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The curved pipe made of functionally graded material conveying fluid is considered and the in-plane free vibration frequency of
the resulting composite pipe is investigated. The material properties are assumed to distribute continuously along the pipe wall
thickness according to a power law and the effective mass, flexural rigidity, and mass ratio are used in the governing equations.
The natural frequencies are derived numerically by applying the modified inextensible theory. The lowest four natural frequencies
are studied via the complex mode method, the validity of which is demonstrated by comparing the results with those in available
literatures. A parametric sensitivity study is conducted by numerical examples and the results obtained reveal the significant effects
of material distribution gradient index, flow velocity, fluid density, and opening angle on the natural frequencies of the FGM curved
pipes conveying fluid.

1. Introduction

Over the past decades, a great deal of effort has been devoted
to the examination of vibrational properties of macro and
micro/nanopipes and cylindrical shells conveying fluid due
to their significance of academic research and engineering
application. Although the straight and planar curved pipes
are generally deemed as the most basic structures for con-
veying fluid, up to now, most of the existing literatures are
still concernedwith the dynamical study of straight pipes.The
main reason is that the simplicity of a straight configuration
results in convenience of modeling and solution, and the
dynamical behaviors in a certain direction may reflect the
mechanical nature of a straight pipe due to the perfect sym-
metry in geometrymorphology. In contrast, the curved pipes
conveying fluid have not achieved much attention as straight
ones, reasonably because the complicated configuration of a
curved pipe requires more variables to describe the state of
motion. Further, both in-plane and out-of-plane oscillations
should be taken into account as they are completely distinct
dynamical behaviors, unlike a straight pipe. In the sense
of engineering practice, a curved pipe has a more flexible

geometric configuration tomeet the demands of surrounding
structures, which leads to a broader application of fluid-
conveying curved pipes than straight ones.

Research work on dynamics of a curved pipe conveying
fluid was originated in the 1970s, and it has just experienced
a brief history of less than 50 years so far. In the early studies,
attentions were mainly concentrated on the linear aspect of
this dynamical problem. In 1972, Chen [1, 2] proposed a
linearmodel for analysis of in-plane vibration of cantilevered,
supported curved pipes conveying fluid with inextensible
axis theory. One year later, Chen [3] extended his model to
the analysis of out-of-plane vibration. However the results
obtained in his work did not reveal the dynamical distinction
of curved pipes from straight ones. To improve the model of
Chen, Misra et al. [4, 5] developed a modified inextensible
theory, in which the combined axial force was considered, to
examine the linear characteristics of curved pipes conveying
fluid. It was found that the curved pipes with supported
endsmay exhibit different instability feature from the straight
pipes. Päıdoussis [6] later summarized the dynamical anal-
ysis of a curved pipe conveying fluid, involving linear and
nonlinear investigations, in his academic work. Ni et al. [7]
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and Wang and Ni [8] focused on nonlinear behaviors,
especially the bifurcations and chaotic motions of a fluid-
conveying curved pipe subjected to nonlinear constraints and
harmonic excitation. Their research not only demonstrated
the existence of chaotic motions, but also pointed out that
the route to chaos for the curved pipe is through period-
doubling bifurcations. Recently, Ni et al. [9] presented a
nonlinear study on the parametric resonance of a curved pipe
conveying pulsating fluid, and the results obtained were in
good agreement with the experimental results by literature.
Meanwhile, Ni et al. [10] performed the analysis on the
forced vibration of fluid-conveying curved pipes resting on
a nonlinear elastic foundation under external excitation. It
showed that the excitation amplitude, material damping, and
foundation stiffness all can greatly affect the steady-state
responses of the system. In addition, Zhai et al. [11] provided
a means of random vibration analysis for the curved pipes
conveying fluid with a Timoshenko curved beam model.
Tang et al. [12], Xia and Wang [13], and Ghavanloo et al.
[14] attempted to apply the theories associated with curved
macro pipes and shells into vibrational analysis of curved
micro/nanopipes conveying fluid, and the significant effects
of small scale on the dynamical properties of the curved pipe
were revealed in their studies.

