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To obtain the material true constitutive relation of tensile specimens after necking, we proposed an experimental-numerical
combined method (ENM) based on the simple tension test results and finite element analysis (FEA). An iterative scheme was
used to minimize the errors between the simulated and experimental load-displacement curves by modifying the imported stress-
strain data step by step, and the true stress was determined when the error was less than a given infinitesimal value. In addition,
we developed a special program to implement this algorithm automatically and save operating time. As a verification, the true
stress-strain curves obtained by the traditional analytical method (TAM) and ENM were compared and employed to analyze the
large deformation behavior of both cylindrical and rectangular specimens. The results showed that ENM was applicable for both
specimens and could achieve an adequate description of the mechanical response of the materials after necking formation more
effectively.

1. Introduction

The simple uniaxial tension test with employing an exten-
someter is the most common and fundamental way to
evaluate the constitutive relation of metals and extract other
mechanical properties such as the elastic modulus, yield
strength, tensile strength, and elongation [1]. However, it
is well-known that the true constitutive relation during the
nonuniform deformation process up to fracture, which is
essential in large deformation analysis and fracture failure
prediction [2–5], cannot be directly achieved from the test
load-displacement (𝐹-Δ𝐿) curve. Most materials exhibit the
same deformation sequences: normally uniform elongation
followed by diffuse necking and then localized necking in
the form of crossed intense-shear bands (for rectangular
specimens with low cross section aspect ratio and strong
plastic hardening ability), damage nucleation, and finally
fracture [6]. These sequences of deformation are illustrated
in Figure 1(a). At small strains, that is, elastic or early plastic
regime, the deformation may be assumed, without much loss
of accuracy, to deform homogeneously along its length and

throughout the whole cross section. Consequently, it allows
for a convenient way to measure the extension of a certain
gauge length with a so-called extensometer and calculate
the value of stress and strain, which can be expressed as
the ratio of total force to cross section area and the ratio
of displacement to gauge length, respectively. However, the
problems will arise when the strain reaches a critical value
and the state of specimen goes into another regime, that is,
diffuse necking. Structural plastic instability originated from
nonuniformities makes it impossible to balance the external
loads by a uniform uniaxial stress, so that a multiaxial
stress state (see Figure 1(d)) occurs at the narrowest cross
section within the necking region [7], which will also limit
the accuracy and reliability of experimental measured stress
data. In addition, the highly concentrated strain field within
necking region (see Figure 1(b)) and the elastic unloading in
regions outside the necking (see Figure 1(c)) [3, 8] render
the conventional extensometry techniques virtually useless
for the axial strain measurement inside the neck, because
this method measures only the average strain over the
gauge length. Another issue that should be mentioned is the
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Figure 1: The difficulties in determining the true stress-strain curve at very large strains from uniaxial tensile test.

localized necking phenomenon of sheet specimens, where
the plastic deformation is not diffused but rather is more
concentrated and inclined at an angle to the tension axis [2, 9].
Therefore, it is questionable to simply extrapolate the true
constitutive relation of a ductile metal beyond the uniform
elongation from the experimental measured data.

Bridgman developed some approximate analytical solu-
tions to obtain the effective stress-strain curve of uniaxial
tensile specimens beyond diffuse necking by utilizing various
simplifications and assumptions about the necking geometry
and stress and strain distribution inside the neck [10, 11]. In
fact, his analytical approach provided a correction parameter
which could transform the “average true axial stress” in
the necking into the equivalent stress. However, a practical
difficulty must be mentioned, as discussed in some detail by
Ling [12] and Joshi et al. [13], that is, how to trace the true
area of necking section and calculate the true strain during
the tension test, which not only is a function of loading, but
also depends on section’s aspect ratio and material’s plastic
hardening. The traditional method (lateral extensometer
measurement technique) is not up to this work, because the
position of necking is random and very difficult to determine
beforehand, particularly for the rectangular specimens whose
cross section at the largest deformed zone forms a cushion-
like shape [14] (see Figure 1(e)). Furthermore, Bridgman
correction is not expected to be applicable to rectangular
specimens, especially when localized necking is being devel-
oped [12], as it assumes an axisymmetric stress and strain field
with constant plastic strain in the smallest necking section,
while the strain gradients in the cross section of rectangular
specimens increase with the increasing of aspect ratio [14].

