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Addressing the problem of two-dimensional steady-state thermal boundary recognition, a hybrid algorithm of conjugate gradient
method and social particle swarm optimization (CGM-SPSO) algorithm is proposed. The global search ability of particle swarm
optimization algorithm and local search ability of gradient algorithm are effectively combined, which overcomes the shortcoming
that the conjugate gradient method tends to converge to the local solution and relies heavily on the initial approximation of the
iterative process. The hybrid algorithm also avoids the problem that the particle swarm optimization algorithm requires a large
number of iterative steps and a lot of time. The experimental results show that the proposed algorithm is feasible and effective in
solving the problem of two-dimensional steady-state thermal boundary shape.

1. Introduction

As a branch of the inverse problem of heat transfer, inverse
geometrical problem [1] of heat conduction has a broad
application prospect in industrial equipment testing, non-
destructive testing [2], geometry optimization [3], biological
lesions [4], and other fields. Two-dimensional steady-state
space is first discretized in inverse geometrical boundary of
the heat transfer system, and discretization methods mainly
include finite differencemethod [5] (FDM) and finite element
method [6] (FEM) and boundary elementmethod [7] (BEM),
which can be used for solving heat transfer problems, invert-
ing the geometric boundary through various optimization
techniques on the basis of solving the forward problem.
Inversion methods based on optimization techniques can
be divided into gradient-based optimization algorithms and
nongradient optimization algorithms. Gradient optimization
algorithmmainly includes the conjugate gradient method [8]
(CGM), Levenberg-Marquardt method [9] (L-MM) and the
steepest descent method [9] (SDM), and nongradient opti-
mization algorithm mainly includes genetic algorithm [10]
(GA), neural network algorithm [11] (NNM), particle swarm
optimization (PSO) [12], and so forth.

CGM, L-MM, SDM, and other gradient-based optimiza-
tion algorithms are the main algorithms to study the inverse
problem of heat transfer and are applied to the study of
geometric inverse problems of heat transfer. Carey et al. [13]
studied the parallel conjugate gradient solution of the sparse
systemproduced by the least squares combined finite element
method, which showed that the algorithm was suitable for
convection diffusion equation and fixed Navier-Stokes equa-
tions. Tarzanagh et al. [14] proposed a new derivative-free
preconditioned conjugate gradient method to solve large-
scale square and undetermined nonlinear equations. The
numerical results of this method for some square and under-
valued test systems showed the efficiency and effectiveness,
and new application was also provided for solving nonlinear
differential equations.

Sellami andChaib [15] proposed a new conjugate gradient
method for unconstrained optimization, which included two
existing nonlinear conjugate gradient methods that have a
decrease in each iteration search direction and global con-
vergence. Huang and Chao [16] used BEM and CGM to study
the geometrical problems of heat transfer. The problem of
dynamic identification of irregular boundary shape in two-
dimensional multiconnected region and the identification of
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Table 1: The number of iterations to convergence using SPSO.

Iteration 1 2 3 4 5 6 7
Convergence 0.0325 0.0160 0.0140 0.0140 0.0120 0.0120 0.0120

Table 2: The number of iterations to convergence using CGM.

Iteration 1 2 3 4 5 6 7 8 9 10 11 12
Convergence 0.1 0.08 0.068 0.04 0.025 0.015 0.008 0.006 0.005 0.003 0.003 0.003

irregular geometric boundary with time in two-dimensional
unsteady heat conduction problem were studied. BEM and
CGMwere used to optimize the shape of linear and nonlinear
fins. The fin shape was designed according to the specific rib
efficiency under the condition of certain volume of fins. The
results confirmed efficiency of CGM in the equipment shape
optimization.

