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New damagemechanicsmethod is proposed to predict the low-cycle fatigue life ofmetallic structures undermultiaxial loading.The
microstructure mechanical model is proposed to simulate anisotropic elastoplastic damage evolution. As the micromodel depends
on fewmaterial parameters, the present method is very concise and suitable for engineering application.Thematerial parameters in
damage evolution equation are determined by fatigue experimental data of standard specimens. By employing further development
on the ANSYS platform, the anisotropic elastoplastic damage mechanics-finite element method is developed. The fatigue crack
propagation life of satellite structure is predicted using the present method and the computational results comply with the
experimental data very well.

1. Introduction

For multiaxial fatigue problem, many methods [1–4] have
been developed over the past decades. A series of fatigue
failure approaches are classified as follows: the linear rule
method [5], the equivalent stress method [6], the criti-
cal plane method [7, 8], the stress invariant method [9],
the damage mechanics method [10–16], and so on. However,
there is no existing method accepted extensively in the engi-
neering field at present. Hence, further work still must be
done. Recently, there is a trend in favor of both the critical
plane approach and the damage mechanics approach.

The critical plane method [17, 18] can predict the fatigue
crack orientation. For the damagemechanicsmethod [15, 19],
a great deal of attention has been paid.Thedamagemechanics
method [13, 14, 20–23] deals with the mechanical behavior of
the deteriorated materials. Damage models can be classified
as follows: isotropic damage and anisotropic damage. As the
isotropic damage model is characterized with simple consti-
tutive relationship, it has been widely applied in the engineer-
ing field. For isotropic damage model, damage mechanics-
finite element method [19] is proposed to predict the fatigue
life of the engineering structure. However, most of the fatigue
problem is anisotropic. Thus anisotropic damage model will

be more valuable. Many models [24–26] have been proposed
to describe anisotropic damage properties of materials. An
elastic microstructure model in [27] is proposed to evaluate
the anisotropic elastic fatigue problem. Some models [11, 12]
for dealing with elastoplastic fatigue problems are developed.
However, in engineering applications we do not find exten-
sive applications of them because isotropic schemes can be
put more easily into available computer codes, although such
approaches are less realistic. Thus, for the low-cycle fatigue
problem, it will be very valuable to propose an anisotropic
elastoplastic model for the engineering application.

In this paper, damage mechanics method is proposed
to predict the low-cycle fatigue life of metallic structures.
Referring to the elasticmicromodel [27] and the critical plane
method [17, 18], a micro elastoplastic mechanical model is
established. Considering the hysteresis energy [28], the dam-
age evolution equation is advanced. The material parameters
in the damage evolution equation are determined by the
low-cycle fatigue experimental data of standard specimens.
Based on the further development on the ANSYS platform,
anisotropic elastoplastic damage mechanics-finite element
method is developed. In this paper, the low-cycle fatigue
crack initiation and propagation life of the structure are
predicted using the present method. For a real component of
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satellite structure, the fatigue life is predicted by the present
method.

2. The Anisotropic Elastoplastic
Damage Theory

2.1. The Microstructure Mechanical Model. In this section, a
microstructuremechanicalmodel is proposed to simulate the
anisotropic elastoplastic damage failure. The microstructure
mechanical model, as shown in Figure 1, is constituted by
elastic block and boom-panel structure unit. Boom-structure
is used to simulate the damage failure and elastic block does
not undergo damage. For boom-panel structuremodel, boom
is used to transfer the tensile and compressive loading and
panel is used to transfer the shear loading.

As we all know, for the metallic materials, the iterative
appearance of the shear slip will result in the crack initiation.
Boom-panel structure in the micromodel simulates shearing
slip band.Thepresentmicromodel is built at three orthogonal
planes with maximum shear stress. Then the relationship
between the micromodel and each element in the structure
is built and shown in Figure 2. Global coordinate system
belongs to the element in the structure and local coordinate
system belongs to the micromodel.

2.2. Stress-Strain Relationships for the Micromodel. The min-
imum cell of the micromodel is shown in Figure 3. Based
on the minimum cell in Figure 3, parameters involved in the
micromodel will be discussed in detail in this section.

In the local coordinate system, the points for the micro-
model are as follows:

𝜀𝑖𝑗 = ( 𝑙1𝑙1 + 𝑙2) ⋅ 𝜀𝑖𝑗1 + (
𝑙2𝑙1 + 𝑙2) ⋅ 𝜀𝑖𝑗2

𝜎𝑖𝑗 = ( 𝑙1𝑙1 + 𝑙2)
2 ⋅ 𝜎𝑖𝑗1 = ( 𝑙2𝑙1 + 𝑙2)

2 ⋅ 𝜎𝑖𝑗2.
(1)

𝜎𝑖𝑗, 𝜀𝑖𝑗 denote the stress tensor components and the strain
tensor components of the micromodel, respectively, 𝜎𝑖𝑗1, 𝜀𝑖𝑗1
denote the stress tensor components and the strain tensor
components of elastic block, respectively, 𝜎𝑖𝑗2, 𝜀𝑖𝑗2 denote the
stress tensor components and the strain tensor components of
boom-panel structure, respectively, 𝑙1 is the length of elastic
block, and 𝑙2 is the length of boom-panel structure.

2.3. Elastic Analysis of the Micromodel. For elastic block, the
linear elastic constitutive model is expressed as

𝜀𝑖𝑗1 = 1𝐸1 (1 + 𝜇1) ⋅ 𝜎𝑖𝑗1 − 𝛿𝑖𝑗 ⋅
𝜇1𝐸1 ⋅ 𝜎𝑘𝑘1. (2)

For boom-panel structure, an elastic analysis is written as

𝜀𝑥2 = 1𝐾𝐹 ⋅ 𝜎𝑥2
𝜀𝑦2 = 1𝐾𝐹 ⋅ 𝜎𝑦2
𝜀𝑧2 = 1𝐾𝐹 ⋅ 𝜎𝑧2

for the boom

Boom-panel structure unit with damage

Elastic block without damage

Boom

Panel

𝜎ij1, 𝜀ij1

𝜎ij, 𝜀ij

𝜎ij, 𝜀ij

𝜎ij2, 𝜀ij2

Figure 1: The microstructure mechanical model.