Even though there have been some theoretical and exper-
imental achievements of study on the dynamics of curved
pipes conveying fluid, the models heretofore available are
confined to the homogeneous materials, which may result in
a serious limit of theoretical contributions on the engineering
practice. Actually, a new conception of employment of com-
posites has been advanced towards fluid-conveying pipes.
A representative example is concerned with the laminated
structures. An extensive research on dynamical behaviors
of laminated pipes or cylindrical shells conveying fluid was
performed by Chang and Chiou [15], Xi et al. [16], Sharma et
al. [17], Toorani and Lakis [18], Kochupillai et al. [19], Kadoli
and Ganesan [20], Alijani and Amabili [21], and Ray and
Reddy [22]. However as is known, there always exists a fatal
flaw in laminated structures that the interface between layers
may easily be subjected to cracks as the material property
of a certain layer is different from that of adjacent ones. In
order to deal with this problem, in the 1980s, the conception
of functionally graded materials (FGMs) was introduced.
Subsequently, comprehensive attentionwas paid to the FGMs
due to their superior performance in resisting high tem-
perature gradients and eliminating the stress concentration
of a common composite [23–26]. Particularly, in compari-
son with laminated composites, the FG structures possess
a continuous variation of the material properties in the
thickness direction and thus give rise to a so-called thickness
stretching effect [27–31], which reveals that the transverse
displacement of the FG structures is variational through the
thickness, especially for thick structures, instead of a constant
as in the conventional composite theories. In view of this,
in several reports, a FGM beam model was established to
predict the dynamical behaviors of fluid-conveying pipes or
cylindrical shells. Sheng and Wang [32, 33] first studied the
thermomechanical vibration of a fluid-conveying shell based
on a FGMmodel. It was found that the material composition

and distribution had great effect on the free vibration and
dynamic response of the system. Shen et al. [34] conducted an
analysis of beam-mode stability of fluid-conveying shells with
a periodic FGM model. The results showed that the critical
flow velocity can be raised and the stress concentration can
be effectively reduced by introducing this model. Setoodeh
and Afrahim [35] and Ansari et al. [36] extended the FGM
model to micropipes and microshells conveying fluid and
found that the material property distribution can also make
huge impacts on the natural frequency and critical flow
velocity of micro structures conveying fluid, whereas, in
the aforementioned researches, the models considered were
confined to straight pipes, which were the simplest system
conveying fluid and generally inappropriate for a complex
structure with special geometrical configuration. To the best
of the authors’ knowledge, there is no investigation available
on the dynamics of a fluid-conveying curved pipe based
on FGM models, and it remains unclear how the material
properties influence the vibrations of fluid-conveying curved
structures.

This study aims to explore the in-plane free vibration
frequency of a FGM curved pipe conveying fluid by the
complex mode method. Under the assumption that the
material properties vary continuously along the pipe wall
thickness according to power law distribution, the equation
governing in-plane vibration is obtained by introducing the
effective mass, flexural rigidity, and mass ratio into the
conventional equation by Misra et al. [4]. A typical clamped-
clamped end condition is taken into account and the natural
frequencies are calculated via the complex mode method.
Numerical examples are employed to carry out a parametric
sensitivity study and the effects of material distribution
gradient index and some key parameters on the free vibration
of the FGM curved pipes conveying fluid are discussed
in detail. The present work may extend the application of
FGMs in complicated fluid-conveying structures and provide
theoretical supports and technical reserves for the solution to
the vibration-induced failure of composite pipes conveying
fluid in chemical engineering and energy systems.

2. Mechanical Model and Material Property

The system under consideration is depicted in Figure 1. It
comprises a planar FGM curved pipe of centerline radius
𝑅, opening angle 𝛼, a uniform annular cross section with
inner and outer radii 𝑟i and 𝑟o, respectively, effective mass
per unit length𝑚eff and effective flexural rigidity (𝐸𝐼)eff , and
an incompressible plug flow conveyed with a mass per unit
length 𝑀, constant velocity 𝑈, and pressure 𝑝. Variable 𝜙
is the angular coordinate of the pipe centerline and 𝑟 and 𝜃
are the radial and angular coordinates of the cross section,
respectively. In the present study, two types of materials,
namely, ceramic and metal, are considered to distribute,
respectively, in the inner and outer surfaces of the FGM pipe.
Thus, the effective material property of the pipe, Γeff , can be
expressed as

Γeff = Γin𝑉in + Γout𝑉out,

𝑉in + 𝑉out = 1,
(1)
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Figure 1: Mechanical model of a FGM curved pipe conveying fluid: (a) longitudinal-sectional view and (b) enlarged view of cross section.