In recent years, many research efforts have been carried
out to develop amore accurate and reliable method to extract

the true stress-strain curve beyond necking by utilizing
finite element method (FEM). Cabezas and Celentano [3]
used FEM to simulate the tensile deformation process and
find correction factors for sheet specimens. Zhang et al. [2]
proposed an empirical equation based on the experimental
load-thickness curve to determine the true stress-strain curve
of a rectangular specimen. Scheider et al. [14] found that
the empirical method proposed by Zhang is not sufficiently
accurate and the thickness reduction at theminimum section
of the test coupon is difficult to measure; therefore he pro-
posed instead the utilization of the experimental load-width
curve. However, most conclusions of the above literatures
were achieved by importing an assumed power law consti-
tutive relation, which has been proved quite conservative
and limited for some metals at large strains [12, 15, 16].
Zhano and Li [17] and Joun et al. [18] proposed an iterative
approach to obtain the true stress-strain curve of a cylindrical
sample up to fracture based on experimental 𝐹-Δ𝐿 curve
and FEM simulations. However, their customized program
is difficult to be implemented in a general commercial finite
element program. Ling [12] analyzed the uniaxial tension
of sheet specimens in the commercial program ABAQUS
and proposed a weighted-averagemethod to approximate the
true stress by using the weighted average of the lower and
upper bounds defined by power law and linear functions;
then, a trial-and-error method was employed to determine
the adjustable weight parameter. However, this method was
based on an extrapolation of the stress-strain curve before
necking and thus not suitable for calculations with high
strains. Recently, a new experimental measurement tool of
high resolution digital camera (DIC) was employed by some
researchers [14, 15, 19–21] to overcome the difficulties in
tracing the change in the geometry of specimen. Dan et
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al. [19] used a digital camera and a coarse grid method to
obtain the local strain field and then average surface axial true
strain in steel sheet specimens; however their data were only
applicable to moderate strains just after diffuse necking as no
further correction due to multiaxial stress state was adopted.
A similar method was also implemented in [20].

In the present study, for reasons of clarity of some fun-
damental definitions and concepts, the traditional analytical
methods (TAM) are first reviewed and discussed briefly.
Then, we introduce an experimental-numerical combined
method (ENM)by using the simple uniaxial tension test and a
general purpose commercial 3D finite element analysis (FEA)
program to extract the true stress-strain curves after necking
of metal coupons with round and rectangular geometries.
This methodology utilizes an iterative scheme to minimize
the errors between the simulated and experimental 𝐹-Δ𝐿
curves by modifying the imported stress-strain data step by
step, and the true stress is determined when the error is less
than an infinitesimal value. Seeing that somematerial damage
(void nucleation and growth) will occur and accumulate
gradually at the later stage of necking and the process from
the onset of local necking to fracture [6], we focus on
the nonuniform flow process before damage nucleation. No
material failure and strain softening behavior are assumed
in the analysis as the basic isotropic elastic-plastic constitu-
tive model cannot predict the plastic deformation behavior
when damage begins to accumulate. After describing the
fundamentals of the present approach in detail, a MATLAB
program is written to implement this method and verify
the robustness and effectiveness of the proposed method.
Compared with several material constitutive equations, the
composite Line-Power Model and Misiolek equation are
found to be very close to the FE-computed curves after
necking. Finally, some suggestions are offered for possible
improvements in both experimental measurements and FEA.

2. Review of Traditional Analytical
Methods (TAM)

In simple tension tests, two well-defined stages are rec-
ognized. The first stage takes place before external load
reaches the maximum value, and a homogeneous response
is found. After the maximum load, the postplastic regime is
characterized for a well-marked necking in the central zone
of the test samples.

In the first stage of the process, the applied force 𝐹 and
the elongation Δ𝐿 are measured and can be converted to the
engineering stress 𝜎E and strain 𝜀E by

𝜀E =
Δ𝐿

𝐿
0

,

𝜎E =
𝐹

𝐴
0

,

(1)

where 𝐴
0
and 𝐿

0
are the initial cross section and length of

the specimen, respectively. These quantities are restricted to
small uniform deformation. For large uniform deformation,

the response is defined in terms of the axial strain 𝜀
𝑧
and axial

stress 𝜎
𝑧
which coincides with the average axial stress (𝜎

𝑧
)a:

𝜀
𝑧
= ∫

𝐿

𝐿0

𝑑𝑙

𝑙
= ln 𝐿

𝐿
0

= ln (1 + 𝜀E) , (2)

𝜎
𝑧
= (𝜎
𝑧
)a =

𝐹

𝐴
= 𝜎E (1 + 𝜀E) , (3)

where𝐴 and 𝐿 are the instantaneous cross section and length
of the specimen, respectively. In this stage, axial stress and
strain are coincident with the von-Mises equivalent stress 𝜎
and equivalent strain 𝜀, respectively.

Equations (2)-(3) are correct and applicable to both cylin-
drical and rectangular specimens as long as the elongation of
tensile specimen is uniform. However, in the second stage of
the process after the maximum load, necking occurs at the
central zone of samples; deformation becomes nonuniform
and the stress state triaxial. All the factors mentioned above
have to be taken into account to obtain the true stress versus
true strain. Due to complex stress-strain state and different
assumptions adopted at the necking stage, the analytical
methods for both cylindrical and rectangular specimens need
to be discussed, respectively.