𝜀𝑥𝑦2 = 1𝐾𝑆1 ⋅ 𝜏𝑥𝑦2
𝜀𝑦𝑧2 = 1𝐾𝑆1 ⋅ 𝜏𝑦𝑧2
𝜀𝑥𝑧2 = 1𝐾𝑆1 ⋅ 𝜏𝑥𝑧2

for the panel
(3)

in which 𝐾𝑆1 is the elastic shear modulus of panel and 𝐾𝐹 is
the elastic modulus of boom.

2.3.1. The Analysis of the Elastic Constitutive Relationship. In
the local coordinate system, the elastic part of constitutive
model of the micromodel is expressed as

𝜀𝑥 = 1𝐸1 ⋅ (
𝑙1 + 𝑙2𝑙1 ) ⋅ [𝜎𝑥 − 𝜇1 ⋅ (𝜎𝑦 + 𝜎𝑧)] + 1𝐾𝐹

⋅ ( 𝑙1 + 𝑙2𝑙2 ) ⋅ 𝜎𝑥
𝜀𝑦 = 1𝐸1 ⋅ (

𝑙1 + 𝑙2𝑙1 ) ⋅ [𝜎𝑦 − 𝜇1 ⋅ (𝜎𝑥 + 𝜎𝑧)] + 1𝐾𝐹
⋅ ( 𝑙1 + 𝑙2𝑙2 ) ⋅ 𝜎𝑦

𝜀𝑧 = 1𝐸1 ⋅ (
𝑙1 + 𝑙2𝑙1 ) ⋅ [𝜎𝑧 − 𝜇1 ⋅ (𝜎𝑥 + 𝜎𝑦)] + 1𝐾𝐹

⋅ ( 𝑙1 + 𝑙2𝑙2 ) ⋅ 𝜎𝑧
𝜀𝑥𝑦 = [ 12𝐺1 ⋅ (

𝑙1 + 𝑙2𝑙1 ) + 1𝐾𝑆1 ⋅ (
𝑙1 + 𝑙2𝑙2 )] ⋅ 𝜏𝑥𝑦

𝜀𝑥𝑧 = [ 12𝐺1 ⋅ (
𝑙1 + 𝑙2𝑙1 ) + 1𝐾𝑆1 ⋅ (

𝑙1 + 𝑙2𝑙2 )] ⋅ 𝜏𝑥𝑧
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Figure 2: The relationship between one element in the structure and the micromodel.
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Figure 3: The minimum cell of the micromodel.

𝜀𝑦𝑧 = [ 12𝐺1 ⋅ (
𝑙1 + 𝑙2𝑙1 ) + 1𝐾𝑆1 ⋅ (

𝑙1 + 𝑙2𝑙2 )] ⋅ 𝜏𝑦𝑧
(4)

inwhich𝐸1 is Young’smodulus of elastic block,𝐺1 is the shear
modulus of elastic block, and 𝜇1 is Poisson’s ratio of elastic
block.

In the global coordinate system, the elastic part of consti-
tutive model can be expressed as

𝜀0𝑥 = 1𝐸 ⋅ [𝜎0𝑥 − 𝜇 ⋅ (𝜎0𝑦 + 𝜎0𝑧)]
𝜀0𝑦 = 1𝐸 ⋅ [𝜎0𝑦 − 𝜇 ⋅ (𝜎0𝑥 + 𝜎0𝑧)]
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𝜀0𝑧 = 1𝐸 ⋅ [𝜎0𝑧 − 𝜇 ⋅ (𝜎0𝑥 + 𝜎0𝑦)]
𝜀0𝑥𝑦 = 12𝐺 ⋅ 𝜏0𝑥𝑦
𝜀0𝑥𝑧 = 12𝐺 ⋅ 𝜏0𝑥𝑧
𝜀0𝑦𝑧 = 12𝐺 ⋅ 𝜏0𝑦𝑧

(5)

in which 𝜎0𝑖𝑗, 𝜀0𝑖𝑗 stand for the stress tensor components and
the strain tensor components of one element in the structure,
respectively, 𝐸 is Young’s modulus, 𝐺 is the shear modulus,
and 𝜇 is Poisson’s ratio.

2.3.2. Elastic Material Parameters of the Micromodel. From
(4) and (5), we have

1𝐸 = 1𝐸1 ⋅ (
𝑙1 + 𝑙2𝑙1 ) + 1𝐾𝐹 ⋅ (

𝑙1 + 𝑙2𝑙2 )
𝜇 = 𝜇1/ (𝐸1 ⋅ 𝑙1)1/ (𝐸1 ⋅ 𝑙1) + 1/ (𝐾𝐹 ⋅ 𝑙2)
= 𝜇11 + (𝐸1/𝐾𝐹) ⋅ (𝑙1/𝑙2)

12𝐺 = 1 + 𝜇𝐸 = [ 12𝐺1 ⋅ (
𝑙1 + 𝑙2𝑙1 ) + 1𝐾𝑆1 ⋅ (

𝑙1 + 𝑙2𝑙2 )] .

(6)

The shear modulus 𝐺1 of elastic block is also written as

12 ⋅ 𝐺1 =
1 + 𝜇1𝐸1 . (7)

From (6) and (7), then

𝐾𝐹 = 𝐸 ⋅ (1 + 𝜇) ⋅ ( 𝜇1𝜇1 − 𝜇)
2

(8)

𝐸1 = 𝐸 ⋅ 1 + 𝜇1 + 𝜇1 ⋅ (
𝜇1𝜇 )
2

(9)

12𝐺1 =
1𝐸 ⋅ (1 + 𝜇) ⋅ [

(1 + 𝜇1) ⋅ 𝜇𝜇1 ]2 (10)

1𝐾𝑆1 =
1𝐸 ⋅ (1 + 𝜇) ⋅ (

𝜇1 − 𝜇𝜇1 )2 (11)

𝑙1 + 𝑙2𝑙1 = 1 + 𝑐 = 1 + 𝜇1 + 𝜇1 ⋅
𝜇1𝜇 (12)

𝑙1 + 𝑙2𝑙2 = 1 + 1𝑐 =
𝜇1 ⋅ (1 + 𝜇)𝜇1 − 𝜇 (13)

𝜇1 = 𝜇 ⋅ (1 + 𝑐)1 − 𝜇 ⋅ 𝑐 , (14)

in which 𝐸, 𝜇 are known and 𝑐 = 𝑙2/𝑙1 is a constant. Then𝐾𝐹,𝐸1, 𝐺1, 𝐾𝑆1, 𝜇1, 𝑙1, and 𝑙2 are known.𝑐 constant is a material parameter that can vary in the
range defined by (26).