where Γin and Γout denote the properties of the inner and outer
materials, respectively, and𝑉in and𝑉out are the corresponding
volume fractions. For the FGM curved pipe considered, 𝑉in
can be expressed according to the power law as

𝑉in (𝑟, 𝑘) = (
𝑟o − 𝑟

𝑟o − 𝑟i
)

𝑘

, (2)

where 𝑘 is the power gradient index of the volume fraction of
the inner material.The effective mass density 𝜌eff and Young’s
modulus 𝐸eff are then given by

𝜌eff (𝑟, 𝑘) = 𝜌in𝑉in (𝑟, 𝑘) + 𝜌out𝑉out (𝑟, 𝑘) ,

𝐸eff (𝑟, 𝑘) = 𝐸in𝑉in (𝑟, 𝑘) + 𝐸out𝑉out (𝑟, 𝑘) .
(3)

The effective mass, flexural rigidity, and mass ratio can be,
respectively, calculated by

𝑚eff (𝑘) = 2𝜋∫
𝑟o

𝑟i

𝜌eff (𝑟, 𝑘) 𝑟 d𝑟, (4)

(𝐸𝐼)eff (𝑘) = ∫
2𝜋

0

∫

𝑟o

𝑟i

𝐸eff (𝑟, 𝑘) 𝑟
3sin2𝜃 d𝑟 d𝜃, (5)

(𝑀𝑟)eff (𝑘) = (
𝑀

𝑀 +𝑚eff (𝑘)
)

1/2

. (6)

3. Governing Equation and Solution

By applying the modified inextensible theory, the equation
governing in-plane vibration of a fluid-conveying curved pipe
made of a single homogeneous material (without external
liquid) can be derived as [4]
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(7)

where 𝐸𝐼, 𝑚, and 𝑇 stand for the flexural rigidity, mass per
unit length, and axial tension of the curved pipe, respectively,
𝐴 f stands for the flow cross-sectional area, and 𝑤, V, 𝑠,
and 𝑡 stand for the in-plane tangential displacement, radial
displacement, curvilinear coordinate, and time variable,
respectively. Furthermore, by inextensible theory [1], the
radial and tangential displacements possess the following
relation:

V = 𝑅
𝜕𝑤

𝜕𝑠
. (8)

The relation between angular and curvilinear coordinates can
be given as

𝜙 =
𝑠

𝑅
. (9)

By considering (8) and (9) in conjunction with the effective
mass per unit length and effective flexural rigidity of FGM
pipes determined by (4) and (5), we can obtain the following
sixth-order partial differential equation of 𝑤 for a FGM
curved pipe conveying fluid:
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The following dimensionless variables and parameters are
introduced:

𝜂 =
𝑤

𝑅
,

𝜁 =
𝜙

𝛼
,

𝜏 = [
(𝐸𝐼)eff
𝑀+𝑚eff

]

1/2
𝑡

𝑅2
,

𝑢 = [
𝑀

(𝐸𝐼)eff
]

1/2

𝑅𝑈,

Π
∘
=
(𝑝𝐴 − 𝑇)𝑅

2

(𝐸𝐼)eff
.

(11)

Substituting (6) and (11) into (10), we can yield the following
dimensionless governing equation:
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The clamped-clamped end condition demands
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It should be noted that, in (12),Π∘ is the steady-state com-
bined axial force associated with the modified inextensible
theory, which consists of fluid pressure and axial tension of
the pipe and depends on dimensionless fluid flow velocity,
in addition to the gravity loading and the orientation of the
pipe. In the conventional inextensible theory, Π∘ is usually
neglected. The effect of internal flow on the eigenfrequencies
manifests itself via the centrifugal and Coriolis forces. In the
modified inextensible theory, whereΠ∘ is taken into account,

the internal flow exerts only a Coriolis force [14]. If both ends
of the pipe are supported and the gravity effect is neglected,
Π
∘
= −𝑢

2 [4] and so the terms associated with the initial
forces cancel out those arising from the centrifugal force.

In this paper, we employ a convenient but efficient
approach, named complex mode method, to solve (12). A
complex mode is adopted instead of the real one to generate
a phase difference of the vibration nodes. This is particularly
suitable for the analysis of vibrations with moving nodes,
which always occurred in axially moving continua and fluid-
conveying pipes.