Bin and LinHua [17, 18] used BEM and CGM to study the
geometrical shape of the inner wall of the two-dimensional
cylinder and discussed the influence of the initial stochastic
value, the measurement information error, and the number
of measuring points on the inversion results of the inner wall
shape. Fan et al. [19] used FEM and CGM to invert the inter-
nal defects of the two-dimensional pipeline and discussed
the effects of initial values and measurement errors on the
inversion results. Tanweer et al. [20] proposed the problem of
self-regulating particle swarm optimization (SRPSO), which
achieves faster convergence and provides better solutions.
Hong et al. [21–24] optimized the PSO algorithm, which can
search for more simultaneous solutions and make it possible
to give an unbiased estimate that provides a better way to
find the global optimal solution in search space. Yuan et al.
[25] introduced the improved algorithmof genetic algorithm,
particle swarm optimization in two-dimensional steady-state
thermal boundary problem.

CGM [26] is currently used in a more extensive inversion
algorithm,which has been used in the inverse problemof heat
transfer. However, gradient-based optimization algorithm
belongs to the local search algorithm, which is easy to fall
into the local extreme value. The inversion result has serious
dependencies on the initial guess of the geometric boundary.
More importantly, since the inverse problem of heat transfer,
including the geometric inverse problem of heat transfer, is
a typical ill-posed problem, when the temperature measure-
ment information is not complete or there is a large measure-
ment error, the inversion results obtained based on the
gradient optimization method may deteriorate. In addition,
when the geometric shapes to be inverted are more complex
or the number of inversion points is larger, the calculation of
the gradient matrix is time-consuming and difficult, which
directly affects the engineering application of the gradient
optimization method.

PSO [27] is an intelligent nongradient optimization algo-
rithm, which is a global search algorithm with good adapt-
ability. However thismethod is a global search, so the compu-
tation is relatively large, and search process is time-consum-
ing, which result in very large restrictions in practical applica-
tion of geometric inverse problem of heat transfer, especially

when the inversion parameters are increased, and the short-
comings of the performance are more serious. In particular,
when the measurement information is incomplete or there
is a large measurement error, the inversion results obtained
according to such intelligent optimization methods will also
have some gaps, and the inversionmethod lacks the necessary
antimisalignment.

In this paper, a hybrid algorithm combining conjugate
gradient method [28, 29] and social particle swarm opti-
mization (CGM-SPSO) algorithm is proposed to solve the
problem of boundary shape recognition. In the CGM-SPSO
algorithm, particle swarm optimization algorithm is used to
obtain the smooth estimation of the shape by using fewer
boundary elements. As the initial guess value of the conjugate
gradient method, the boundary element is applied in the
conjugate gradient method to ensure the accuracy of the
solution. In this paper, the influence of the number of inver-
sion parameters on the inversion solution is discussed. The
convergence of CGM and SPSO algorithm in CGM-SPSO
algorithm is analyzed (see Tables 1 and 2).

2. Two-Dimensional Steady-State
Thermal Conductivity Model and
Its Forward Problem

2.1. Two-Dimensional Steady-State Thermal Conductivity
Model. A two-dimensional nonthermal source-dependent
steady-state thermal conductivity model [25] for the detec-
tion of inner wall defects in industrial equipment is shown
in Figure 1, where region is a two-dimensional space set of𝑥 = 0.0, 𝑥 = 10.0, 𝑦 = 0, and 𝑦 = 𝑓(𝑥). Here, both sides of𝑥 = 0.0 and𝑥 = 10.0 are adiabatic, and a known constant heat
flow 𝑞0 is passed out by cooling at 𝑦 = 0 so that a constant
known temperature 𝑇0 is maintained at 𝑦 = 𝑓(𝑥).

The temperature distribution𝑌𝑖 at 𝑦 = 0 can bemeasured
by infrared scanning thermometer. The purpose is to realize
the fault detection of the inner wall of the industrial thermal
equipment by reverse deduction of shape 𝑓(𝑥) of the inner
wall defect. The mathematical model is shown in Figure 1.