2.4. Plastic Analysis of the Micromodel

2.4.1. The Elastoplastic Constitutive Equation. For the micro-
model in Figure 3, block is elastic and boom-panel structure
is elastoplastic. For boom-panel structure, panel is assumed
as bilinear plastic and boom is elastic. For the flow rule of the
plastic behavior, the kinematic hardening law is adopted in
this article. In the local coordinate system, the elastoplastic
constitutive relation of the micromodel is expressed as

𝜀𝑥 = 1𝐸1 ⋅ (
𝑙1 + 𝑙2𝑙1 ) ⋅ [𝜎𝑥 − 𝜇1 ⋅ (𝜎𝑦 + 𝜎𝑧)] + 1𝐾𝐹

⋅ ( 𝑙1 + 𝑙2𝑙2 ) ⋅ 𝜎𝑥
𝜀𝑦 = 1𝐸1 ⋅ (

𝑙1 + 𝑙2𝑙1 ) ⋅ [𝜎𝑦 − 𝜇1 ⋅ (𝜎𝑥 + 𝜎𝑧)] + 1𝐾𝐹
⋅ ( 𝑙1 + 𝑙2𝑙2 ) ⋅ 𝜎𝑦

𝜀𝑧 = 1𝐸1 ⋅ (
𝑙1 + 𝑙2𝑙1 ) ⋅ [𝜎𝑧 − 𝜇1 ⋅ (𝜎𝑥 + 𝜎𝑦)] + 1𝐾𝐹

⋅ ( 𝑙1 + 𝑙2𝑙2 ) ⋅ 𝜎𝑧
𝜀𝑥𝑦 = 𝜏𝑥𝑦2𝐺1 ⋅

𝑙1 + 𝑙2𝑙1 + (𝜀2𝑆 + 𝜏𝑥𝑦2 − 𝜏2𝑆𝐾𝑆2 ) ⋅ 𝑙2𝑙1 + 𝑙2
𝜀𝑥𝑧 = 𝜏𝑥𝑧2𝐺1 ⋅

𝑙1 + 𝑙2𝑙1 + (𝜀2𝑆 + 𝜏𝑥𝑧2 − 𝜏2𝑆𝐾𝑆2 ) ⋅ 𝑙2𝑙1 + 𝑙2
𝜀𝑦𝑧 = 𝜏𝑦𝑧2𝐺1 ⋅

𝑙1 + 𝑙2𝑙1 + (𝜀2𝑆 + 𝜏𝑦𝑧2 − 𝜏2𝑆𝐾𝑆2 ) ⋅ 𝑙2𝑙1 + 𝑙2 ,

(15)

where

𝜏2𝑆 = 𝜎𝑠2 ⋅ ( 𝑙1 + 𝑙2𝑙2 )2

𝜏𝑥𝑦2 = 𝜏𝑥𝑦 ⋅ ( 𝑙1 + 𝑙2𝑙2 )2

𝜀2𝑆 = 𝜏2𝑆𝐾𝑆1 ⋅ (
𝑙1 + 𝑙2𝑙2 )2

(16)

in which 𝜏2𝑆 is the shear yield stress of boom-panel structure,𝜀2𝑆 indicates the shear yield strain of boom-panel structure,
and𝐾𝑆2 signifies the plastic shear modulus of panel.

2.4.2. Plastic Material Parameters of the Micromodel. In
order to determine 𝐾𝑆2, a simple stress state is consid-
ered. Schematic of a plate subject to tension is shown in
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Figure 4. The structure is in plane-stress condition. For this
case, all of the micromodels are the same and built at the
position with 𝛼 = 45∘.

In the global coordinate system, the strain 𝜀0 of the struc-
ture is defined as

𝜀0 = Δ𝑢0𝑦√2 ⋅ (𝑙1 + 𝑙2) (17)

in which Δ𝑢0𝑦 is the displacement increment of the micro-
model along 𝑌0 direction in the global coordinate system.

By the coordinate system transformation, the displace-
ment increment Δ𝑢0𝑦 is expressed as

Δ𝑢0𝑦 = √22 ⋅ (Δ𝑢𝑥 + Δ𝑢𝑦) (18)

in which

Δ𝑢𝑥 = 𝜀𝑥 ⋅ (𝑙1 + 𝑙2) + 𝜀𝑥𝑦 ⋅ (𝑙1 + 𝑙2)
Δ𝑢𝑦 = 𝜀𝑦 ⋅ (𝑙1 + 𝑙2) + 𝜀𝑥𝑦 ⋅ (𝑙1 + 𝑙2) (19)

in which Δ𝑢𝑥, Δ𝑢𝑦 are the displacement increment of the
micromodel along 𝑋 or 𝑌 direction in the local coordinate
system, respectively.

The stress values 𝜎𝑥, 𝜎𝑦, and 𝜏𝑥𝑦 in the local coordinate
system are

𝜎𝑥 = 𝜎𝑦 = 𝜎02 ,
𝜏𝑥𝑦 = 𝜎02 .

(20)

From (15)–(20), then the strain 𝜀0 of the structure is expressed
as

𝜀0 = 𝜀𝑥 + 𝜀𝑦2 + 𝜀𝑥𝑦
= [ 1𝐸 + 𝑙1 + 𝑙22 ⋅ 𝑙2 ⋅ (

1𝐾𝑆2 −
1𝐾𝑆1)] ⋅ 𝜎

0 − 𝑙1 + 𝑙22 ⋅ 𝑙2
⋅ ( 1𝐾𝑆2 −

1𝐾𝑆1) ⋅ 𝜎𝑠.
(21)

In the global coordinate system, the strain 𝜀0 of the structure
is expressed as

𝜀0 = 𝜀𝑠 + 𝜎0 − 𝜎𝑠𝐾2 = 𝜎𝑠𝐸 + 𝜎0 − 𝜎𝑠𝐾2 . (22)

From (21) and (22), the following requirement must be
satisfied:

𝜀𝑥 + 𝜀𝑦2 + 𝜀𝑥𝑦 = 𝜀𝑠 + 𝜎0 − 𝜎𝑠𝐾2 . (23)

Then we have
1𝐸 + 𝑙1 + 𝑙22 ⋅ 𝑙2 ⋅ (

1𝐾𝑆2 −
1𝐾𝑆1) = 1𝐾2 . (24)

From (11), (13), and (24), then the inverse of the plastic shear
modulus𝐾𝑆2 is

1𝐾𝑆2 = (
1𝐾2 −

1𝐸) ⋅
2 ⋅ (𝜇1 − 𝜇)𝜇1 ⋅ (1 + 𝜇) +

1𝐸 ⋅ (1 + 𝜇)
⋅ (𝜇1 − 𝜇𝜇1 )2 .

