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A one-dimensional generalized magnetothermoelastic problem of a thermoelastic rod with finite length is investigated in the
context of the fractional order thermoelasticity. The rod with variable properties, which are temperature-dependent, is fixed at
both ends and placed in an initial magnetic field, and the rod is subjected to a moving heat source along the axial direction.
The governing equations of the problem in the fractional order thermoelasticity are formulated and solved by means of Laplace
transform in tandem with its numerical inversion. The distributions of the nondimensional temperature, displacement, and stress
in the rod are obtained and illustrated graphically. The effects of the temperature-dependent properties, the velocity of the moving
heat source, the fractional order parameter, and so forth on the considered variables are concerned and discussed in detail, and the
results show that they significantly influence the variations of the considered variables.

1. Introduction

The classical coupled thermoelasticity proposed by Biot [1]
predicts an infinite speed for heat propagation, which is
physically impossible. To eliminate such an inherent paradox,
generalized thermoelastic theories such as Lord and Shul-
man’s theory (L-S) [2] and Green and Lindsay’s theory (G-
L) [3] were developed in response. The L-S theory was the
first description of generalized thermoelasticity in which a
wave-type heat conduction law was postulated to replace the
classical Fourier’s law; this wave-type law is the same as that
suggested by Catteneo [4] and Vernotte [5]. On the basis of
these generalized models, many previous researchers have
attempted to accurately capture thermomechanical behavior
[6–11].

The generalized electromagnetothermoelastic problem
in thermoelastic solids has attracted considerable research
attention due to its extensive potential applications in diverse
fields. Examples include understanding the effects of Earth’s
magnetic field on seismic waves, the damping of acoustic

waves in magnetic fields, and the emissions of electro-
magnetic radiation from nuclear devices. He and Cao [12]
investigated the magnetothermoelastic problem of a thin
slim strip placed in a magnetic field and subjected to a
moving plane of heat source. Sherief and Khader [13] studied
wave propagation for a problem of an infinitely long, solid
conducting circular cylinder with a traction-free lateral
surface subjected to known surrounding temperatures in the
presence of a uniform magnetic field in the axis direction.
Abbas and Zenkour [14] presented the electromagnetother-
moelastic analysis problem of an infinite functionally graded
material hollow cylinder. Sarkar [15] investigated an elec-
tromagnetothermoelastic coupled problem for a half-space
subjected to a thermal shock under different generalized
thermoelastic theories. Pal et al. [16] dealt with the problem
of magnetothermoelastic interactions in a rotating medium
due to a periodically varying heat source in the context
of generalized thermoelasticity. Singh and Chakraborty [17]
studied the effects of the magnetic field and initial stress on
the reflection of a planemagnetothermoelastic wave from the
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boundary of a solid half-space. Said [18] solved a generalized
magnetothermoelastic problem for a half-space with G-N
theory.

Fractional calculus has been used successfully to modify
many existing models of physical processes, especially in
the field of heat conduction, diffusion, viscoelasticity, solids
mechanics, control theory, and electricity [19–22]. Povstenko
[23] proposed a quasistatic uncoupled theory of thermoe-
lasticity which is based on the heat conduction equation
with a time-fractional order derivative. In 2010, Youssef [24]
introduced the Riemann-Liouville fractional integral oper-
ator into the generalized heat conduction and constructed
the theory of fractional order generalized thermoelasticity.
By employing this theory, Sarkar and Lahiri [25] concerned
a two-dimensional generalized thermoelastic problem for
a rotating elastic medium. Youssef [26] dealt with a two-
temperature generalized thermoelastic medium subjected to
a moving heat source in the context of fractional order
generalized thermoelasticity. Yu et al. [27] formulated the
fractional order generalized electromagnetothermoelastic
theory and presented the effect of fractional order parameter.
Youssef and Abbas [28] solved a one-dimensional problem
of an elastic half-space in the context of fractional order
generalized thermoelasticity. Song et al. [29] studied the
vibration of microcantilevers during a photothermal process
by coupling the theories of fractional order heat conduction
and elastic waves. Abbas and Youssef [30] investigated a two-
dimensional problem of a porous half-space with a traction-
free surface and a constant heat flux with fractional order
generalized thermoelasticity theory. Recently, a completely
new fractional order generalized thermoelasticity theory was
introduced by Sherief et al. [31]. Based on this theory, Kothari
andMukhopadhyay [32] solved an elastic half-space problem
via Laplace transform and state-space method. Sherief and
Abd El-Latief [33] investigated a half-space problem with
varying extent of thermal conductivity. He and Guo [34]
investigated a one-dimensional problem for a rod subjected
to a moving heat source. Sherief and Abd El-Latief [35]
investigated a one-dimensional thermal shock problem for
a half-space in the context of the fractional order theory of
thermoelasticity and later solved a two-dimensional problem
for a traction-free half-space surface subjected to a heating
in the context of the same theory [36]. Abbas [37] solved
the problem of fractional order thermoelastic interaction for
a material placed in a magnetic field and subjected to a
moving plane of heat source. Sherief and Abd El-Latief [38]
solved a one-dimensional problem with a spherical cavity
subjected to a thermal shock with fractional order theory of
thermoelasticity. Ma and He [39] dealt with a generalized
piezoelectric-thermoelastic problem subjected to a moving
heat source in the context of the fractional order theory of
thermoelasticity.

To explore the effects of temperature-dependent prop-
erties on predicting the dynamic behavior of problems
under generalized thermoelastic theories, Ezzat et al. [40]
investigated a problem in which modulus of elasticity was
dependent on temperature. Allam et al. [41] studied the elec-
tromagnetothermoelastic interactions in an infinite perfectly
conducting body with a spherical cavity with G-N theory.