2.1. Analytical Method for Cylindrical Specimens. In devel-
oping an expression for the strain field beyond necking for
a round specimen, Bridgman [10, 11] assumed that strain
distributes uniformly in the minimum section with

𝜀
𝑟
= 𝜀
𝜃
= −

𝜀
𝑧

2
, (4)

where 𝜀
𝑟
, 𝜀
𝜃
, and 𝜀

𝑧
are the radial, hoop, and axial stress,

respectively.Then it can be deduced that the equivalent strain
𝜀 at the minimum section is equal to the average axial strain.
Introducing in (2) the volume conservation condition 𝐴𝐿 =

𝐴
0
𝐿
0
, then (2) is transformed into

𝜀 = 𝜀
𝑧
= ln

𝐴
0

𝐴
= 2 ln

𝐷
0

𝐷
, (5)

which means that, to obtain the equivalent strain at the neck,
one only has to measure the instantaneous dimensions of
the minimum section, that is, the current diameter 𝐷 of the
necking section for round specimens.

The average axial stress (𝜎
𝑧
)a at the smallest cross section

can be calculated by (3). However, the radial and hoop stress,
𝜎
𝑟
and 𝜎
𝜃
, are not equal to zero after necking; thus the average

axial stress (𝜎
𝑧
)a is not equal to the equivalent stress. Because

the shear stresses disappear at the smallest part of the cross
section, the equivalent stress 𝜎 under the assumption of a
von-Mises yield condition is given by

𝜎 = √
3

2
𝜎


𝑖𝑗
𝜎


𝑖𝑗

= √
1

2
[(𝜎I − 𝜎II)

2
+ (𝜎II − 𝜎III)

2
+ (𝜎III − 𝜎I)

2
],

(6)

where 𝜎
𝑖𝑗
represents the deviatoric stresses and 𝜎I, 𝜎II, and

𝜎III refer to the principal stresses, respectively. For a round
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section.

bar, we have 𝜎I = 𝜎
𝑧
and 𝜎II = 𝜎III = 𝜎

𝑟
= 𝜎
𝜃
. Based

on the geometrical assumption shown in Figure 2 and stress
equilibrium equations at the minimum section, Bridgman
[10, 11] gave the stress distribution formulas at the necking
section:

𝜎
𝑟 (𝑟) = 𝜎

𝜃 (𝑟)

=
(𝜎
𝑧
)a

(1 + 4𝑅/𝐷)
[

ln ((𝐷2/4 + 𝐷𝑅 − 𝑟2) /𝐷𝑅)
ln (1 + 𝐷/4𝑅)

] ,

𝜎
𝑧
(𝑟)

=
(𝜎
𝑧
)a

(1 + 4𝑅/𝐷)
[

1 + ln ((𝐷2/4 + 𝐷𝑅 − 𝑟2) /𝐷𝑅)
ln (1 + 𝐷/4𝑅)

] .

(7)

Then the maximum equivalent stress 𝜎 at the center of
the specimen (i.e., 𝑟 = 0) can be calculated from (6) by
substituting (7):

𝜎 =
(𝜎
𝑧
)a

(1 + 4𝑅/𝐷) ln (1 + 𝐷/4𝑅)
= 𝐶ro (𝜎𝑧)a =

𝐹

𝐴
𝐶ro, (8)

𝐶ro = [(1 +
4𝑅

𝐷
) ln(1 + 𝐷

4𝑅
)]

−1

, (9)

where 𝐶ro may be considered as a correction factor which
transforms the average axial stress in the necking into the
equivalent stress.

Verification of this correction method is difficult because
true stress at the minimum section after necking cannot
be measured directly. Many finite element analyses have
shown that stress distribution at the minimum section
approximately follows (7), and the strain distribution also
mainly exhibits uniform feature along the necked section
which is consistent with the basic assumption. However, it
must be pointed out that Bridgman correction method is
not convenient to use in practice because it requires a series
of tests with different loadings to determine the radius of

curvature 𝑅 and the minimum diameter 𝐷 which are both
difficult to measure with sufficient accuracy. In order to
avoid the measurement of 𝑅, Bridgman [10] suggested the
simplification

𝐷

𝑅
= 2√𝜀

𝑧
− 0.1 (𝜀

𝑧
> 0.1) . (10)

Then (9) can be further simplified to

𝐶ro = [(1 +
2

√𝜀
𝑧
− 0.1

) ln(1 +
√𝜀
𝑧
− 0.1

2
)]

−1

(𝜀
𝑧
> 0.1) .

(11)

2.2. Analytical Method for Rectangular Specimens. Early
research carried out by Zhang et al. [2] stated that for thin
sections it is better to use test specimens with a rectan-
gular section to determine the constitutive relation. Based
on the same assumptions mentioned above for cylindrical
specimens, Bridgman extended his correction method to
rectangular specimens. However, the necking of flat sample
has been proved to be much more complicated than that
of round bar. The strain distribution at the minimum cross
section becomes highly nonuniform after necking and the
strain gradients in the cross section of rectangular specimens
increase with the increasing of aspect ratio [14]. Moreover,
the previous experimental works conducted by Aronofsky
[22] suggested that the geometrical assumption employed in
Bridgman formula did not apply to rectangular specimens.
Therefore, it is not surprising that the Bridgman correction
formulas apparently have not been applied in flat specimens
successfully. Some other attempts to determine the true
stress-strain relation with rectangular specimens have been
proposed in literatures [2, 3, 12, 14, 18], among which the
Scheider procedure [14] is commonly used and thus is
discussed and reviewed here.