(25)

For the plastic shear modulus 𝐾𝑆2, the condition 0 ≤ 𝐾𝑆2 <𝐾𝑆1 must be satisfied. From (11) and (25), the range of the
constant 𝑐 is

𝑐 ≥ 2 ⋅ (𝐾2 − 𝐸)𝐾2 ⋅ 𝐸 + 2 ⋅ 𝐸 − 𝐾2 . (26)

Substituting (8)–(14), (16), and (25) into (15), we obtain

𝜀𝑥 = 1𝐸 ⋅ [𝜎𝑥 − 𝜇 ⋅ (𝜎𝑦 + 𝜎𝑧)]
𝜀𝑦 = 1𝐸 ⋅ [𝜎𝑦 − 𝜇 ⋅ (𝜎𝑥 + 𝜎𝑧)]
𝜀𝑧 = 1𝐸 ⋅ [𝜎𝑧 − 𝜇 ⋅ (𝜎𝑥 + 𝜎𝑦)]
𝜀𝑥𝑦 = [ 12𝐺 + 2 ⋅ ( 1𝐾2 −

1𝐸)] ⋅ 𝜏𝑥𝑦 − 2 ⋅ ( 1𝐾2 −
1𝐸)

⋅ 𝜏𝑆
𝜀𝑦𝑧 = [ 12𝐺 + 2 ⋅ ( 1𝐾2 −

1𝐸)] ⋅ 𝜏𝑦𝑧 − 2 ⋅ ( 1𝐾2 −
1𝐸)

⋅ 𝜏𝑆
𝜀𝑥𝑧 = [ 12𝐺 + 2 ⋅ ( 1𝐾2 −

1𝐸)] ⋅ 𝜏𝑥𝑧 − 2 ⋅ ( 1𝐾2 −
1𝐸)

⋅ 𝜏𝑆

(27)

in which 𝜏𝑆 is a variable and 𝜏𝑆 = 𝜎𝑆/2.
2.5. Damage Constitutive Law for the Micromodel. For
this micromodel, elastic block does not undergo damage and
boom-panel structure can simulate the damage failure. In
this section, a simple case in Figure 4 is discussed first. For
this case, the micromodel is at the position with 𝛼 = 45∘ or135∘. For boom-panel structure, the constitutive law coupling
with damage is displayed in Figure 5.

For a plate subject to uniaxial loading, constitutive equa-
tions including damage can be written as follows:

(i) When 𝜏𝑥𝑦2 ≤ 𝜏2𝑆 ⋅ (1 − 𝐷𝑥𝑦),
𝜀𝑥𝐷 = 1𝐸1 ⋅ (

𝑙1 + 𝑙2𝑙1 ) ⋅ [𝜎𝑥 − 𝜇1 ⋅ 𝜎𝑦]
+ 1𝐾𝐹 ⋅ (1 − 𝐷𝑥) ⋅ (

𝑙1 + 𝑙2𝑙2 ) ⋅ 𝜎𝑥.
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The local coordinate system

The global coordinate system

𝜎0, 𝜀0

𝜎0, 𝜀0

Y

Y0

X0

𝜎y

𝜎y

𝜎x

𝜎x

𝜏xy

𝜏xy

𝜏xy

𝜏xy

45∘

X

Figure 4: Schematic of a plate subject to tension.
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Figure 5: The constitutive law with damage for boom-panel structure.

𝜀𝑦𝐷 = 1𝐸1 ⋅ (
𝑙1 + 𝑙2𝑙1 ) ⋅ [𝜎𝑦 − 𝜇1 ⋅ 𝜎𝑥]

+ 1
𝐾𝐹 ⋅ (1 − 𝐷𝑦) ⋅ (

𝑙1 + 𝑙2𝑙2 ) ⋅ 𝜎𝑦
𝜀𝑥𝑦𝐷 = 𝜏𝑥𝑦2𝐺1 ⋅

𝑙1 + 𝑙2𝑙1 + 𝜏𝑥𝑦
𝐾𝑆1 ⋅ (1 − 𝐷𝑥𝑦) ⋅

𝑙1 + 𝑙2𝑙2
= 𝜏𝑥𝑦2 ⋅ 𝐺1𝐷 .

(28)

(ii) When 𝜏𝑥𝑦2 > 𝜏2𝑆 ⋅ (1 − 𝐷𝑥𝑦),
𝜀𝑥𝐷 = 1𝐸1 ⋅ (

𝑙1 + 𝑙2𝑙1 ) ⋅ [𝜎𝑥 − 𝜇1 ⋅ 𝜎𝑦]
+ 1𝐾𝐹 ⋅ (1 − 𝐷𝑥) ⋅ (

𝑙1 + 𝑙2𝑙2 ) ⋅ 𝜎𝑥
𝜀𝑦𝐷 = 1𝐸1 ⋅ (

𝑙1 + 𝑙2𝑙1 ) ⋅ [𝜎𝑦 − 𝜇1 ⋅ 𝜎𝑥]
+ 1
𝐾𝐹 ⋅ (1 − 𝐷𝑦) ⋅ (

𝑙1 + 𝑙2𝑙2 ) ⋅ 𝜎𝑦



Advances in Materials Science and Engineering 7

𝜀𝑥𝑦𝐷 = 𝜏𝑥𝑦2𝐺1 ⋅
𝑙1 + 𝑙2𝑙1

+ (𝜀2𝑆 + 𝜏𝑥𝑦2 − 𝜏2𝑆 ⋅ (1 − 𝐷𝑥𝑦)
𝐾𝑆2 ⋅ (1 − 𝐷𝑥𝑦) ) ⋅ 𝑙2𝑙1 + 𝑙2

(29)

in which 𝐷𝑥, 𝐷𝑦 denote the damage variables of boom and𝐷𝑥𝑦 denotes the damage variable of panel.
If the plate is subject to multiaxial loading, constitutive

equations including damage become

𝜀𝑥 = 1𝐸1 ⋅ (
𝑙1 + 𝑙2𝑙1 ) ⋅ [𝜎𝑥 − 𝜇1 ⋅ (𝜎𝑦 + 𝜎𝑧)]