In order to implement the complex mode method, firstly,
we assume that the 𝑛th-order solution of (12) has a complex
form as

𝜂𝑛 (𝜁, 𝜏) = 𝐵𝑛 (𝜁) e
i𝜔
𝑛
𝜏
, (14)

where 𝜔𝑛 and 𝐵𝑛(𝜁) are the 𝑛th dimensionless circular
natural frequency and the corresponding mode function,
respectively. If the 𝑛th natural frequency of the system is
denoted by 𝑓𝑛, 𝜔𝑛 can be given by
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Substitutions of (14) into (12) and (13) yield
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Equation (16) is a homogeneous ordinary differential equa-
tion with sixth order, the solution of which can be written as

𝐵𝑛 (𝜁) = 𝐶1𝑛 (e
id
1𝑛
𝜁
+ 𝐶2𝑛e

id
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𝜁
) ,

(18)

where 𝐶𝑗𝑛, 𝑗 = 1∼6, are six unknown constants depending on
the boundary conditions andd𝑗𝑛, 𝑗= 1∼6, satisfy the following
characteristic equation:
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Substitute (18) into (17); we get a series of equations with
respect to 𝐶1𝑛∼𝐶6𝑛 as follows:
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To obtain a nontrivial solution of the above equations,
the determinant of the coefficient matrix must be zero. Based
on this condition and (18)∼(20), we can calculate the circular
natural frequency 𝜔𝑛 and mode function 𝐵𝑛(𝜁) numerically.
The 𝑛th-order solution of (12) is then expressed as
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4. Numerical Results and Discussion

4.1. Validation of the Present Method. Before applying to
solve the present problem, in this section, the validity of
the complex mode method will be first confirmed through
comparing some results with that in the literatures. Owing
to the absence of an available report regarding FGM curved
pipes conveying fluid, the present FGM model is herein
simplified to amodel made of a single homogeneousmaterial
(by setting the power gradient index 𝑘 to zero or infinity)
to perform the validation. Figure 2 shows the comparison
of the lowest four dimensionless natural frequencies cal-
culated by the complex mode method with those by the
finite element method (FEM) of [4], in which the values of
opening angle and mass ratio are 𝛼 = 𝜋 and 𝑀𝑟 = 0.71,
respectively. It can be seen that the results obtained by the two
techniques are in very good agreement, which demonstrates
the effectiveness of the complex mode method. Besides, we
can find that the complex mode method has a relatively
simple process of solution for higher-order partial differential
equations and the calculation is not too much. This also
indicates the convenience of the complex mode method
in dealing with the dynamic problem of axially moving
systems.

4.2. Numerical Example. The geometric size of the curved
pipe is taken as 𝑅 = 0.5m, 𝛼 = 𝜋, 𝑟i = 6.4mm, and
𝑟o = 7.4mm. Referring to [32], Zirconia and Aluminum
are, respectively, taken as the ceramic and metallic materials
distributed in the inner and outer surfaces of the FGMcurved
pipe and the values of the related physical parameters are
given as 𝜌Zir = 3000 kg/m

3 and 𝐸Zir = 151GPa for Zirconia
and 𝜌Al = 2707 kg/m

3 and 𝐸Al = 70GPa for Aluminum. The
fluid conveyed inside the pipe isWaterwith𝜌w = 1000 kg/m

3.
Figures 3(a)–3(d) show the lowest four natural frequen-

cies of the FGM curved pipes conveying fluid as functions of
flow velocity for different values of power gradient index 𝑘.
It can be concluded that the effect of power gradient index
on the free vibration of the FGM pipes is significant. The
four natural frequencies all decrease as 𝑘 increases, especially
for small values of 𝑘, and the natural frequencies of higher-
mode vibrations have a greater change than those of lower-
mode ones. Actually, when the value of 𝑘 varies from 0 to∞,
the curved pipe may gradually change from a fully ceramic
pipe to a fully metallic one, which leads to a more flexible
structure. In order to better elucidate the impact of material
distribution gradient index, a further detailed analysis is
illustrated in Figure 4, which describes the fundamental
frequency (the first natural frequency) of the FGM curved
pipes as a function of 𝑘 for a specified flow velocity 𝑈 =