After the onset of necking, the actual area of the neck-
ing section cannot be measured or calculated due to the
“cushion-like shape”; see Figure 1. Thus, the average axial
stress (𝜎

𝑧
)a cannot be determined by employing (3). A

nominal area needs to be defined:

�̃� = 𝑏
2 𝑡0

𝑏
0

, (12)

where 𝑡
0
and 𝑏

0
are the initial thickness and width of flat

specimen, respectively, and 𝑏 represents the instantaneous
width of necking section.The idea of relating the true effective
stress to the measured load, that is, correction method, can
still be adopted:

𝜎 =
𝐹

�̃�

𝐶re. (13)

Based on a series of numerical simulations, an empirical
formula to calculate the correction factor 𝐶re of rectangular
specimens after necking was developed by Scheider [14]:

𝐶re =
{

{

{

1 𝜀 < 1.42𝜀
𝑢

0.22 (𝜀 − 1.42𝜀
𝑢
) (𝜀 − 0.78) + 1 𝜀 > 1.42𝜀

𝑢
,

(14)
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where 𝜀
𝑢
is the limit value of uniform strain, that is, the

equivalent strain at maximum load. Note that, different from
the Bridgman correction factor 𝐶ro, the correction factor
𝐶re for rectangular specimens includes not only the effect of
multiaxial stress state but also the transition from the nominal
area �̃� to the actual area 𝐴. In (14), 𝜀 represents the total
equivalent strain, which can be written as the sum of elastic
strain 𝜀e and plastic strain 𝜀p; that is, 𝜀 = 𝜀

e
+ 𝜀

p, with

𝜀
p
= ∫

𝑡

0

̇𝜀
p
𝑑𝑡 = ∫

𝑡

0

√
2

3
̇𝜀
p
𝑖𝑗
̇𝜀
p
𝑖𝑗
𝑑𝑡. (15)

Because of the condition of incompressibility, ̇𝜀pI + ̇𝜀
p
II+ ̇𝜀

p
III = 0,

(15) reduces to

𝜀
p
= ∫

𝑡

0

√
4

3
(( ̇𝜀

p
I )
2

+ ̇𝜀
p
I ̇𝜀

p
II + ( ̇𝜀

p
II)
2

)𝑑𝑡. (16)

Since elastic strain is relatively small compared to plastic
strain at large deformation regime, the contribution of elastic
strain can be neglected. Inmost cases, due to the nonlinearity
of the deformation, the integration results of (16) will be
inconsistent with the calculated equivalent strain using the
total deformation and yield the following expression:

𝜀 ≥ √
4

3
(𝜀
2

I + 𝜀I𝜀II + 𝜀
2

II), (17)

where the local strains 𝜀I and 𝜀II are measured directly on the
specimen surface at the necking section:

𝜀I = ln(1 +
𝜕𝑢
𝑥

𝜕𝑋
) ,

𝜀II = ln(1 +
𝜕𝑢
𝑦

𝜕𝑌
) .

(18)

In (18), 𝑋 and 𝑌 are the reference coordinates in length
and width direction of the specimen, respectively. Note that
only in the special cases, that is, when the principal strain
directions remain unchanged and the local stresses increase
monotonically, does the equality sign hold in (17). However,
a series of numerical studies conducted by Scheider [14] have
additionally shown that the error induced by the application
of (17) is far less than that induced by the summation of
increments when the load steps of FEM are relatively large.
Thus, in this paper, we can still approximately calculate the
equivalent strain 𝜀, without significant loss of accuracy, by
employing (17) with the equality sign.

In this paper, we use (2), (3), (5), (8), and (11) to calculate
the true stress-strain curve of cylindrical specimens, and for
rectangular specimens, (2), (3), (13), (14), and (17) can be used.

3. Proposed Experimental-Numerical
Combined Method (ENM)

Here we propose a new experiment-numerical combined
method (ENM) to obtain the true stress-strain curve of
a ductile metal after necking by tracing the experimental
𝐹-Δ𝐿 curve using numerical simulations. According to ENM,

the experimental 𝐹-Δ𝐿 curve is considered as a target, the
simulated 𝐹-Δ𝐿 curve is forced to approach the target step by
step bymodifying the imported true stress-strain data in FEM
software and performing iterative computations, and then
the true stress-strain data will be determined when the error
between experimental and simulated 𝐹 is less than a given
limit value. Therefore, a precision experimental 𝐹-Δ𝐿 curve
obtained by the tensile test is the most important prerequisite
to ensure the accuracy of ENM. Before conducting iterative
computations, the true stress-strain data of samples before
necking should be first calculated by (2)-(3) as the initial
data of finite element iteration. It has been revealed that
the necking point can be exactly predicted with these data
[1]. Then an iterative algorithm based on the above idea is
adopted, which is written as follows.