+ 1𝐾𝐹 ⋅ (1 − 𝐷𝑥) ⋅ (
𝑙1 + 𝑙2𝑙2 ) ⋅ 𝜎𝑥

𝜀𝑦 = 1𝐸1 ⋅ (
𝑙1 + 𝑙2𝑙1 ) ⋅ [𝜎𝑦 − 𝜇1 ⋅ (𝜎𝑥 + 𝜎𝑧)]

+ 1
𝐾𝐹 ⋅ (1 − 𝐷𝑦) ⋅ (

𝑙1 + 𝑙2𝑙2 ) ⋅ 𝜎𝑦
𝜀𝑧 = 1𝐸1 ⋅ (

𝑙1 + 𝑙2𝑙1 ) ⋅ [𝜎𝑧 − 𝜇1 ⋅ (𝜎𝑥 + 𝜎𝑦)]
+ 1𝐾𝐹 ⋅ (1 − 𝐷𝑧) ⋅ (

𝑙1 + 𝑙2𝑙2 ) ⋅ 𝜎𝑧
𝜀𝑥𝑦 = 𝜏𝑥𝑦2𝐺1 ⋅

𝑙1 + 𝑙2𝑙1 + (𝜀2𝑆 + 𝜏𝑥𝑦2 − 𝜏𝑆 ⋅ (1 − 𝐷𝑥𝑦)
𝐾𝑆2 ⋅ (1 − 𝐷𝑥𝑦) )

⋅ 𝑙2𝑙1 + 𝑙2
𝜀𝑥𝑧 = 𝜏𝑥𝑧2𝐺1 ⋅

𝑙1 + 𝑙2𝑙1 + (𝜀2𝑆 + 𝜏𝑥𝑧2 − 𝜏𝑆 ⋅ (1 − 𝐷𝑥𝑧)𝐾𝑆2 ⋅ (1 − 𝐷𝑥𝑧) )
⋅ 𝑙2𝑙1 + 𝑙2

𝜀𝑦𝑧 = 𝜏𝑦𝑧2𝐺1 ⋅
𝑙1 + 𝑙2𝑙1 + (𝜀2𝑆 + 𝜏𝑦𝑧2 − 𝜏𝑆 ⋅ (1 − 𝐷𝑦𝑧)

𝐾𝑆2 ⋅ (1 − 𝐷𝑦𝑧) )

⋅ 𝑙2𝑙1 + 𝑙2

(30)

in which 𝐷𝑥, 𝐷𝑦, 𝐷𝑧 denote the damage variables of boom
and𝐷𝑥𝑦,𝐷𝑥𝑧,𝐷𝑦𝑧 denote the damage variables of panel.

2.6. Relationship between Boom Damage and Panel Damage.
For a plate subject to uniaxial loading (see Figure 4), the fol-
lowing requirements need to be satisfied:

𝐷𝑧 = 0
𝐷𝑥𝑧 = 𝐷𝑦𝑧 = 0 (31)

𝐷𝑥 = 𝐷𝑦. (32)

For the case in Figure 4, the isotropic property is still satisfied
in 𝑋𝑌 plane when 𝜏𝑥𝑦2 ≤ 𝜏2𝑆 ⋅ (1 − 𝐷𝑥𝑦). So the requirement
is as follows:

1 + 𝜇12𝐷𝐸1𝐷 = 12 ⋅ 𝐺1𝐷 . (33)

From (28), we have

12 ⋅ 𝐺1𝐷 =
12𝐺1 ⋅

𝑙1 + 𝑙2𝑙1 + 1
𝐾𝑆1 ⋅ (1 − 𝐷𝑥𝑦) ⋅

𝑙1 + 𝑙2𝑙2 . (34)

Substituting (10)–(13), (A.1), (32), and (34) into (33), then

1𝐸 ⋅ [𝜇 + ( 𝜇𝜇1 +
11 − 𝐷𝑥 ⋅ (1 −

𝜇𝜇1))]
= 1𝐸 ⋅ [𝜇 ⋅ (1 + 𝜇1)𝜇1 + 11 − 𝐷𝑥𝑦 ⋅

𝜇1 − 𝜇𝜇1 ] .
(35)

From (32) and (35), we have

𝐷𝑥𝑦 = 𝐷𝑥 = 𝐷𝑦. (36)

Similarly, For the plate in the 𝑋𝑍 plane, while 𝐷𝑥 = 0 and𝐷𝑥𝑦 = 𝐷𝑥𝑧 = 0
𝐷𝑥 = 𝐷𝑧 = 𝐷𝑥𝑧. (37)

For the plate in the 𝑌𝑍 plane, while𝐷𝑥 = 0 and𝐷𝑥𝑦 = 𝐷𝑥𝑧 =0
𝐷𝑦 = 𝐷𝑧 = 𝐷𝑦𝑧. (38)

In order to satisfy (36)–(38), then the following conclusions
are obtained:

𝐷𝑥 = 𝐷𝑥𝑦 + 𝐷𝑥𝑧
𝐷𝑦 = 𝐷𝑥𝑦 + 𝐷𝑦𝑧
𝐷𝑧 = 𝐷𝑥𝑧 + 𝐷𝑦𝑧.

(39)

Thus three damage variables𝐷𝑥𝑦,𝐷𝑦𝑧,𝐷𝑥𝑧 are independent.
2.7. Damage Evolution Equation. Based on hysteresis energy,
the damage evolutionmodel depends on three variables,𝐷𝑥𝑦,𝐷𝑥𝑧, 𝐷𝑦𝑧. Let us now consider the damage equation of the
first variable 𝐷𝑥𝑦. For the micromodel, the damage failure
of the materials is simulated by boom-panel structure. The
hysteresis loop is considered by the shear stress of panel𝜏𝑥𝑦2. The hysteresis loop for the panel of the micromodel is
shown in Figure 6. For this method, the same behavior of the
hysteresis loop remains in time when fatigue increases.