Xiong and Tian [42] investigated the magnetothermoelastic
problem of a semi-infinite body with voids and temperature-
dependent material properties placed in a transverse mag-
netic field. Abouelregal [43] solved a one-dimensional
boundary value problem of a semi-infinite piezoelectric
medium with temperature-dependent properties under the
theory of fractional order. The problem of the generalized
thermoelastic medium for three different theories under the
effects of a gravitational field was investigated by Othman
et al. [44]. Pal et al. [45] dealt with a thermoelastic problem
of a cylindrical cavity subjected to time-dependent thermal
and mechanical shocks in the context of fractional order
generalized thermoelasticity with the L-S model and G-N
model. The generalized magnetothermoelastic problem of
an infinite homogeneous isotropic microstretch half-space
with temperature-dependent material properties placed in
a transverse magnetic field was investigated in the context
of different generalized thermoelastic theories by Xiong and
Tian [46]. Wang et al. [47] focused on a thermoelastic prob-
lem for an elastic medium with variable properties, which
they constructed in the context of the fractional order heat
conduction.

To date, there are relatively few works devoted to the in-
vestigation of electromagnetothermoelastic problems involv-
ing heat source and temperature-dependent properties in the
context of the fractional order theory of thermoelasticity.The
present paper is devoted to our investigation of a generalized
magnetothermoelasticmediumwith temperature-dependent
properties subjected to a moving heat source in the fractional
order theory, as proposed by Sherief et al. [31].

2. Basic Equations

The generalized magnetothermoelastic governing equations
of an isotropic homogeneous conducting elastic medium
under fractional order theory take the following forms:

𝜎
𝑖𝑗,𝑗
+ (𝐽 × 𝐵)𝑖 = 𝜌�̈�𝑖 (1)

𝐵 = 𝜇
0
𝐻 (2)

𝐽 = 𝜎
0 (𝐸 + �̇� × 𝐵) (3)

𝜎
𝑖𝑗
= 2𝜇𝑒

𝑖𝑗
+ (𝜆𝑒
𝑘𝑘
− 𝛾𝜃) 𝛿

𝑖𝑗 (4)

𝑒
𝑖𝑗
=

1

2

(𝑢
𝑖,𝑗
+ 𝑢
𝑗,𝑖
) (5)

𝑞
𝑖,𝑖
= −𝜌𝑇

0
�̇� + 𝑄 (6)

𝜌𝜂 = 𝛾𝑒
𝑘𝑘
+

𝜌𝐶
𝐸

𝑇
0

𝜃 (7)

𝜅
𝑖𝑗
𝑇
,𝑖𝑗
= (1 +

𝜏
𝛼

0

𝛼!

𝜕
𝛼

𝜕𝑡
𝛼
) (𝜌𝐶

𝐸
̇
𝑇 + 𝑇
0
𝜆
𝑖𝑗
̇𝑒
𝑖𝑗
− 𝑄)

0 < 𝛼 ≤ 1.

(8)
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The fractional derivative is defined according to Sherief et al.
[31]:

𝜕
𝛼

𝜕𝑡
𝛼
𝑓 (𝑥, 𝑡) =

{
{
{
{
{
{

{
{
{
{
{
{

{

𝑓 (𝑥, 𝑡) − 𝑓 (𝑥, 0) 𝛼 → 0

𝐼
1−𝛼

𝜕𝑓 (𝑥, 𝑡)

𝜕𝑡

0 < 𝛼 < 1

𝜕𝑓 (𝑥, 𝑡)

𝜕𝑡

𝛼 = 1,

(9)

where the Riemann-Liouville fractional integral 𝐼𝛼 is intro-
duced as a natural generalization of the well-known 𝛼-fold
repeated integral 𝐼𝛼𝑓(𝑡) which is written in a convolution-
type form as follows:

𝐼
𝛼
𝑓 (𝑡) = ∫

𝑡

0

1

Γ (𝛼)

(𝑡 − 𝑠)
𝛼−1

𝑓 (𝑠) 𝑑𝑠, (10)

where Γ(𝛼) is the well-known Gamma function and 𝑓(𝑡) is
Lebesgue’s integrable function. Equation (8) describes the
process of heat conduction in the whole spectrum. The
different values of the fractional parameter within the range
0 < 𝛼 ≤ 1 cover two cases of conductivity: (0 < 𝛼 < 1) for
weak conductivity and 𝛼 = 1 for normal conductivity.

Here, we investigate the problem of a generalized magne-
tothermoelastic rod with temperature-dependent properties
subjected to a moving heat source in the context of the
fractional order theory of thermoelasticity. A magnetic field
with constant intensity 𝐻 = (0,𝐻

0
, 0) acts perpendicularly

to the axial direction of the rod, which is fixed at both ends
and subjected to a moving heat source propagating along the
𝑥 direction. The dimension along the 𝑥-axis is assumed to be
much greater than those along the other two directions (𝑦, 𝑧)
orthogonal to the 𝑥-axis; thus, the problem can be treated as
a one-dimensional problem.

For the one-dimensional problem, the components of the
electromagnetic induction vector are given by

𝐵
𝑥
= 𝐵
𝑧
= 0,

𝐵
𝑦
= 𝜇
0
𝐻
0
,

(11)

while the components of Lorentz force𝐹 = 𝐽×𝐵 in themotion
equation (1) can be given by

𝐹
𝑥
= −𝜎
0
𝜇
2

0
𝐻
2

0
,

𝐹
𝑦
= 𝐹
𝑧
= 0.

