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InGaAs integration on Si substrates is an important topic for next generation electronic devices. Rapid melt growth (RMG) has the
potential to grow defect-free lattice mismatched materials on Si at low cost. Most previous publications have focused on growing
binary III–V compounds by RMG, but none have discussed ternary compound materials. In this paper, we demonstrate the RMG
of the single crystal ternary compound InGaAs on Si substrates.We discuss twomain issues.The first is segregation along the stripe
length. An analytical model is developed to describe the segregation of In/Ga in the grown stripe and the model is compared with
experimental data. The second issue is the dissolution of the Si seed region during RMG, which leads to formation of Si islands
inside the InGaAs stripe. The results of this study are applicable to any compound material in which Si is soluble at the elevated
temperatures required for RMG.

1. Introduction

As the scaling of Si devices has become more challeng-
ing, researchers have been searching for alternative channel
materials to enhance Si capabilities [1]. InGaAs has attracted
a lot of attention [2] due to its high mobility and low
leakage current. Integrating InGaAs on Si [3] could allow
novel functionalities like optoelectronics on low cost Si
substrates. There have been several approaches to integrate
InGaAs on Si, but most of them are not easily applicable
to large-scale manufacturing. For instance, direct epitaxial
growth of large area InGaAs on Si [4] requires a thick buffer
layer to attempt to accommodate lattice mismatches. This
complicates integrating InGaAs devices with underlying Si
devices. Wafer bonding uses expensive III–V substrates that
are not compatible with large diameter Si wafers [5]. Local
epitaxial growth in small seed holes [6, 7] can help to confine
defects due to lattice mismatch but this method has not
yet been applied to large-scale manufacturing. RMG, on the
other hand, can avoid many of the disadvantages of the above
techniques by terminating the defects generated by lattice
mismatch to a confined neck region near a seed window [8].
To date, many publications have successfully demonstrated

high quality materials [9–11] grown on Si by RMG. However,
no publications have described the RMG of any ternary
compound materials such as InGaAs.

In this study, we conduct RMG experiments on amor-
phous InGaAs samples deposited on an insulator with a
small seed window to the Si substrate and study their crystal
quality by Electron Backscatter Diffraction (EBSD). The
segregation behavior of In/Ga atoms and Si dissolution from
the seed in the RMG stripe were measured by Auger Electron
Spectroscopy (AES). The Si dissolution from the seed is
similar to that shown previously for Ge stripes [12] but is
exacerbated by the low eutectic melting temperature between
III–V materials and Si.

2. Materials and Methods

Toprepare the sample substrates, we deposited approximately
50 nm thick silicon nitride films by Low Pressure Chemical
Vapor Deposition (LPCVD) on clean Si (100) substrates.
Positive photoresist was then coated, exposed, and developed
to pattern 4𝜇m × 6 𝜇m seed windows. Plasma etching was
then used to remove the top 40 nm silicon nitride film
in seed windows, followed by hot phosphoric acid etch
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Figure 1: (a) SEM image of RMG InGaAs. Dark regions in the white circle are Si islands. (b) EBSD image of the crystal orientation. (c) EDS
map for As element of the same InGaAs stripe. (d) EDS map for Ga element of the same InGaAs stripe. (e) EDS map for In element of the
same InGaAs stripe. (f) Misorientation distribution of the InGaAs stripe.

to remove the remaining 10 nm of nitride to expose the
underlying Si seed. We deposited 100 nm thick amorphous
In
0.27

Ga
0.2
As
0.53

films by molecular beam epitaxy (MBE) and
the amorphous quality was verified by in situ reflection high-
energy electron diffraction (RHEED) patterns. We patterned
the InGaAs films into 2 𝜇m × 10, 25, and 45 𝜇m stripes
using the same positive photoresist process used for the
seed windows followed by plasma etching the stripes with
chlorine chemistries. The whole structure was then capped
with a 1 𝜇m thick LPCVD SiO

2
layer. Melt growth was

performed in a standard rapid thermal process tool in a
nitrogen ambient.The samples were heated at a rate of 20∘C/s.
Once the sample temperature reached the highest annealing
temperature of 1145∘C, it was held for 1 second before cooling
down. Cooling rates of 15∘C/s, 30∘C/s, 50∘C/s, and 100∘C/s
were used. AES was used to measure the composition of
different elements near the sample surface. AESmeasures the
concentration by detecting the kinetic energy and intensity
of the Auger peaks. The resolution of the AES system was
around 8 nm. EBSD inverse pole figure maps were generated
to visualize the crystal orientation of the sample. EBSD
measures the orientation by identifying the Kikuchi bands

from the diffracted electron beam from the sample surface.
The resolution of EBSD is about 500 nm.

3. Results and Discussion

The annealed InGaAs stripes were characterized by Electron
Backscatter Diffraction (EBSD) [13] to check their crystal
quality. Figure 1(a) shows the equivalent SEM picture of the
measured stripe. The dark regions in the stripe are the Si
islands. Figure 1(b) is the EBSDmap of an InGaAs stripe after
RMG. The uniform red color of the stripe suggests that the
InGaAs is (100) orientated single crystal.