Step 1. Divide the stress-strain curve before necking into
a certain number of smaller stages to approximate the
real curve according to the required precision. Define an
arithmetic series as the “strain point” strain𝑖 (𝑖 = 1, 2, . . . ,𝑀)
needs to be iterated according to a given interval (Δ):

strain𝑖 = 𝜀
0
+ 𝑖Δ (𝑖 = 1, 2, . . . ,𝑀) , (19)

where 𝜀
0
represents the end of the uniform stress-strain curve

which can be used to describe the formation of necking.

Step 2. Define stress1𝑖 and stress2𝑖 (corresponding to Line 1
andLine 2 in Figure 3(a)) at strain𝑖. Note that Line 1 andLine 2
are the horizontal line and tangent line at strain𝑖, respectively.

Step 3. Let stress𝑖 = stress1𝑖. stress𝑖 represents the assumed
stress value corresponding to strain𝑖 on the stress-strain curve
after necking.

Step 4. Import the stress-strain data less than or equal to
strain𝑖 and make computations. Then extract the simulated
load (𝑃𝑖), simulated displacement (𝛿𝑖), and experimental
load (𝐹𝑖) corresponding to strain𝑖. The linear interpolation
method is utilized if the data output from FEA do not
coincide exactly with the experimental measured data.

Step 5. Check the convergence of the solution at strain𝑖 by
comparing 𝑃𝑖 with 𝐹𝑖 and calculate Error𝑖 by

Error𝑖 =


(𝐹
𝑖
− 𝑃
𝑖
)

𝐹𝑖



. (20)

If Error𝑖 is larger than Errorlim, the convergence is not
achieved, and the following algorithms are used to update
stress𝑖:

if 𝑃𝑖 > 𝐹
𝑖
,

then, stress1𝑖 = stress𝑖,

stress𝑖 = (1 − 𝑎) × stress1𝑖 + 𝑎 × stress2𝑖,



6 Advances in Materials Science and Engineering

2
1

6543

Tr
ue

 st
re

ss
 (M

Pa
)

600

450

300

150

0

1

2 6

0.50.40.30.20.10.0

True strain

stress1

stress2

Necking point

Nonactive strain point
Active strain point
True stress-strain data stressi=1

j refers to the jth iteration

Line 1

Line 2

Actual value
straini=1

Pj > Fj; j = 1

Pj > Fj; j = 2

Pj > Fj; j = 3

Pj > Fj; j = 4

Pj = Fj; j = 6

Pj < Fj; j = 5

–

(a)

Start

Calculate the true stress-

Select the sampled strain
points after necking 

tension test
Uniaxial

strain curve data before 
necking according to (1)

i ≤ M

No
NoYes

End Yes

Output stress-strain
data after necking

Active straini,
define stress1i, stress2i

stressi = stress1i

Import the stress-strain
data less than or equal to
straini and make
calculations

Extract Pi, 𝛿i, and Fi,
and calculate Errori

Errori ≤ Errorlim

Output straini,
stressi

i = i + 1

j = j + 1

Update stressi
according to (2)

straini (i = 1, 2, . . ., M)

(b)

Figure 3: (a) The modification processes of the true stress at “active strain point” strain𝑖=1. (b) The flow chart of ENM.

if 𝑃𝑖 < 𝐹
𝑖
,

then, stress2𝑖 = stress𝑖,

stress𝑖 = 𝑎 × stress1𝑖 + (1 − 𝑎) × stress2𝑖,
(21)

where 𝑎 = 1/𝑛, where 𝑛 is a parameter controlling the
convergence rate whose effect will be discussed in the next
section. Errorlim is a subjective parameter which can be
determined according to the actual needs (0.1% is adequate).
Obviously, when Errorlim takes a relatively small value, more
computation time will be spent on the iterations and more
accurate results will be determined. If the convergence is
achieved, stop the iterations, replace 𝑖with 𝑖+1, and return to
Step 2. This iterative procedure and subsequent stress update
can continue in the same way until all stress-strain data are
determined.

To facilitate understanding the basic principle of ENM,
Figure 3(a) takes the “active strain point” strain𝑖 as an
example to illustrate the iterative procedures. The detailed
procedure of proposedmethod is summarized in Figure 3(b).
According to the above elaborations and the flow chart in
Figure 3(b), wewrite a specialMATLABprogram to automat-
ically implement this algorithm.The numerical computation
is carried out by using ANSYS for its powerful parametric
design language (APDL).The information which needs to be
input into the program includes the following:

(a) Sample dimensions and finite element mesh informa-
tion (element type and density).

(b) Material properties: elastic modulus, Poisson’s ratio,
and true stress-strain curve data before necking.