(12)

For the one-dimensional problem, the components of the dis-
placement are

𝑢
𝑥
= 𝑢 (𝑥, 𝑡) ,

𝑢
𝑦
= 𝑢
𝑧
= 0.

(13)

The governing equations can be simplified as follows:

𝜎 = (𝜆 + 2𝜇)

𝜕𝑢

𝜕𝑥

− 𝛾 (𝑇 − 𝑇
0
) ,

(𝜆 + 2𝜇)

𝜕
2
𝑢

𝜕𝑥
2
− 𝛾

𝜕𝑇

𝜕𝑥

− 𝜎
0
𝜇
2

0
𝐻
2

0

𝜕𝑢

𝜕𝑡

= 𝜌

𝜕
2
𝑢

𝜕𝑡
2
,

𝜅
𝑖𝑗

𝜕
2
𝑇

𝜕𝑥
2
= (1 +

𝜏
𝛼

0

𝛼!

𝜕
𝛼

𝜕𝑡
𝛼
)(𝜌𝑐

𝐸

𝜕𝑇

𝜕𝑡

+ 𝛾𝑇
0

𝜕
2
𝑢

𝜕𝑥𝜕𝑡

− 𝑄) .

(14)

We consider a thermoelastic body of material with tem-
perature-dependent properties in the following form [41]:

𝜆 = 𝜆
0
𝑓 (𝑇) ,

𝜇 = 𝜇
0
𝑓 (𝑇) ,

𝜅 = 𝜅
0
𝑓 (𝑇) ,

𝛾 = 𝛾
0
𝑓 (𝑇) ,

(15)

where 𝜅 is the thermal conductivity, 𝜆
0
, 𝜇
0
, 𝛾
0
, and 𝜅

0
are

considered to be constants, and 𝑓(𝑇) is given in a nondimen-
sional function of temperature. In the case of temperature-
independent modulus of elasticity, 𝑓(𝑇) = 1. We will assume
the following [41]:

𝑓 (𝑇) = 1 − 𝜁𝑇, (16)

where 𝜁 is the empirical material constant.
In generalized thermoelasticity, as well as in the coupled

theory, only the infinitesimal temperature deviations from
the reference temperature are considered. For linearity of the
governing partial differential equations of the problem, we
have to take into account the condition |𝑇−𝑇

0
|/𝑇
0
71, which

gives the approximating function of 𝑓(𝑇) in the following
form:

𝑓 (𝑇) ≈ 1 − 𝜁𝑇0. (17)

For convenience, the following nondimensional quantities
are also introduced:

𝑥
∗
= 𝑐
0
𝜂
0
𝑥,

𝑢
∗
= 𝑐
0
𝜂
0
𝑢,

𝑡
∗
= 𝑐
2

0
𝜂
0
𝑡,

𝜏
0

∗
= 𝑐
2

0
𝜂
0
𝜏
0
,

𝜃
∗
=

𝑇 − 𝑇
0

𝑇
0

,

𝜎
∗
=

𝜎

𝜇

,

𝑄
∗
=

𝑄

𝑘𝑇
0
𝑐
2

0
𝜂
2

0

,

𝑐
2

0
=

𝜆 + 2𝜇

𝜌

,

𝜂
0
=

𝜌𝐶
𝐸

𝑘

.

(18)
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In terms of the nondimensional variables in (18), (14) take
the following forms (dropping the asterisks for convenience):

𝜗𝜎 = 𝛽
2 𝜕𝑢

𝜕𝑥

− 𝑏𝜃

𝜕
2
𝑢

𝜕𝑥
2
−

𝑏

𝛽
2

𝜕𝜃

𝜕𝑥

= 𝜗(

𝜕
2
𝑢

𝜕𝑡
2
+ 𝜀

𝜕𝑢

𝜕𝑡

)

𝜕
2
𝜃

𝜕𝑥
2
= (1 +

𝜏
𝛼

0

𝛼!

𝜕
𝛼

𝜕𝑡
𝛼
)(𝜗

𝜕𝜃

𝜕𝑡

+ 𝑔

𝜕
2
𝑢

𝜕𝑥𝜕𝑡

− 𝑄) ,

(19)

where

𝜗 =

1

1 − 𝜁𝑇
0

,

𝛽
2
=

𝜆 + 2𝜇

𝜇

,

𝑏 =

𝛾𝑇
0

𝜇

,

𝑔 =

𝛾

𝜗𝜌𝐶
𝐸

,

𝜀 =

𝜎
0
𝜇
2

0
𝐻
2

0

𝜂
0
(𝜆 + 2𝜇)

.

(20)

The rod is assumed to have reference temperature 𝑇
0
and

homogeneous initial conditions:

𝑢 (𝑥, 0) = �̇� (𝑥, 0) = 0,

𝜃 (𝑥, 0) =
̇
𝜃 (𝑥, 0) = 0.

(21)

The rod is fixed at both ends with a nondimensional length 𝑙,
so the boundary conditions are

𝑢 (0, 𝑡) = 𝑢 (𝑙, 𝑡) = 0,

𝜕𝜃 (0, 𝑡)

𝜕𝑥

=

𝜕𝜃 (𝑙, 𝑡)

𝜕𝑥

= 0.

(22)

The heat source is moving along the 𝑥-axis with a constant
velocity 𝜐, which can be described as follows:

𝑄 = 𝑄
0
𝛿 (𝑥 − 𝜐𝑡) , (23)

where 𝑄
0
is a constant and 𝛿 is the delta function.

