are obtained
from a numerical model of the test and compared to the
experimental ones using a single cost function, formulated as
follows:
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Figure 4: Schematic representation of the out-of-plane test devel-
oped by Pottier et al. [23].
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where 𝑁
𝑡
is the number of time steps considered and 𝑛

is the number of measured points; 𝑢
𝑥
, 𝑢
𝑦
, and 𝑢

𝑧
are the

displacements along the 0𝑥, 0𝑦, and 0𝑧 axes, respectively,
𝑃 is the global load and A is the vector of parameters to
identify; the subscripts Num and Exp refer to numerical
and experimental results and 𝑖 and 𝑗 refer to the num-
ber of time steps and measured points, respectively. The
minimisation of the cost function is performed with the
Levenberg-Marquardt algorithm. To assess the quality of
the identified set of constitutive parameters, the authors
performed deep-drawing tests of a circular cup. Moreover,
additional identifications of the constitutive parameters of the
material were performed, following two different strategies:
a classic strategy, based on three tensile tests cut along
three different directions in the sheet plane, and an inverse
identification strategy using heterogeneous planar shear-like
tests, previously proposed [59]. The experimental results of
the earing profile of the circular cup were then compared
with the numerically predicted results from the different
parameter identification strategies. The authors concluded
that the use of the nonplanar sample allows a more accurate
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Figure 5: Device for three-point bending test [54]: (a) experimental setup and (b) schematic representation of horizontal and vertical views.

prediction of the earing profile than the planar shear-like
tests and the three tensile tests, since the nonplanar sample
test covers a wider range of strain paths. However, in our
opinion, the chosenmechanical test shows a relative degree of
complexity and has the inconvenience of presenting contact
with friction between the punch and the metal sheet, which
always raises questions concerning the impact of contact with
friction on the identification of the constitutive parameters.

4.1.2. Identification of Kinematic Hardening. The identifica-
tion of the kinematic hardening plays a significant role when
phenomena such as the Bauschinger effect and permanent
softening, due to reverse of strain path and other strain path
changes, are relevant for the subsequent plastic deformation
behaviour. Depending on the material and the strain path
changes occurring in the deep-drawing process, these phe-
nomena can be more or less noticeable and relevant. The
Bauschinger effect is also associated with the springback,
due to premature yielding after reversal of strain path [14].
Springback is the strain recovery when forming loads are
removed, and itsmagnitude, which depends on the flow stress
value [11] and Young’s modulus, can also be influenced by the
Bauschinger effect [78]. Therefore, the proper modelling and
identification of the kinematic hardening are also important
in order to efficiently predict the springback.

In this sense, Eggertsen andMattiasson [54] were focused
on the identification of the kinematic hardening law with
the main concern of the accurate prediction of springback.
The goal was to select the model able to accurately describe
kinematic hardening features, such as the early reyielding,
transient behaviour, work-hardening stagnation, and perma-
nent softening, taking also into account the complexity on
the evaluation of its parameters. Three-point bending tests
(see Figure 5) on four typical materials from car manufac-
turing industry were performed: two dual-phase steels (TKS-
DP600HF and SSAB-DP600), from different suppliers and
with different thicknesses, a mild steel (Voest-DX56D), and
an interstitial-free steel (TKS-220IF). Five different harden-
ing models were considered: (i) a pure isotropic hardening
law, used as comparative reference; (ii) a mixed isotropic-
kinematic law [79, 80]; (iii) the Armstrong-Frederick model

[44]; (iv) the Geng-Wagoner hardening law [47]; and (v)
the Yoshida-Uemori hardening law [14]. The hardening
parameters of all models were determined by inverse anal-
ysis, where the difference between the experimentally and
numerically generated load-displacement curves of the three-
point bending test is minimised.The inverse identification of
thematerial parameterswas performed resorting toResponse
Surface Methodology, using the following cost function:

𝐹 (A) = 1
𝑛

𝑛

∑

𝑖=1

𝑤
𝑖
(
𝑃
Num
𝑖

(A) − 𝑃Exp
𝑖

𝑠
𝑖

)

2

, (19)

where 𝑃Num
𝑖

(A) and 𝑃Exp
𝑖

represent the calculated and mea-
sured values of the punch load as a function of the vector of
hardening parameters A, respectively; 𝑠

𝑖
is the residual scale

factor; and 𝑤
𝑖
is the weight applied to each component of the

cost function. Both 𝑠
𝑖
and 𝑤

𝑖
were set equal to 1. The authors

conclude that Yoshida-Uemori model provides the best result
for all materials, while the isotropic hardening model gives
the worst result. However, taking into account the accuracy
and the complexity of the hardening model, the authors
point out that Geng-Wagoner law corresponds to a better
compromise. In fact, they state that about 30 simulations are
needed to optimize the parameters of the mixed isotropic-
kinematic hardening law, while up to 170 simulations are
required to optimize the parameters of Yoshida-Uemori
hardening law.