(c) Load information.
(d) Iterative information: the value of “strain point”

strain𝑖 and error limits.
(e) Experimental 𝐹-Δ𝐿 curve.
Note that, in order to save the computation time, we

employ the method of Restart Analysis in FEM. The compu-
tation is terminated when the maximum von-Mises strain in
the necking section is greater than strain𝑖, and the subsequent
iterations will start from the interrupted point of previous
step. Experience has proved that this method can save nearly
60% of the computation time.

4. Application and Validation

The main objective of the present analysis is to validate the
predictions of ENMwith the experimental data in [3] in order
to achieve an adequate mechanical characterization when
cylindrical and rectangular specimens are both considered.
The chosen material is SAE 1045 steel and the average
chemical composition is shown in Table 1. The employed
geometric configurations for test specimens are sketched
in Figure 4. The average experimental measured values for
the yield strength, maximum load, maximum engineering
stress, and elongation at the fracture stage are summarized in
Table 2. 𝐹-Δ𝐿 curve and dimensions of necking cross section
are measured simultaneously during the loading process.
Further details about the test procedure can be found in [3].

An isotropic elastic-plastic material model is used in
the nonlinear FEA of the tension test with the commercial
FE program ANSYS. The nonlinear strain hardening of the
plastic deformation of each specimen is characterized by the
von-Mises effective stress-strain curve. A set of discrete data
of effective stress and strain are used as the input in each
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Table 1: Chemical composition of SAE 1045 (wt%) [3].

C Si Mn P S Cr Ni Al Cu
0.447 0.213 0.756 0.0148 0.033 0.064 0.091 0.0011 0.277

Table 2: Mechanical properties of SAE 1045 steel [3].

Sample 𝑓
𝑦
(MPa) 𝑃

𝑢
(kN) 𝑓

𝑢
(MPa) 𝛿 (%)

Cylindrical 450.4 46.6 749.2 18.5
Rectangular 451.6 56.5 762.0 20.0
𝑓𝑦: yield strength, 𝑃𝑢: maximum load, 𝑓𝑢: maximum engineering stress, and
𝛿: elongation at fracture.

FEA through a table. To overcome the convergence difficulty
caused by the large variation of the derived work-hardening
rate, especially just before and after necking, no fewer than
30 data points are selected to ensure a smooth change
of work-hardening rate. Owing to the isotropic symmetry,
only one-eighth of the specimen is modeled here to reduce
computation time. The mesh of the FE model of the tensile
specimen is shown in Figure 4. A refined mesh is applied at
the center of each couponwhere necking is expected to occur.
Meshes with 200 elements in the necking area are employed
for the objectives of the work. The convergence of computed
results in terms of mesh density has been checked to be
successfully reached at this level. Note that in the experiment
necking occurs at a point caused by a preset imperfection
at the center of the specimen, while in the simulation the
mesh is made without imperfections and the specimen necks
at the corresponding edge of the mesh. The load is applied
by controlling displacement and a set of specific boundary
conditions are imposed to satisfy the symmetry conditions.
No strain rate effect is considered. To check the robustness of
ENM, different values of parameter 𝑛 (5, 10, and 20) in Step 5
are employed in the iterative procedure.

Figure 5 shows the comparison of true stress-strain
curves determined fromTAMand ENMwith different values
of parameter 𝑛 by applying to cylindrical and rectangular
specimens. As can be seen, parameter 𝑛 has little effect on
the iterative results, although different computation time will
be consumed when 𝑛 takes different values. Experience has
shown that it can probably achieve a balance between the
precision and computation time when parameter 𝑛 equals 10.
In order to verify the accuracy of the proposed ENM proce-
dure, the obtained material true constitutive relations shown
in Figure 5 are applied to tensile simulations, and then we can
extract the information on load and displacement from the
numerical results during loading procedure. Figure 6 shows
the comparisons between the simulated and experimental
𝐹-Δ𝐿 curves of both cylindrical and rectangular specimens.
It can be seen that, for these two specimens, the material true
constitutive relation obtained by ENM is in good agreement
with the experimental results in large deformation analysis;
however, the simulated 𝐹-Δ𝐿 curves based on TAM present a
conservative tendency after necking. An additional FEA with
a much denser mesh (up to 4 times more elements) is also
employed to confirm the convergence of the computed stress-
strain and the representative results for the two specimens

(a)
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(c) (d)Mesh refinement
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12
.0
0
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Figure 4: Geometric configurations for (a) cylindrical and (b)
rectangular samples and finite element mesh for (c) cylindrical and
(d) rectangular specimens.
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are shown in Figure 6: little deference is observed between
the FE-computed 𝐹-Δ𝐿 curves, and they both closely match
the experimental curves. This fully demonstrates that the
convergence of computed results in terms ofmesh density can
be successfully reached at the level indicated in Figure 4.