Applying the Laplace transform defined by

𝐿 [𝑓 (𝑡)] = 𝑓 (𝑝) = ∫

∞

0

𝑒
−𝑝𝑡
𝑓 (𝑡) 𝑑𝑡 Re (𝑝) > 0 (24)

to (19) with (21), we obtain

𝜗𝜎 = 𝛽
2 𝑑𝑢

𝑑𝑥

− 𝑏𝜃, (25)

𝑑
2
𝑢

𝑑𝑥
2
−

𝑏

𝛽
2

𝑑𝜃

𝑑𝑥

= 𝜗𝑝 (𝑝 + 𝜀) 𝑢, (26)

𝑑
2
𝜃

𝑑𝑥
2
= (1 +

𝜏
𝛼

0

𝛼!

𝑝
𝛼
)(𝑝𝜗𝜃 + 𝑔𝑝

𝑑𝑢

𝑑𝑥

− 𝜔𝜗𝑒
−(𝑝/𝜐)𝑥

) , (27)

where

𝜔 =

𝑄
0

𝜐

. (28)

By applying the Laplace transform, the boundary conditions
in (21) can be expressed as follows:

𝑢 (0, 𝑝) = 𝑢 (𝑙, 𝑝) = 0,

𝑑𝜃 (0, 𝑝)

𝑑𝑥

=

𝑑𝜃 (𝑙, 𝑝)

𝑑𝑥

= 0.

(29)

3. Solutions in the Laplace Domain

Eliminating 𝜃 between (26) and (27), we obtain the following
equation satisfied by 𝑢:

𝑑
4
𝑢

𝑑𝑥
4
− 𝑚
1

𝑑
2
𝑢

𝑑𝑥
2
+ 𝑚
2
𝑢 = 𝑚

3
𝑒
−(𝑝/𝜐)𝑥

, (30)

where

𝑚
1
= (𝜗 +

𝑔𝑏

𝛽
2
)(1 +

𝜏
𝛼

0

𝛼!

𝑝
𝛼
)𝑝 + 𝜗𝑝 (𝑝 + 𝜀) ,

𝑚
2
= (1 +

𝜏
𝛼

0

𝛼!

𝑝
𝛼
)𝜗
2
𝑝
2
(𝑝 + 𝜀) ,

𝑚
3
=

𝑏𝜔𝑝𝜗 (1 + (𝜏
𝛼

0
/𝛼!) 𝑝

𝛼
)

𝛽
2
𝜐

.

(31)

The general solution of (30) is

𝑢 = 𝐶
1
𝑒
−𝑘
1
𝑥
+ 𝐶
2
𝑒
𝑘
1
𝑥
+ 𝐶
3
𝑒
−𝑘
2
𝑥
+ 𝐶
4
𝑒
𝑘
2
𝑥

+ 𝐶
5
𝑒
−(𝑝/𝜐)𝑥

,

(32)

where 𝐶
𝑖
(𝑖 = 1, 2, 3, 4) are parameters depending on 𝑝 to be

determined from the boundary conditions, and

𝐶
5
=

𝑚
3

[(𝑝/𝜐)
4
− 𝑚
1
(𝑝/𝜐)

2
+ 𝑚
2
]

, (33)

where 𝑘
1
and 𝑘

2
are the roots of the following characteristic

equation:

𝑘
4
− 𝑚
1
𝑘
2
+ 𝑚
2
= 0, (34)

and 𝑘
1
, 𝑘
2
are given by

𝑘
1
=
√
𝑚
1
+ √𝑚

1
2
− 4𝑚
2

2

,

𝑘
2
=
√
𝑚
1
− √𝑚

1
2
− 4𝑚
2

2

.

(35)

Similarly, eliminating 𝑢 between (26) and (27), we obtain

𝑑
4
𝜃

𝑑𝑥
4
− 𝑚
1

𝑑
2
𝜃

𝑑𝑥
2
+ 𝑚
2
𝜃 = 𝑚

4
𝑒
−(𝑝/𝜐)𝑥

, (36)
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where

𝑚
4
= 𝜔𝜗(1 +

𝜏
𝛼

0

𝛼!

𝑝
𝛼
)[𝜗𝑝 (𝑝 + 𝜀) −

𝑝
2

𝜐
2
] . (37)

The general solution of (36) is

𝜃 = 𝐶
11
𝑒
−𝑘
1
𝑥
+ 𝐶
22
𝑒
𝑘
1
𝑥
+ 𝐶
33
𝑒
−𝑘
2
𝑥
+ 𝐶
44
𝑒
𝑘
2
𝑥

+ 𝐶
55
𝑒
−(𝑝/𝜐)𝑥

,

(38)

where the parameters of 𝐶
𝑖𝑖
(𝑖 = 1, 2, 3, 4) are dependent on

𝑝.
Substituting 𝑢 from (32) and 𝜃 from (38) into (26), the

following relationships become clear:

𝐶
11
= −

𝛽
2
[𝑘
1

2
− 𝜗𝑝 (𝑝 + 𝜀)]

𝑏𝑘
1

𝐶
1
,

𝐶
22
=

𝛽
2
[𝑘
1

2
− 𝜗𝑝 (𝑝 + 𝜀)]

𝑏𝑘
1

𝐶
2
,

𝐶
33
= −

𝛽
2
[𝑘
2

2
− 𝜗𝑝 (𝑝 + 𝜀)]

𝑏𝑘
2

𝐶
3
,

𝐶
44
=

𝛽
2
[𝑘
2

2
− 𝜗𝑝 (𝑝 + 𝜀)]

𝑏𝑘
2

𝐶
4
,

𝐶
55
=

𝛽
2
[𝜐
2
𝜗 (𝑝 + 𝜀) − 𝑝]

𝑏𝜐

𝐶
5
.