For each loop, the hysteresis energy of panel is

𝑊0 = 4 ⋅ (𝜏𝑥𝑦 − 𝜎𝑠2 ⋅ (1 − 𝐷𝑥𝑦)) ⋅ ( 1𝐾𝑆2 −
1𝐾𝑆1) ⋅

𝜎𝑠2
⋅ ( 𝑙1 + 𝑙2𝑙2 )4 .

(40)
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𝜏xy2

𝜀xy2

· (1 − Dxy)
· (1 − Dxy)

· (1 − Dxy)KS1

KS2𝜏2S

𝜀2S

Figure 6: The hysteresis loop for the panel in 𝑋𝑌 plane in the local
coordinate system.

The total hysteresis energy of panel is assumed as

𝑊𝑐𝑟 = 𝜔𝑐𝑟 ⋅ ( 1𝐾𝑆2 −
1𝐾𝑆1) ⋅

𝜎𝑠2 ⋅ ( 𝑙1 + 𝑙2𝑙2 )4 . (41)

Then the damage evolution equation is defined as

𝑑𝐷𝑥𝑦𝑑𝑁 = 𝛼 ⋅ (𝑊0/𝑊𝑐𝑟)𝑚(1 − 𝐷𝑥𝑦)𝛽

= 𝛼(𝜏𝑥𝑦 − (𝜎𝑠/2) ⋅ (1 − 𝐷𝑥𝑦))
𝑚

𝜔𝑚𝑐𝑟 ⋅ (1 − 𝐷𝑥𝑦)𝛽

= (𝜏𝑥𝑦 − (𝜎𝑠/2) ⋅ (1 − 𝐷𝑥𝑦))𝑚
𝜔∗𝑐𝑟 ⋅ (1 − 𝐷𝑥𝑦)𝛽

,

(𝜔∗𝑐𝑟 = 𝛼𝜔𝑚𝑐𝑟)

(42)

in which 𝛼, 𝛽,𝑚, and 𝜔𝑐𝑟 are material parameters.
Similarly, the damage evolution equation for the damage

variables 𝐷𝑥𝑧, 𝐷𝑦𝑧 can also be obtained. Then the damage
evolution equations of the micromodel for three damage
variables𝐷𝑥𝑦,𝐷𝑥𝑧,𝐷𝑦𝑧 are
𝑑𝐷𝑖𝑗𝑑𝑁 = 𝛼 ⋅ (𝑊0/𝑊𝑐𝑟)𝑚(1 − 𝐷𝑖𝑗)𝛽

= 𝛼(𝜏𝑖𝑗 − (𝜎𝑠/2) ⋅ (1 − 𝐷𝑖𝑗))
𝑚

𝜔𝑚𝑐𝑟 ⋅ (1 − 𝐷𝑖𝑗)𝛽

= (𝜏𝑖𝑗 − (𝜎𝑠/2) ⋅ (1 − 𝐷𝑖𝑗))𝑚
𝜔∗𝑐𝑟 ⋅ (1 − 𝐷𝑖𝑗)𝛽

,
(𝑖𝑗 = 𝑥𝑦, 𝑥𝑧, 𝑦𝑧) .

(43)

3. The Damage Mechanics-Finite
Element Method

The present damage mechanics model is implemented in the
commercial finite element software ANSYS. Computations
proceed as follows:

(1) Stress distribution of the structure is computed first in
order to find the critical element.

(2) The increment of damage extent Δ𝐷 of critical ele-
ment is given, Δ𝐷 = constant, and the magnitude of
damage extent increment will be checked by the con-
vergence verification.Then the corresponding fatigue
life increments Δ𝑁𝑥𝑦(𝑒), Δ𝑁𝑦𝑧(𝑒), and Δ𝑁𝑥𝑧(𝑒) of
critical element are

Δ𝑁𝑥𝑦 (𝑒) = 𝜔∗𝑐𝑟 ⋅ (1 − 𝐷𝑥𝑦)𝛽
[𝜏𝑥𝑦 − (𝜎𝑠/2) ⋅ (1 − 𝐷𝑥𝑦)]𝑚 ⋅ Δ𝐷

Δ𝑁𝑦𝑧 (𝑒) = 𝜔∗𝑐𝑟 ⋅ (1 − 𝐷𝑦𝑧)𝛽
[𝜏𝑦𝑧 − (𝜎𝑠/2) ⋅ (1 − 𝐷𝑦𝑧)]𝑚 ⋅ Δ𝐷

Δ𝑁𝑥𝑧 (𝑒) = 𝜔∗𝑐𝑟 ⋅ (1 − 𝐷𝑥𝑧)𝛽[𝜏𝑥𝑧 − (𝜎𝑠/2) ⋅ (1 − 𝐷𝑥𝑧)]𝑚 ⋅ Δ𝐷,

(44)

where the symbol in right parentheses (𝑒)means criti-
cal element and (𝑥) denotes other elements. Subscript
without parentheses 𝑥𝑦 means 𝑋𝑌 plane in the local
coordinate system.

(3) Then the minimum value Δ𝑁min(𝑒) is found and
defined as

Δ𝑁min (𝑒) = min {Δ𝑁𝑥𝑦 (𝑒) , Δ𝑁𝑦𝑧 (𝑒) , Δ𝑁𝑥𝑧 (𝑒)} . (45)

(4) From the damage evolution equation (43), the dam-
age variable increment of the elements can be
obtained when Δ𝑁min(𝑒) is known. The damage
extent increments of critical element are

Δ𝐷𝑥𝑦 (𝑒) = [𝜏𝑥𝑦 − (𝜎𝑠/2) ⋅ (1 − 𝐷𝑖)]𝑚
𝜔∗𝑐𝑟 ⋅ (1 − 𝐷)𝛽 ⋅ Δ𝑁min (𝑒) .

Δ𝐷𝑦𝑧 (𝑒) = [𝜏𝑦𝑧 − (𝜎𝑠/2) ⋅ (1 − 𝐷𝑖)]𝑚
𝜔∗𝑐𝑟 ⋅ (1 − 𝐷)𝛽 ⋅ Δ𝑁min (𝑒)

Δ𝐷𝑥𝑧 (𝑒) = [𝜏𝑥𝑧 − (𝜎𝑠/2) ⋅ (1 − 𝐷𝑖)]𝑚𝜔∗𝑐𝑟 ⋅ (1 − 𝐷)𝛽 ⋅ Δ𝑁min (𝑒) .