Figures 1(c), 1(d), and 1(e) are the energy-dispersive X-
ray spectroscopy (EDS) maps of As, Ga, and In atoms. It
can be seen that Ga is heavily concentrated at the front
of the stripe near the seed region and In atoms segregate
towards the end of the stripe. The nonuniform distribution
of In and Ga atoms suggests a segregation effect similar to
SiGe RMG [12]. The misorientation distribution of the same
InGaAs stripe is shown in Figure 1(f). It can be seen that
most misorientation angles appeared between 0∘ and 9∘. The
maximummisorientation angle is 9∘.
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Figure 2: (a) Phase diagram of InGaAs. (b) Segregation coefficient is a linear function of indium solid concentration from phase diagram.

The segregation effects can be understood by considering
the InGaAs phase diagram. InGaAs has a pseudobinary phase
diagram [14], where InAs and GaAs can form a solid solution
at any concentration. Figure 2(a) shows the lens-shaped
phase diagram of InGaAs, which suggests that the modeling
approach previously used for Si/Ge segregation can also be
applied to InGaAs. We develop an analytical solution similar
to the SiGe RMG case [12] to calculate the segregation for any
given initial concentration.

Thedifferential formof the Scheil equation [15] is adopted
here rather than the Scheil equation itself, since the seg-
regation coefficient is not a constant. Equation (1) shows
the differential form of the Scheil equation. 𝑥

𝐿
represents

the average liquid concentration in the melt and 𝑥
𝑆
is

the solid concentration at the liquid/solid interface during
crystallization. 𝑓

𝑆
is the fraction of the stripe.

(𝑥
𝐿
− 𝑥
𝑆
) 𝑑𝑓
𝑆
= (1 − 𝑓

𝑆
) 𝑑𝑥
𝐿
. (1)

Assuming that equilibrium exists at the liquid/solid interface,
the average liquid concentration 𝑥

𝐿
at any time can be

represented by the solid concentration at the growth front 𝑥
𝑆

in the following equation:

𝑥
𝐿
=
𝑥
𝑆

𝑘
. (2)

The variable segregation coefficient 𝑘 is represented by Ga
concentration at the solidus line using linear regression as
shown in Figure 2(b) and in the following equation:

𝑘 (𝑥
𝑆
) = 𝑎𝑥

𝑆
+ 𝑏 (𝑎 = 0.90, 𝑏 = 0.11) . (3)

By inserting (2) and (3) back into formula (1), the differential
equation can be solved as follows:

1 − 𝑓
𝑆

= (
𝑥
𝑜

𝑥
𝑆

)

1/(1−𝑏)

(
𝑎𝑥
𝑆
+ 𝑏

𝑎𝑥
𝑜
+ 𝑏
)(
1 − 𝑏 − 𝑎𝑥

𝑆

1 − 𝑏 − 𝑎𝑥
𝑜

)

𝑏/(1−𝑏)

.

(4)

Equation (4) is the analytical solution of the complete
mixing model, where 𝑥

𝑜
is In concentration in the first

solidified part of the stripe.
Figure 3 shows a comparison between themodel andAES

measured data. It can be seen that the completemixingmodel
(4) agrees with the experimental data. Figure 3(a) shows that
the composition profiles are the same for different stripe
lengths when the data is plotted against a normalized stripe
length, as predicted in (4). Figure 3(b) shows the composition
profiles of 25 𝜇m long stripes at different cooling rates. All
cooling rates result in the same profiles, which suggests that,
for short stripe lengths, the profile cannot be modulated by
cooling rates. The variation of the data points is likely caused
by the Si islands inside the stripes.

Earlier in the paper, in Figure 1(a), we observed small dark
regions embedded in the InGaAs stripes. A higher resolution
SEM image of one such dark region and AES measurements
are shown in Figure 4. Point 1 is measured in the brighter part
of the stripe and is seen to be In

𝑥
Ga
1−𝑥

As. Point 2 ismeasured
in the darker part of the stripe and is seen to be purely Si.
This indicates that, for the experimental conditions used in
this study, a large amount of Si dissolved from the seed has
precipitated into Si grains. The Si signal detected at point 1 is
from residual SiO

2
.
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Figure 3: Plots of experimental data and model. (a) shows the InAs composition versus stripe fraction for different stripe length when the
initial material is In

0.27
Ga
0.2
As
0.53

. (b) shows the InAs composition versus stripe fraction for different cooling rate when the initial material is
In
0.27

Ga
0.2
As
0.53

.
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Figure 4: SEM image showing that dark region and bright region coexist in InGaAs stripe after RMG. The data shows the compositions of
the two color contrast regions.

The reason for the significant Si dissolution can be seen
in Figure 5, which is a typical phase diagram for III–V
materials and Si. Per the phase diagram, Si and GaAs are
completely miscible in the liquid phase. Thus, Si from the
substrate will dissolve in the molten GaAs during RMG.
During subsequent cooling, due to the low solubility of Si
and GaAs in the solid phase below the eutectic temperature,
the dissolved Si will phase-segregate and crystallize as a
second phase. The Si islands can obviously adversely affect
the electronic properties of the III–Vmaterial and the crystal
quality. Our work on eliminating these Si islands from III–V

stripes produced by RMG will be described in a subsequent
paper.

4. Conclusion

In summary, we demonstrate the rapid melt growth of single
crystal InGaAs.We studied the segregation effect of In andGa
atoms and developed a complete mixing model that agrees
well with the experimental data. Si islands were found in
the grown InGaAs materials as a result of eutectic melting
and precipitation of Si which needs to be eliminated if RMG
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Figure 5: Ga-As-Si phase diagram [16] is chosen as a typical phase
diagram for III–V-Si system.

III–V materials are to be used to fabricate high performance
devices.
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