(39)

To obtain the parameters of 𝐶
𝑖
(𝑖 = 1, 2, 3, 4) and 𝐶

𝑖𝑖
(𝑖 =

1, 2, 3, 4), (32) and (38) are substituted into the equation of
boundary conditions as follows:

𝐶
1
+ 𝐶
2
+ 𝐶
3
+ 𝐶
4
= −𝐶
5
,

𝐶
1
𝑒
−𝑘
1
𝑙
+ 𝐶
2
𝑒
𝑘
1
𝑙
+ 𝐶
3
𝑒
−𝑘
2
𝑙
+ 𝐶
4
𝑒
𝑘
2
𝑙
= −𝐶
5
𝑒
−(𝑝/𝜐)𝑙

,

− 𝐶
11
𝑘
1
+ 𝐶
22
𝑘
1
− 𝐶
33
𝑘
2
+ 𝐶
44
𝑘
2
= (

𝑝

𝜐

)𝐶
55
,

− 𝐶
11
𝑘
1
𝑒
−𝑘
1
𝑙
+ 𝐶
22
𝑘
1
𝑒
𝑘
1
𝑙
− 𝐶
33
𝑘
2
𝑒
−𝑘
2
𝑙
+ 𝐶
44
𝑘
2
𝑒
𝑘
2
𝑙

= (

𝑝

𝜐

)𝐶
55
𝑒
−(𝑝/𝜐)𝑙

.

(40)

Solving (40), we obtain 𝐶
𝑖
(𝑖 = 1, 2, 3, 4) as follows:

𝐶
1
=

(𝑘
2

2
− 𝑝
2
/𝜐
2
) (𝑒
𝑘
1
𝑙
− 𝑒
−(𝑝/𝜐)𝑙

)

(𝑘
1

2
− 𝑘
2

2
) (𝑒
𝑘
1
𝑙
− 𝑒
−𝑘
1
𝑙
)

𝐶
5
,

𝐶
2
= −

(𝑘
2

2
− 𝑝
2
/𝜐
2
) (𝑒
−𝑘
1
𝑙
− 𝑒
−(𝑝/𝜐)𝑙

)

(𝑘
1

2
− 𝑘
2

2
) (𝑒
𝑘
1
𝑙
− 𝑒
−𝑘
1
𝑙
)

𝐶
5
,

𝐶
3
= −

(𝑘
1

2
− 𝑝
2
/𝜐
2
) (𝑒
𝑘
2
𝑙
− 𝑒
−(𝑝/𝜐)𝑙

)

(𝑘
1

2
− 𝑘
2

2
) (𝑒
𝑘
2
𝑙
− 𝑒
−𝑘
2
𝑙
)

𝐶
5
,

𝐶
4
=

(𝑘
1

2
− 𝑝
2
/𝜐
2
) (𝑒
−𝑘
2
𝑙
− 𝑒
−(𝑝/𝜐)𝑙

)

(𝑘
1

2
− 𝑘
2

2
) (𝑒
𝑘
2
𝑙
− 𝑒
−𝑘
2
𝑙
)

𝐶
5
.

(41)

Substituting (41) into (32), we obtain

𝑢 =

(𝑘
2

2
− 𝑝
2
/𝜐
2
) (𝑒
𝑘
1
𝑙
− 𝑒
−(𝑝/𝜐)𝑙

)

(𝑘
1

2
− 𝑘
2

2
) (𝑒
𝑘
1
𝑙
− 𝑒
−𝑘
1
𝑙
)

𝐶
5
𝑒
−𝑘
1
𝑥

−

(𝑘
2

2
− 𝑝
2
/𝜐
2
) (𝑒
−𝑘
1
𝑙
− 𝑒
−(𝑝/𝜐)𝑙

)

(𝑘
1

2
− 𝑘
2

2
) (𝑒
𝑘
1
𝑙
− 𝑒
−𝑘
1
𝑙
)

𝐶
5
𝑒
𝑘
1
𝑥

−

(𝑘
1

2
− 𝑝
2
/𝜐
2
) (𝑒
𝑘
2
𝑙
− 𝑒
−(𝑝/𝜐)𝑙

)

(𝑘
1

2
− 𝑘
2

2
) (𝑒
𝑘
2
𝑙
− 𝑒
−𝑘
2
𝑙
)

𝐶
5
𝑒
−𝑘
2
𝑥

+

(𝑘
1

2
− 𝑝
2
/𝜐
2
) (𝑒
−𝑘
2
𝑙
− 𝑒
−(𝑝/𝜐)𝑙

)

(𝑘
1

2
− 𝑘
2

2
) (𝑒
𝑘
2
𝑙
− 𝑒
−𝑘
2
𝑙
)

𝐶
5
𝑒
𝑘
2
𝑥

+ 𝐶
5
𝑒
−(𝑝/𝜐)𝑥

.