(46)

Then damage extent increments of other elements are

Δ𝐷𝑥𝑦 (𝑥) = [𝜏𝑥𝑦 − (𝜎𝑠/2) ⋅ (1 − 𝐷𝑖)]𝑚
𝜔∗𝑐𝑟 ⋅ (1 − 𝐷)𝛽 ⋅ Δ𝑁min (𝑒)

Δ𝐷𝑦𝑧 (𝑥) = [𝜏𝑦𝑧 − (𝜎𝑠/2) ⋅ (1 − 𝐷𝑖)]𝑚
𝜔∗𝑐𝑟 ⋅ (1 − 𝐷)𝛽 ⋅ Δ𝑁min (𝑒)

Δ𝐷𝑥𝑧 (𝑥) = [𝜏𝑥𝑧 − (𝜎𝑠/2) ⋅ (1 − 𝐷𝑖)]𝑚𝜔∗𝑐𝑟 ⋅ (1 − 𝐷)𝛽 ⋅ Δ𝑁min (𝑒) .

(47)
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(5) Modify the local coordinate system and material
properties of damaged elements according to (A.1).
The new stress field acting in the structure is deter-
mined via FE analysis. At the same time, the level of
damage is computed for each element:

𝐷𝑖𝑗 (𝑒𝑘+1) = 𝐷𝑖𝑗 (𝑒𝑘) + Δ𝐷𝑖𝑗 (𝑒𝑘) , (𝑖𝑗 = 𝑥𝑦, 𝑦𝑧, 𝑥𝑧)
𝐷𝑖𝑗 (𝑥𝑘+1) = 𝐷𝑖𝑗 (𝑥𝑘) + Δ𝐷𝑖𝑗 (𝑥𝑘) ,

(𝑖𝑗 = 𝑥𝑦, 𝑦𝑧, 𝑥𝑧)
(48)

in which 𝐷𝑖𝑗(𝑒) is the damage extent of critical ele-
ment and𝐷𝑖𝑗(𝑥) indicates the damage extent of other
elements.

(6) From (39), the damage variables𝐷𝑥,𝐷𝑦,𝐷𝑧 of boom
can be obtained when 𝐷𝑥𝑦, 𝐷𝑦𝑧, 𝐷𝑥𝑧 are known. The
process from steps (2) to (5) will be repeated until one
of the boom damage extents 𝐷𝑥, 𝐷𝑦, 𝐷𝑧 of critical
element is equal to 1. In this step, the failure of critical
element means crack initiation in the structure.

(7) Modify local coordinates and material properties of
the damaged element and recompute stress distribu-
tion by performing a new FE analysis. Determine the
next critical element.

(8) Repeat the process from (2) to (7), until the crack
length of the engineering structure is equal to 𝑎. The
corresponding fatigue life𝑁𝑎 with crack length 𝑎 is

𝑁𝑎 = ∑Δ𝑁min (𝑒) . (49)

4. Prediction of Fatigue Life

4.1. Smooth Specimen Made of 35Cr2Ni4MoA. The material
parameters in damage evolution equation are determined
with low-cycle fatigue experimental data of standard speci-
mens in [29]. The low-cycle fatigue curve Δ𝜀/2 − 2𝑁𝑓 of the
material 35Cr2Ni4MoAwith stress ratio𝑅 = −1 is considered
in this article. The material parameters of 35Cr2Ni4MoA are
expressed as follows: 𝐸 = 206.5GPa, 𝜇 = 0.377, and 𝐺 =75GPa. The material parameters in damage evolution equa-
tion are listed in Table 1. Numerical results and experimental
data are compared in Figure 7. The results derived from the
present model agree with the experimental observations very
well.

4.2. Notched Structure Made of 35Cr2Ni4MoA. In this sec-
tion, a notched structure of 35Cr2Ni4MoA in Figure 8 is
discussed while𝐾𝑇 > 1.The low-cycle fatigue life of the crack
initiation and propagation is predicted using the present
damage mechanics method. The mean fatigue crack life for
the structure of 35Cr2Ni4MoA is presented in Figure 9. The
crack propagation life curve for notched structure is shown
in Figure 10 with constant strain Δ𝜀/2 = 2.8𝐸 − 3.
4.3. Real Satellite Structure. In this section, a real satellite
structure of 5A06 in Figure 11 is investigated while 𝑅 = −1.

The low-cycle fatigue experimental curve
The results derived from the present method
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Figure 7: Comparison between FE results and experimental data for
material 35Cr2Ni4MoA.

ℎ = 100 mm

R = 1mm

t = 10 mm

Figure 8: Notched structure of 35Cr2Ni4MoA.

The material parameters in damage evolution equation are
listed in Table 2.

The finite element model of real satellite structure is
shown in Figure 11. In this paper, the fatigue crack propaga-
tion life of real satellite structure is predicted using the present
method and shown in Figure 12.

For the satellite structure, the experimental low-cycle
fatigue lifetime is as follows: Log𝑁𝑚 = 2.7604 when the
crack length 𝑎 = 4.875mm.

For the satellite structure, the computational low-cycle
fatigue lifetime is as follows: Log𝑁𝑚 = 2.7419 when the
crack length 𝑎 = 4.875mm.

The relative error between the calculated results and the
experimental data is 0.67%. Hence, the fatigue life prediction
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10−1

10−2

10−3

10−4

10−5

(Δ
𝜀/
2)

(m
m

/m
m

)

2Nf (times)
105104103102 106101

Figure 9: The mean fatigue crack initiation life curve for notched
structure.
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Figure 10: The crack propagation curve for notched structure.

Table 1:Material properties in damage evolution equation formate-
rial 35Cr2Ni4MoA with𝐾𝑇 = 1.
𝑚 𝜔∗𝑐𝑟/(Pa)𝑚 𝛽
1.05 4.10848𝐸11 1.05

for satellite structure is acceptable in the engineering applica-
tion.

Table 2:Material properties in damage evolution equation formate-
rial 5A06 with𝐾𝑇 = 1.
𝑚 𝜔∗𝑐𝑟/(Pa)𝑚 𝛽
1.0 2.4051𝐸10 1.0

un

Figure 11: The finite element model of satellite structure.