Thermal equation inΩ region is

𝜕2𝑇
𝜕𝑥2 +

𝜕2𝑇
𝜕𝑦2 = 0, (1a)

and when 𝑥 = 0 and 𝑥 = 10, thermal equation is

𝜕𝑇
𝜕𝑥 = 0, (1b)
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Figure 1: Physical model of inner wall defect detection of thermal
equipment.

and when 𝑦 = 0, thermal equation is

−𝜕𝑇𝜕𝑦 = 𝑞0, (1c)

and when 𝑦 = 𝑓(𝑥), thermal equation is

𝑇 = 𝑇0, (1d)

𝑇 (𝑥𝑖, 0) = 𝑌𝑖 (𝑖 = 1, 2, . . . , 𝑚) . (1e)

This is a two-dimensional steady-state boundary-shaped
thermal inversion problem for a known boundary temper-
ature measurement of several boundary points and to solve
the unknown boundary shape 𝑓(𝑥) of the other boundary.
The solution of the inverse problem can be mathematically
transformed into the optimal control problem of the follow-
ing functional variants:

𝐽 (𝑓 (𝑥)) = 𝑇𝑖 − 𝑌𝑖2 =
𝑚∑
𝑖=1

[𝑇𝑖 (𝑥, 0) − 𝑌𝑖 (𝑥, 0)]2 , (2)

where 𝑌𝑖(𝑥, 0) is the temperature value actually measured at
the measurement point of the model surface and 𝑇𝑖(𝑥, 0) is
the temperature value at the measurement point calculated
from the above equations according to the guessed boundary
shape.

The iterative method is used to search for the boundary
problem of 𝑓(𝑥) involving the standard problem of iterative
stoppage and temperaturemeasurement error. If nomeasure-
ment error exists, the stop criterion is

𝐽 [𝑓𝑘+1 (𝑥)] < 𝜀, (3)

where 𝜀 is a lesser number, such as 0.01, which is determined
by the specific convergence. If there is a measurement error
and the standard deviation of the temperature measurement
is 𝜎, then the minimum criterion is determined according to
the error principle.

𝜀 = 3𝜎. (4)

2.2. Boundary Element Analysis of Two-Dimensional Pla-
nar Steady Heat Conduction Problems. Boundary element
method (BEM) is a computational method based on the clas-
sical integral equation, which absorbs the discrete technique
of finite element method. The basic idea of the boundary
element method is to use the integral equation method
to solve the differential equation. The boundary element
method is based on the establishment of the boundary
integral equation. The solution process can be divided into
two steps: the first step is the boundary of the problem, the
Green formula is applied, and the differential equation in the
solution domain is transformed into the integral equation on
the boundary by the basic solution. The second step is the
discretization of the boundary.

2.2.1. Boundary Integral Equations forMixed BoundaryCondi-
tions. Considering the difference of boundary conditions in
practical problems, two-dimensional steady-state thermal
boundary conditions are taken as examples. As shown in
Figure 2, boundary element analysis is carried out. Without
considering the heat source, the governing equation is the
Laplace equation.

In theΩ area,

∇2𝑇 = 0. (5)

On the boundary Γ1,
𝑇 = 𝑇. (6)

On the boundary Γ2,

𝑞 = 𝜕𝑇
𝜕𝑛 = 𝑞. (7)

On the boundary Γ3,
𝜕𝑇
𝜕𝑛 +

ℎ
𝜆𝑇 = 𝑞. (8)

In the above formula: Γ = Γ1 + Γ2 + Γ3, 𝑞 = (ℎ/𝜆)𝑇𝑓, and 𝑇𝑓
is the ambient temperature.

The weighting function is introduced for Laplace’s equa-
tion of the above control equation 𝑇∗, applying the weighted
margin method available:

∫
Ω
(∇2𝑇)𝑇∗𝑑Ω = ∫

Γ2

(𝜕𝑇𝜕𝑛 − 𝑞)𝑇∗𝑑Γ

+ ∫
Γ3

(𝜕𝑇𝜕𝑛 +
ℎ
𝜆𝑇 − 𝑞)𝑇∗𝑑Γ

− ∫
Γ1

(𝑇 − 𝑇) 𝜕𝑇∗𝜕𝑛 𝑑Γ.

(9)
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Figure 2: Mixed boundary conditions.