(42)

The relationship between 𝐶
𝑖
and 𝐶

𝑖𝑖
in (39) gives

𝐶
11
= −

𝛽
2
[𝑘
1

2
− 𝜗𝑝 (𝑝 + 𝜀)] (𝑘

2

2
− 𝑝
2
/𝜐
2
) (𝑒
𝑘
1
𝑙
− 𝑒
−(𝑝/𝜐)𝑙

)

𝑏𝑘
1
(𝑘
1

2
− 𝑘
2

2
) (𝑒
𝑘
1
𝑙
− 𝑒
−𝑘
1
𝑙
)

⋅ 𝐶
5
,

𝐶
22

= −

𝛽
2
[𝑘
1

2
− 𝜗𝑝 (𝑝 + 𝜀)] (𝑘

2

2
− 𝑝
2
/𝜐
2
) (𝑒
−𝑘
1
𝑙
− 𝑒
−(𝑝/𝜐)𝑙

)

𝑏𝑘
1
(𝑘
1

2
− 𝑘
2

2
) (𝑒
𝑘
1
𝑙
− 𝑒
−𝑘
1
𝑙
)

⋅ 𝐶
5
,

𝐶
33
=

𝛽
2
[𝑘
2

2
− 𝜗𝑝 (𝑝 + 𝜀)] (𝑘

1

2
− 𝑝
2
/𝜐
2
) (𝑒
𝑘
2
𝑙
− 𝑒
−(𝑝/𝜐)𝑙

)

𝑏𝑘
2
(𝑘
1

2
− 𝑘
2

2
) (𝑒
𝑘
2
𝑙
− 𝑒
−𝑘
2
𝑙
)

⋅ 𝐶
5
,

𝐶
44
=

𝛽
2
[𝑘
2

2
− 𝜗𝑝 (𝑝 + 𝜀)] (𝑘

1

2
− 𝑝
2
/𝜐
2
) (𝑒
−𝑘
2
𝑙
− 𝑒
−(𝑝/𝜐)𝑙

)

𝑏𝑘
2
(𝑘
1

2
− 𝑘
2

2
) (𝑒
𝑘
2
𝑙
− 𝑒
−𝑘
2
𝑙
)

⋅ 𝐶
5
,

𝐶
55
=

𝛽
2
[𝜐
2
𝜗 (𝑝 + 𝜀) − 𝑝]

𝑏𝜐

𝐶
5
.

(43)

Substituting (43) into (38), we obtain

𝜃 = −

𝛽
2
[𝑘
1

2
− 𝜗𝑝 (𝑝 + 𝜀)] (𝑘

2

2
− 𝑝
2
/𝜐
2
) (𝑒
𝑘
1
𝑙
− 𝑒
−(𝑝/𝜐)𝑙

)

𝑏𝑘
1
(𝑘
1

2
− 𝑘
2

2
) (𝑒
𝑘
1
𝑙
− 𝑒
−𝑘
1
𝑙
)

⋅ 𝐶
5
𝑒
−𝑘
1
𝑥

−

𝛽
2
[𝑘
1

2
− 𝜗𝑝 (𝑝 + 𝜀)] (𝑘

2

2
− 𝑝
2
/𝜐
2
) (𝑒
−𝑘
1
𝑙
− 𝑒
−(𝑝/𝜐)𝑙

)

𝑏𝑘
1
(𝑘
1

2
− 𝑘
2

2
) (𝑒
𝑘
1
𝑙
− 𝑒
−𝑘
1
𝑙
)

⋅ 𝐶
5
𝑒
𝑘
1
𝑥
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+

𝛽
2
[𝑘
2

2
− 𝜗𝑝 (𝑝 + 𝜀)] (𝑘

1

2
− 𝑝
2
/𝜐
2
) (𝑒
𝑘
2
𝑙
− 𝑒
−(𝑝/𝜐)𝑙

)

𝑏𝑘
2
(𝑘
1

2
− 𝑘
2

2
) (𝑒
𝑘
2
𝑙
− 𝑒
−𝑘
2
𝑙
)

⋅ 𝐶
5
𝑒
−𝑘
2
𝑥

+

𝛽
2
[𝑘
2

2
− 𝜗𝑝 (𝑝 + 𝜀)] (𝑘

1

2
− 𝑝
2
/𝜐
2
) (𝑒
−𝑘
2
𝑙
− 𝑒
−(𝑝/𝜐)𝑙

)

𝑏𝑘
2
(𝑘
1

2
− 𝑘
2

2
) (𝑒
𝑘
2
𝑙
− 𝑒
−𝑘
2
𝑙
)

⋅ 𝐶
5
𝑒
𝑘
2
𝑥
+

𝛽
2
[𝜐
2
𝜗 (𝑝 + 𝜀) − 𝑝]

𝑏𝜐

𝐶
5
𝑒
−(𝑝/𝜐)𝑥

.

(44)

Substituting (42) and (44) into (25) yields

𝜎 = −

𝛽
2
𝑝 (𝑝 + 𝜀) (𝑘

2

2
− 𝑝
2
/𝜐
2
) (𝑒
𝑘
1
𝑙
− 𝑒
−(𝑝/𝜐)𝑙

)

𝑘
1
(𝑘
1

2
− 𝑘
2

2
) (𝑒
𝑘
1
𝑙
− 𝑒
−𝑘
1
𝑙
)

⋅ 𝐶
5
𝑒
−𝑘
1
𝑥

−

𝛽
2
𝑝 (𝑝 + 𝜀) (𝑘

2

2
− 𝑝
2
/𝜐
2
) (𝑒
−𝑘
1
𝑙
− 𝑒
−(𝑝/𝜐)𝑙

)

𝑘
1
(𝑘
1

2
− 𝑘
2

2
) (𝑒
𝑘
1
𝑙
− 𝑒
−𝑘
1
𝑙
)