Pereira et al. [56] outline an inverse analysismethodology
for simultaneously identifying the parameters of the isotropic
Swift law and the Lemâıtre-Chaboche kinematic law [13]
of metal sheets, using a reverse shear test. The outlined
strategy uses a modified shear sample with a cylindrical
notch along the axis of the sample, in order to confine the
plastic deformation within the entire gauge section, which
is not the case for the classical shear samples with constant
thickness (see Figure 6). The geometry of the cylindrical
notch was defined in order to ensure that all strain values,
between the maximum (in the centre of the notch) and
the minimum (zero, along the edge of the notch), are as
much as possible represented at the moment of the strain
path reversing. The geometry of the sample allows that the
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Figure 6: Geometry and dimensions of the classical and proposed notched shear specimens used in [56].

boundary conditions of experimental tests are accurately
reproduced numerically and avoids the errors in the exper-
imental determination of the stress versus strain curves,
used in traditional methodologies, whose accuracy requires
homogeneity of the stress and strain fields in the sample.
The inverse analysis methodology consists of minimising
the gap between experimental and numerical load versus
displacement curves by making variations of the constitutive
parameters, using the Levenberg-Marquardt algorithm. The
following cost function is used:
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where 𝑃Exp
𝑖

and 𝑃Num
𝑖

(A) are, respectively, the experimental
and numerical values of load for the same tool displacement;
𝑞 and 𝑝 are the total number of points in the forward
and reverse paths, respectively; and A is the vector of the
parameters to be identified. The parameters of the Hill’48
yield criterion that best describe the anisotropy of the ficti-
tious materials used in this work (described by Drucker+L
yield criterion) were identified following the methodology
mentioned above, proposed byPrates et al. [25].Thismethod-
ology also allows identifying the parameters of the isotropic
Swift law, which were used as first estimate in this inverse
analysis. If no identification of the Swift law parameters
was previously performed, the first estimate of isotropic
Swift hardening parameters can be obtained adopting typical
values for the material under study. It is appropriate to
experimentally test this methodology.

Yin et al. [55] proposed the use of the twin bridge cyclic
shear test proposed by Brosius et al. [81] to evaluate the
Bauschinger effect on three classes of steel sheets, DC06,
DP600, and TRIP700. The twin bridge shear specimen has
two gauge areas that are simultaneously deformed when a
moment is applied. Due to the moment application, instead
of load, no unwanted reaction moment is created, in contrast
with the ASTM shear specimen. The inverse identification
strategy involves minimising the difference between exper-
imental and numerical angular moment results, resorting

to a Trust Region Reflective Method [82], to identify the
parameters of isotropic Voce hardening law and Armstrong-
Frederick kinematic hardening law. The cost function is
described as follows:
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where𝑀Exp
𝑖

and𝑀Num
𝑖

(A) are, respectively, the experimental
and numerical values of moment at the same rotation angles;
𝑞 and 𝑝 are the total number of points in the forward and
backward paths, respectively; andA is the vector of kinematic
hardening parameters of the Lemaı̂tre-Chaboche law and two
of the three parameters of the Voce law. The remaining Voce
law parameter, the yield stress, is obtained from uniaxial
tensile tests in the rolling direction and is kept fixed during
the identification procedure.

5. Final Remarks

This review shows that a great investment has been made
lately in the development of inverse strategies, namely, in
FEMU strategies for the identification of parameters of con-
stitutive laws describing the plastic behaviour of metal sheets.
This includes the sample design, loading conditions, and opti-
mization procedure and intends to make the identification of
the material parameters easier and more reliable. Currently,
some of these strategies allows determining simultaneously
the parameters of isotropic hardening law and/or anisotropic
yield criteria, using only a single test. Others only allow the
evaluation of the parameters of kinematic hardening law.
Also, most strategies are limited to specific types of work-
hardening laws and plasticity criteria. In this context, the
investment in such strategies should be directed towards the
simultaneous identification of parameters of any constitu-
tive law, including isotropic and kinematic hardening, and
any anisotropic yield criterion. This must be accomplished
using the results of the minimum number of mechanical
tests and results, for example, from the biaxial test of the
cruciform sample and the shear test, and building their own
optimization procedure, eventually sequential. In fact, given
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that the optimization procedure for parameters identification
can influence the solution, it is important to examine the
possibility of resorting to sequential optimization procedures,
especially when using different types of results.
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