Besides the 𝐹-Δ𝐿 curves, further details of necking zone
such as contours and dimensions can also be extracted from
the numerical results. Figures 7(a) and 7(b) show some
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detailed results at the cross section which undergoes extreme
necking: ratio of current to initial transversal dimensions
versus the elongation in the necking zone together with the
mean true axial stress against the true strain. An overall
consistent trend can be observed for both cylindrical and
sheet specimens. The simulated load decreases after necking;
however the simulated mean true axial stress (see Fig-
ure 7(b)) continues increasing until fracture, consistent with
the experimental results. It fully demonstrates that TAM and
ENM can both capture the fact that a geometrical instability
occurs and the area reduction predominates over thematerial
hardening at the necking zone. The numerical prediction for
the ratio of current to initial transversal dimensions in terms
of the elongation starts with a linear relationship, reflecting
uniform distributions of stress and strain. Afterwards, a
sudden reduction of the transversal dimensions takes place
causing the necking formation and the nonhomogeneous
stress and strain distributions along the specimen. As can be
seen from Figure 7(a), the inflection points, that is, necking
points, obtained by ENM, appear at the elongation of 15% for
round specimen and 12.5% for sheet specimen, respectively,
which shows good consistence with the test results; however,
for TAM, premature necking (at the elongation of 10%) and
serious deviation of the deformation curves after necking
can be observed. Figure 7(c) compares the correction factor
calculated by TAMwith that obtained through the numerical
simulation as the quotient between the maximum von-Mises
equivalent stress at the neck and the mean axial true stress.

It can be seen that the numerical values of correction factor
𝐶ro for cylindrical specimen are significantly larger than that
obtained from (11). The similar results were also found in
the previous work conducted by Cabezas and Celentano [3]
and Garćıa-Garino et al. [23]. It is precisely because of this
reason that the simulated 𝐹-Δ𝐿 curve based on TAM is not
in agreement with the experimental results after necking (see
Figure 6). In this paper, in order to avoid measuring the
ratio of necking curvature 𝑅, the simplified method of (11) is
adopted in TAM. Thus, this also indicates that the simplified
method of (11) cannot achieve the required accuracy or
sufficient versatility in some circumstances.The assumptions
and simplifications adopted in TAM are conducive for the
accumulation of systematic errors and culminating in inac-
curate results. On the other hand, for rectangular specimens,
the range of stress correction factor 𝐶re obtained by TAM is
very limited; consequently, the maximum strain value of the
calculated constitutive relation after necking only reaches 0.4,
as shown in Figure 5. In addition, TAM requires that a series
of data, such as the dimensions of necking section and radium
of curvature of the neck, must be measured during the test;
this will lead to restrictions in practical applications.

The above analysis shows that the true constitutive rela-
tion of a ductile metal can be conveniently obtained from
the uniaxial tension test by employing the proposed ENM;
furthermore, the numerical results also indicate that ENM
can achieve a more accurate description of the mechanical
response of the materials after necking formation than
TAM. However, some slight “strain softening” is observed
on the FE-computed effective stress-strain curves in Fig-
ure 5. Although some material damage (void nucleation
and growth) may occur during the later stage of necking,
the major factor contributing to the softening behavior is
the limited “resolution” of the average strain measured by
extensometer. Figure 8 plots the average axial strains of
each transversal section of rectangular specimen along the
gauge length at different displacements. The final effective
stress-strain data in Figure 5 is used in the FEA. It can
be seen that, before the displacement of 4.81mm, strain
distribution in the flat part of the specimen is quite uniform,
while a sharp strain subsequently appears when the necking
occurs. The plastic deformation becomes so localized and
inhomogeneous during the necking stage, while only a small
portion of thematerial experiences the extreme plastic strain.
Thus, the displacement over the whole gauge length will
become much less sensitive to the plastic details inside the
neck with the increasing of gauge length (see the dash line
in Figure 8). Since the displacement data outside the neck
region become less useful anyway for characterizing the
material deformation behavior at large strains, a specimen
with a shortest possible gauge length is thus preferred to be
used in the experimental measurements.TheDIC techniques
will be tentatively introduced to extract the local surface
strain at the necking region when a high accurate true
stress-strain curve is required. Then the average surface axial
strain and load data can be employed as the targets in the
ENM, instead of relying on the global 𝐹-Δ𝐿 curve data.
Another critical issue that should be mentioned is that DIC
technology can only extract the distribution of surface strain
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Correction factors.

without considering the influence of inner damage evolution
in the later stage of necking; therefore, in common with the
traditional extensometer method, it cannot be used to obtain
the material constitutive relationship at the later stage of
necking when the damage begins to nucleate and accumulate.
Researches on this aspect will be continuously carried out in
our follow-up work. In most cases, the 𝐹-Δ𝐿 curve measured
by extensometer can still satisfy the accuracy requests and is
easy to implement.