⋅ 𝐶
5
𝑒
𝑘
1
𝑥

+

𝛽
2
𝑝 (𝑝 + 𝜀) (𝑘

1

2
− 𝑝
2
/𝜐
2
) (𝑒
𝑘
2
𝑙
− 𝑒
−(𝑝/𝜐)𝑙

)

𝑘
2
(𝑘
1

2
− 𝑘
2

2
) (𝑒
𝑘
2
𝑙
− 𝑒
−𝑘
2
𝑙
)

⋅ 𝐶
5
𝑒
−𝑘
2
𝑥

+

𝛽
2
𝑝 (𝑝 + 𝜀) (𝑘

1

2
− 𝑝
2
/𝜐
2
) (𝑒
−𝑘
2
𝑙
− 𝑒
−(𝑝/𝜐)𝑙

)

𝑘
2
(𝑘
1

2
− 𝑘
2

2
) (𝑒
𝑘
2
𝑙
− 𝑒
−𝑘
2
𝑙
)

⋅ 𝐶
5
𝑒
𝑘
2
𝑥
− 𝛽
2
𝜐 (𝑝 + 𝜀) 𝐶

5
𝑒
−(𝑝/𝜐)𝑥

.

(45)

4. Numerical Inversion of the Transforms

In order to determine the nondimensional temperature,
nondimensional displacement, and nondimensional stress
in the rod, we need to invert the parameters of 𝜃, 𝑢, and
𝜎 from the Laplace domain. Unfortunately, the obtained
solutions in the Laplace domain are too complicated to
be inverted analytically; thus, a feasible numerical method,
that is, the Riemann-sum approximation method, is used to
complete the inversion. Accordingly, any function 𝑓(𝑥, 𝑝) in
the Laplace domain can be inverted to the time domain as
follows [48]:

𝑓 (𝑥, 𝑡)

=

𝑒
𝛽𝑡

𝑡

[

1

2

𝑓 (𝑥, 𝛽) + Re
𝑁

∑

𝑛=1

𝑓(𝑥, 𝛽 +

𝑖𝑛𝜋

𝑡

) (−1)
𝑛
] ,

(46)

where Re is the real part and 𝑖 is the imaginary number unit.
For faster convergence, numerous numerical experiments
have shown that the value of 𝛽 satisfies the relation 𝛽𝑡 ≈ 4.7

[48].
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Figure 1: Nondimensional temperature distribution for different 𝑡
values.

5. Numerical Results and Discussions

In terms of the Riemann-sum approximation defined in (46),
numerical Laplace inversion is implemented to obtain the
nondimensional temperature, displacement, and stress in the
rod in the time domain. For the purposes of simulation,
the thermoelastic material is specified as copper and the
parameters are

𝜆 = 7.76 × 10
10Nm−2,

𝜇 = 3.86 × 10
10Nm−2,

𝜌 = 8954 kgm−3,

𝛼
𝑡
= 1.78 × 10

−5 K−1,

𝐶
𝐸
= 383.1 JKg−1 K−1,

𝜅 = 386Wm−1 K−1,

𝑇
0
= 293K,

𝜁 = 0.0005K−1.

(47)

The other constants are

𝑄
0
= 10,

𝜏
0
= 0.05,

𝑙 = 10.

(48)

Numerical calculation is carried out for the following five
cases.

In Case 1, we investigate the nondimensional tempera-
ture, displacement, and stress varying with time as shown in
Figures 1–3 with the moving heat source velocity, fractional
order parameter, value of temperature-dependent properties,
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Figure 2: Nondimensional stress distribution for different 𝑡 values.
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Figure 3: Nondimensional displacement distribution for different 𝑡
values.

and magnetic field set as constants (i.e., 𝜐 = 2.0, 𝛼 = 0.25,
𝜗 = 0.5, 𝜀 = 5). In Case 2, the considered variables varying
with different moving heat source velocity are investigated
when 𝑡 = 1.5, 𝛼 = 0.25, 𝜗 = 0.5, and 𝜀 = 5 (Figures 4–
6). In Case 3, we investigate how the considered variables
vary with different magnetic fields when 𝑡 = 1.5, 𝜐 = 2.0,
𝜗 = 0.5, and 𝛼 = 0.25 (Figures 7–9). Case 4 involves
the considered variables varying with different temperature-
dependent properties when 𝑡 = 1.5, 𝜐 = 2.0, 𝛼 = 0.25, and
𝜀 = 5 (Figures 10–12), and, in Case 5, we investigate how
the considered variables vary with different fractional order
parameters when 𝑡 = 1.5, 𝜐 = 2.0, 𝜗 = 0.5, and, 𝜀 = 5 (Figures
13–15).
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Figure 4: Nondimensional temperature distribution for different 𝜐
values.
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Figure 5: Nondimensional stress distribution for different 𝜐 values.

In Figures 1–3 (Case 1), the solid line, dash line, and dot
line refer to 𝑡 = 1.5, 𝑡 = 2.0, and 𝑡 = 2.5, respectively. Figure 1
shows that the nondimensional temperature increases as the
time increases. At location 𝑥 = 𝜐𝑡, the heat source releases its
maximum energy which leads to a peak value. As shown in
Figure 2, the nondimensional stress in the rod is compressive.
Due to the fixed ends, thermal expansion deformation is
restrained in both ends and leads to the occurrence of
compressive thermal stress in the rod. The absolute value
of stress increases with the passage of time. As shown in
Figure 3, the nondimensional displacement also increases
as time progresses. Due to the applied moving heat source,
the rod undergoes thermal expansion deformation. With the
passage of time, the heat disturbed region enlarges so that
thermal expansion deformation evolves along the rod.
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Figure 6: Nondimensional displacement distribution for different 𝜐
values.
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Figure 7: Nondimensional temperature distribution for different 𝜀
values.