120m/s. The results of other natural frequencies have the
similar tendency with that of the fundamental frequency. As
can be seen in Figure 4, the variation of the fundamental
frequency has grown slower with 𝑘 increasing.The frequency
is subjected to a sharp decrease as 𝑘 increases for 𝑘 < 4.When
𝑘 > 4, the frequency has little change as 𝑘 increases, and it
is close to the value of a metallic curved pipe. This indicates
that the material property has obvious effect on the free
vibration of FGM curved pipes conveying fluid only as 𝑘 is
small.
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Figure 2: The lowest four dimensionless natural frequencies of a single homogeneous curved pipe conveying fluid as functions of
dimensionless flow velocity for 𝛼 = 𝜋 and𝑀𝑟 = 0.71.
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Figure 3: The lowest four natural frequencies of the FGM curved pipes conveying fluid as functions of flow velocity for different values of
power gradient index: (a) 1st mode; (b) 2nd mode; (c) 3rd mode; (d) 4th mode.
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Figure 5: The lowest four natural frequencies of the FGM curved
pipes conveying fluid as functions of fluid density for 𝑈 = 120m/s
and 𝑘 = 1.

Another important phenomenon should be mentioned
here that in both of Figures 2 and 3, unlike the conventional
supported curved pipe, in which the combined axial force is
neglected, the effect of flow velocity on the natural frequen-
cies is not evident, particularly for those from the second
to the fourth mode, and the natural frequencies sometimes
increase with the flow velocity increasing (under critical
flow velocity), as displayed in Figures 2, 3(b), and 3(d). It
is reasonably because the combined axial force appears in
the present model, which results in a stiffer structure of the
curved pipes.

As the inner surface of FGM pipes is generally made of
excellent materials, the FGM pipes can be used to transport
various fluids. Figure 5 reveals the influence of fluid density
on the lowest four natural frequencies of FGM curved pipes
conveying fluid for specified values of 𝑈 = 120m/s and
𝑘 = 1. The results of several common liquids, namely,
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Figure 6: The lowest four natural frequencies of the FGM curved
pipes conveying fluid as functions of opening angle for𝑈 = 120m/s
and 𝑘 = 1.

Gasoline, Water, Vitriol, Bromine, and Mercury, are marked
in the figure. It is clear that the natural frequencies decrease
as the fluid density increases. The reason is that increasing
fluid density means to increase the inertial and Coriolis
forces, which leads to a more flexible and unstable structure.
Additionally, the variation of natural frequencies becomes
slow with the fluid density increasing, and further the natural
frequencies of higher-order modes have a stronger change
than those of lower-order modes.

Figure 6 exhibits the lowest four natural frequencies as
functions of the opening angle of the FGM curved pipes.
It can be observed that the natural frequencies decrease as
the opening angle increasing, especially for small values of
opening angle and higher-ordermodes. In fact, for a specified
value of centerline radius 𝑅, increasing opening angle leads
to increasing the span length of the curved pipe, which
consequently results in amore flexible and unstable structure.
In this sense, the fluid density and opening angle have a
similar effect on the free vibration of the FGM curved pipes
conveying fluid.

5. Conclusions

In this investigation, a FGM model consisting of ceramic
and metallic materials is considered to apply in curved pipes
conveying fluid and the in-plane free vibration frequency
of the resulting composite pipe is explored by the complex
mode method. According to the analysis, some significant
and interesting conclusions have been drawn as follows:

(i) If the material properties are distributed along the
pipe wall thickness according to a power law, then
the power gradient index may be a key parameter
affecting the natural frequencies of the FGM curved
pipe. The contribution of the power gradient index is
prominent as it has small value.
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(ii) In the presence of the combined axial force, the
impact of internal fluid on the natural frequencies is
not so strong as comparedwith the traditionalmodels
without the combined axial force.

(iii) The mass density of the fluid conveyed and the
opening angle of the FGM curved pipes have similar
effects on the natural frequencies of the system; that is,
increase of the parameter values may lead to decrease
of the natural frequencies. Higher values of mass
density weaken the stability of the system during
vibrations, especially for small parameter values and
higher-order modes.
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[4] A. K. Misra, M. P. Päıdoussis, and K. S. Van, “On the dynamics
of curved pipes transporting fluid. Part I: inextensible theory,”
Journal of Fluids and Structures, vol. 2, no. 3, pp. 221–244, 1988.
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