Once the final discrete data points of true stress-strain
curve are determined, we can carry out a curve-fitting
routine to find the appropriate material parameters. Several

experiential hardening laws have been used to fit the stress-
strain curves before and after diffuse necking (see Figure 9),
and thematerial parameters of these hardening laws are listed
inTable 3.Note that the diffuse necking occurs under uniaxial
tension per the Considére condition, expressed as

𝜎|𝜀=𝜀𝑢
= 𝜎
𝑢
,

𝑑𝜎

𝑑𝜀

𝜀=𝜀𝑢

= 𝜎
𝑢
,

(22)

where 𝜎
𝑢
and 𝜀

𝑢
refer to the true stress and true strain at

the onset of diffuse necking. The fitting curves in Figure 9(a)
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Table 3: Material parameters for experiential hardening laws.

Stage Equation name Material parameters
Cylindrical Rectangular

Before necking

(1) Hollomon
𝜎 = 𝐶𝜀

𝑛 𝐶 = 1078.6, 𝑛 = 0.1185 𝐶 = 1103, 𝑛 = 0.11577

(2) Swift
𝜎 = 𝐶(𝜀 − 𝜀

0
)
𝑛 𝐶 = 1066.7, 𝜀

0
= 0.00947, 𝑛 = 0.10903 𝐶 = 1092.5, 𝜀

0
= 0.00807, 𝑛 = 0.1077

(3) Misiolek
𝜎 = 𝐶𝜀

𝑛 exp(𝑛
1
𝜀)

𝐶 = 2147.7, 𝑛 = 0.33836, 𝑛
1
= −1.855 𝐶 = 1852.3, 𝑛 = 0.28, 𝑛

1
= −1.4186

After necking
(4) Misiolek
𝜎 = 𝐶𝜀

𝑛 exp(𝑛
1
𝜀)

𝐶 = 1034.6, 𝑛 = 0.1052, 𝑛
1
= 0.1122 𝐶 = 1031.2, 𝑛 = 0.09444, 𝑛

1
= 0.1846

(5) Line-Power Model
𝜎 = 𝑤(𝑛

1
𝜀+𝑛
2
)+(1−𝑤)𝐶𝜀

𝑛

𝑛
1
= 837.7, 𝑛

2
= 738.4, 𝐶 = 1078.6,

𝑛 = 0.1185, 𝑤 = 0.1530

𝑛
1
= 859.4, 𝑛

2
= 760, 𝐶 = 1103,

𝑛 = 0.11577, 𝑤 = 0.2343
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Figure 8: The average axial strain profile at different deformation
stages and the average axial strain within different gauge length.

reveal that Misiolek equation can achieve a more accurate
depiction of the work-hardening performance of the tested
material before diffuse necking, which is consistent with
the conclusion of [19]. The linear relationship and power
law are, respectively, employed to fit the true stress-strain
curve after necking. However, the power law extrapolation
appears to underestimate the true stress, and the linear
relationship generally leads to the overestimation of true
stress (see Figure 9(b)).Thus, a compositemodel (Line-Power
Model) [12] by combining the two simplemodels given above
and setting an additional parameter (weight parameter 𝑤) is
constructed to better describe the large strain behaviors and
the fitted values of the single adjustable weight parameter
𝑤 are listed in Table 3. Figure 9(b) also demonstrates that
the deformation behavior of the tested material after diffuse

necking can also be depicted by Misiolek equation, which
is essentially coincident with LP model. Note that the strain
points larger than 0.5 are eliminated during the fitting process
due to more or less softening behavior. The inset of Figure 9,
as well as the parameters of hardening laws in Table 3, further
indicates that the true stress-strain curve is an intrinsic
characteristic of the material and not dependent on any
geometric and dimensional parameters.

5. Conclusions

It is well-known that the stress-strain data obtained by a
simple tension test using the conventional extensometer
technique will underestimate the effective stress of ductile
metal beyond necking. In this paper, a hybrid experimental
and numerical method using themeasured𝐹-Δ𝐿 curve as the
target for FE computations is proposed to obtain the material
true constitutive relation after necking.Aprogram-controlled
iterative procedure is applied to successively modify the
effective stress-strain curve and minimize the errors between
the simulated and experimental 𝐹-Δ𝐿 curves. Compared
with some simple correction methods, that is, TAM, the
iterative procedure using FEA of a tensile test is still more
complex. However, within the limit of the experimental
measurements and numerical analysis errors, the ENMbased
method would always achieve a more accurate description of
themechanical response of materials after necking formation
and have tremendous application potential because of the
following advantages: (a) the experimental 𝐹-Δ𝐿 curve is
only required; thus tremendous amount of measurements
during the whole process of tension can be avoided; (b) this
method is program-controlled and easy to implement in a
general commercial FE program and thus is more convenient
in practice; (c) the iterative procedure is applicable to tensile
test of both cylindrical and rectangular specimens; (d) the
final effective true stress-strain curve can be determined for
arbitrarily general strain hardening behavior of ductile metal
as no specific analytical strain hardening model is assumed.
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