In Figures 4–6 (Case 2), the solid line, dash line, and
dot line refer to 𝜐 = 2.0, 𝜐 = 3.0, and 𝜐 = 4.0, respec-
tively. As shown in Figure 4, the nondimensional temper-
ature decreases with the increasing of the moving heat re-
source velocity. In a given period, the energy that the heat
source can release is constant; however, the intensity of
the released energy per unit length decreases as the source
speed increases. It is also clear in Figures 5 and 6 that the
magnitudes of the nondimensional stress and displacement
decrease as the moving heat source velocity increases, which
is the result of reduction in heat energy intensity per unit
length at greater velocities.

In Figures 7–9 (Case 3), the solid line, dash line, and dot
line refer to 𝜀 = 0, 𝜀 = 5.0, and 𝜀 = 10.0, respectively.
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Figure 8: Nondimensional stress distribution for different 𝜀 values.
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Figure 9: Nondimensional displacement distribution for different 𝜀
values.

In Figure 7, the three lines overlap because the magnetic
field has no effect on the temperature. As shown in Figure 8,
the absolute value of stress increases as the 𝜀 value increases
prior to the point where the curves intersect; then, after
the intersection, the absolute value of stress decreases as the
applied magnetic field value increases. Figure 9 for Case 3
shows that nondimensional displacement decreases as the
magnetic field increases. The largest displacement value is in
the case of 𝜀 = 0, namely, in the absence of the magnetic field.
This indicates that themagnetic field acts to damp the thermal
expansion deformation of the rod.

In Figures 10–12 (Case 4), the solid line, dash line, and
dot line refer to 𝜗 = 0.5, 𝜗 = 0.75, and 𝜗 = 1.0, respectively.
As shown in Figure 10, the temperature increases as the 𝜗
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Figure 10: Nondimensional temperature distribution for different 𝜗
values.

1 2 3 4 5 6 7 8 9 10
−0.5

−0.4

−0.3

−0.2

−0.1

0.0

N
on

di
m

en
sio

na
l s

tre
ss

 𝜎
 

Nondimensional coordinate X

𝜗 = 0.5

𝜗 = 0.75

𝜗 = 1.0

Figure 11: Nondimensional stress distribution for different 𝜗 values.

value increases before the three curves intersect, at which
point it decreases as the temperature-dependent properties
increase. Figures 11 and 12 show where the displacement
and absolute value of stress decrease as the temperature-
dependent properties increase.

Figures 13–15 (Case 5) show the variations of the nondi-
mensional temperature, stress, and displacement, respec-
tively, which demonstrate the effects of the fractional order
parameter on the variations of the considered variables. To
this end, a series of values of the fractional order parameter
𝛼 within the region (0, 1] are tested through numerical
calculation. As representation of the effect of 𝛼, three typical
values of 𝛼, 𝛼 = 0.25, 𝛼 = 0.5, and 𝛼 = 1.0, are considered.
Figures 13–15 show that temperature, displacement, and
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Figure 12: Nondimensional displacement distribution for different
𝜗 values.
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Figure 13: Nondimensional temperature distribution for different 𝛼
values.

absolute stress value all decrease as the fractional order value
increases prior to the intersection of the three curves. After
the intersection, however, all considered variables increase
with the increasing of the fractional order parameter.

6. Conclusions

A generalized magnetothermoelastic rod with temperature-
dependent properties subjected to a moving heat source
is investigated in the fractional order theory. The results
provided the following most notable conclusions:
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Figure 14: Nondimensional stress distribution for different𝛼 values.
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Figure 15: Nondimensional displacement distribution for different
𝛼 values.

(1) The effects of the fractional parameter 𝛼 on all the
considered variables are very significant, as clearly
evidenced by the peak values of the curves.

(2) The magnetic field also has a significant effect on
the solution of the nondimensional displacement and
stress but barely influences the variation in nondi-
mensional temperature.

(3) The temperature-dependent properties play a signifi-
cant role on all distributions.

As a final remark, the results presented in this paper
should prove useful for researchers in material sciences,
designers of new materials, low-temperature physics re-
searchers, and those working to further develop the theory
of thermoelasticity with fractional calculus.The introduction

of fractional calculus and variable temperature-dependent
modulus to the generalized thermoelastic rod may provide
a more realistic model for these studies.

Nomenclature

𝐽: Current density vector
𝑈: Displacement vector
𝐵: Magnetic induction vector
𝜎
𝑖𝑗
: The components of stress tensor

𝑒
𝑖𝑗
: The components of strain tensor

𝑒
𝑘𝑘
: Cubic dilation

𝑢
𝑖
: The components of displacement vector

𝜃: 𝜃 = 𝑇 − 𝑇
0

𝑇: Absolute temperature of the medium
𝑇
0
: Reference temperature

𝜅
𝑖𝑗
: The coefficient of thermal conductivity

𝜏
0
: Thermal relaxation time

𝜌: Mass density
𝐶
𝐸
: Specific heat at constant strain

𝜆, 𝜇: Lame’s constants
𝛼
𝑡
: Linear thermal expansion coefficient

𝑄: The strength of the applied heat source per
unit mass

𝛾: (3𝜆 + 2𝜇)𝛼
𝑡

𝜂: The entropy density
𝑞
𝑖
: The components of heat flux vector

𝜐: Velocity of the moving heat source
𝛼: Constant parameter such that 0 < 𝛼 ≤ 1.
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