5. Conclusions

In this article, a new damage mechanics method is proposed
to predict the low-cycle fatigue life of metallic structures
under multiaxial loading:

(1) A microstructure mechanical model is proposed to
simulate the anisotropic damage failure. As themicro-
model depends on few material parameters, the
present method is very concise and suitable for
engineering application.

(2) Considering the hysteresis energy, the damage evolu-
tion equation is constructed.Thematerial parameters
are obtained by the low-cycle fatigue experimental
results of standard specimens.

(3) Based on the further development on theANSYSplat-
form, anisotropic elastoplastic damage mechanics-
finite element method is developed.

(4) The fatigue crack initiation and propagation life for
notched structure of 35Cr2Ni4MoA are predicted
using the present method.

(5) The fatigue crack growth life of a satellite structure is
predicted and the computational results fit well with
the experimental data.

Appendix

Substituting (8)–(14), (16), and (25) into (30), then the elasto-
plastic constitutive equations including damage are

𝜀𝑥 = 1𝐸1𝐷 ⋅ 𝜎𝑥 −
𝜇12𝐷𝐸2𝐷 ⋅ 𝜎𝑦 − 𝜇13𝐷𝐸3𝐷 ⋅ 𝜎𝑧

𝜀𝑦 = 1𝐸2𝐷 ⋅ 𝜎𝑦 −
𝜇21𝐷𝐸1𝐷 ⋅ 𝜎𝑥 − 𝜇23𝐷𝐸3𝐷 ⋅ 𝜎𝑧
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Figure 12: The crack propagation curve of satellite structure.

𝜀𝑧 = 1𝐸3𝐷 ⋅ 𝜎𝑧 −
𝜇31𝐷𝐸1𝐷 ⋅ 𝜎𝑥 − 𝜇32𝐷𝐸2𝐷 ⋅ 𝜎𝑦

𝜀𝑥𝑦 = [ 12𝐺 ⋅ ( 𝜇𝜇1 ⋅
1 + 𝜇11 + 𝜇 + 11 − 𝐷𝑥𝑦 ⋅

𝜇1 − 𝜇𝜇1 ⋅ (1 + 𝜇))

+ 2 ⋅ ( 1𝐾2 −
1𝐸) ⋅ 11 − 𝐷𝑥𝑦] ⋅ 𝜏𝑥𝑦 − 2 ⋅ (

1𝐾2
− 1𝐸) ⋅ 𝜏𝑆

𝜀𝑦𝑧 = [ 12𝐺 ⋅ ( 𝜇𝜇1 ⋅
1 + 𝜇11 + 𝜇 + 11 − 𝐷𝑥𝑦 ⋅

𝜇1 − 𝜇𝜇1 ⋅ (1 + 𝜇))

+ 2 ⋅ ( 1𝐾2 −
1𝐸) ⋅ 11 − 𝐷𝑥𝑦] ⋅ 𝜏𝑦𝑧 − 2 ⋅ (

1𝐾2
− 1𝐸) ⋅ 𝜏𝑆

𝜀𝑥𝑧 = [ 12𝐺 ⋅ ( 𝜇𝜇1 ⋅
1 + 𝜇11 + 𝜇 + 11 − 𝐷𝑥𝑦 ⋅

𝜇1 − 𝜇𝜇1 ⋅ (1 + 𝜇))

+ 2 ⋅ ( 1𝐾2 −
1𝐸) ⋅ 11 − 𝐷𝑥𝑦] ⋅ 𝜏𝑥𝑧 − 2 ⋅ (

1𝐾2
− 1𝐸) ⋅ 𝜏𝑆,

(A.1)

where
1𝐸1𝐷 =

1𝐸 ⋅ [ 𝜇𝜇1 + (1 −
𝜇𝜇1) ⋅

11 − 𝐷𝑥 ]
1𝐸2𝐷 =

1𝐸 ⋅ [ 𝜇𝜇1 + (1 −
𝜇𝜇1) ⋅

11 − 𝐷𝑦]

1𝐸3𝐷 =
1𝐸 ⋅ [ 𝜇𝜇1 + (1 −

𝜇𝜇1) ⋅
11 − 𝐷𝑧 ]

𝜇21𝐷 = 𝜇31𝐷 = 𝜇
𝜇/𝜇1 + (1 − 𝜇/𝜇1) ⋅ (1/ (1 − 𝐷𝑥))

𝜇12𝐷 = 𝜇32𝐷 = 𝜇
𝜇/𝜇1 + (1 − 𝜇/𝜇1) ⋅ (1/ (1 − 𝐷𝑦))

𝜇13𝐷 = 𝜇23𝐷 = 𝜇
𝜇/𝜇1 + (1 − 𝜇/𝜇1) ⋅ (1/ (1 − 𝐷𝑧)) .

(A.2)

Nomenclature

𝑙1: The geometrical length of elastic block𝑙2: The length of the boom-panel structure𝑎: The crack length𝐾𝐹: The elastic modulus of boom𝐸1: Young’s modulus of elastic block𝐺1: The shear modulus of elastic block𝜇1: Poisson’s ratio of elastic block𝐾𝑆1: The elastic shear modulus of panel𝐾𝑆2: The plastic shear modulus of panel𝜀2𝑆: The yield strain of panel𝜎𝑖𝑗, 𝜀𝑖𝑗: The stress tensor components and the strain
tensor components of the micromodel in
the local coordinate system, respectively𝜎𝑖𝑗1, 𝜀𝑖𝑗1: The stress tensor components and the strain
tensor components of elastic block in the
local coordinate system, respectively𝜎𝑖𝑗2, 𝜀𝑖𝑗2: The stress tensor components and the strain
tensor components of boom-panel structure
in the local coordinate system, respectively𝜎0𝑖𝑗, 𝜀0𝑖𝑗: The stress tensor components and the strain
tensor components in the global coordinate
system, respectively𝐷𝑥, 𝐷𝑦, 𝐷𝑧: The damage variables of boom𝐷𝑥𝑦, 𝐷𝑦𝑧, 𝐷𝑥𝑧: The damage variables of panel𝐸: Young’s modulus𝐾2: The plastic modulus𝐺: The shear modulus𝜇: Poisson’s ratio.
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