Conducting the second division points and applying
Green’s function for (9) available,

∫
Ω
𝑇∗ (∇2𝑇) 𝑑Ω = ∫

Ω
∇ (𝑇∗∇𝑇) 𝑑Ω

− ∫
Ω
∇𝑇 ⋅ ∇𝑇∗𝑑Ω

= ∫
Γ
∇𝑇 ⋅ 𝑇∗𝑑Γ − ∫

Ω
∇𝑇 ⋅ ∇𝑇∗𝑑Ω

= ∫
Γ

𝜕𝑇
𝜕𝑛 ⋅ 𝑇∗𝑑Γ − ∫Ω ∇𝑇 ⋅ ∇𝑇

∗𝑑Ω
∫
Ω
∇𝑇 ⋅ ∇𝑇∗𝑑Ω = ∫

Ω
∇ (𝑇 ⋅ ∇𝑇∗) 𝑑Ω

− ∫
Ω
𝑇 ⋅ ∇2𝑇∗𝑑Ω

= ∫
Γ
𝑇 ⋅ 𝜕𝑇∗𝜕𝑛 𝑑Γ − ∫Ω 𝑇 ⋅ ∇

2𝑇∗𝑑Ω.

(10)

Substituting equations (10) into equation (9),

∫
Ω
𝑇 ⋅ ∇2𝑇∗𝑑Ω + ∫

Γ1

𝜕𝑇
𝜕𝑛 𝑇∗𝑑Γ + ∫Γ2 𝑞

𝑇∗𝑑Γ

+ ∫
Γ3

𝑞𝑇∗𝑑Γ

= ∫
Γ1

𝑇𝜕𝑇∗𝜕𝑛 𝑑Γ + ∫Γ2 𝑇
𝜕𝑇∗
𝜕𝑛 𝑑Γ + ∫Γ3 𝑇

𝜕𝑇∗
𝜕𝑛 𝑑Γ

+ ∫
Γ3

ℎ
𝜆𝑇𝑇∗𝑑Γ.

(11)

Make 𝑞 = 𝜕𝑇/𝜕𝑛, and then 𝑞∗ = 𝜕𝑇∗/𝜕𝑛, On type (11) con-
solidation can be obtained:

∫
Ω
𝑇 ⋅ ∇2𝑇∗𝑑Ω + ∫

Γ
𝑞𝑇∗𝑑Γ

= ∫
Γ
𝑇𝑞∗𝑑Γ + ∫

Γ3

ℎ
𝜆𝑇𝑇∗𝑑Γ.

(12)

The weight function in (12) is the basic solution of Laplace’s
equation, which is

∇2𝑇∗ + 𝛿 (𝑟 − 𝑟𝑖) = 0, (13)

where the point “𝑖” represents the point source point, we
get formula (13) into formula (12) and use the nature of the
function 𝛿, and we can get

𝑇𝑖 + ∫
Γ
𝑇𝑞∗𝑑Γ + ∫

Γ3

ℎ
𝜆𝑇𝑇∗𝑑Γ = ∫Γ 𝑞𝑇𝑑Γ. (14)

This is the boundary integral equation for the inner nodes of
any point in theΩ domain.

Moving the point “𝑖” to the boundary and getting the
boundary integral equation at any point on the boundary,

1
2𝑇𝑖 + ∫Γ 𝑇𝑞

∗𝑑Γ + ∫
Γ3

ℎ
𝜆𝑇𝑇∗𝑑Γ = ∫Γ 𝑞𝑇

∗𝑑Γ. (15)

Formula (14) and formula (15) can be combined to obtain
the boundary integral equation of any point in the domainΩ
and, at any point on the boundary,

𝐶𝑖𝑇𝑖 + ∫
Γ
𝑇 ⋅ 𝑞∗𝑑Γ + ∫

Γ3

ℎ
𝜆 ⋅ 𝑇∗ ⋅ 𝑇 𝑑Γ = ∫Γ 𝑞 ⋅ 𝑇

∗𝑑Γ, (16)

where, in area domain Ω, 𝐶𝑖 = 1 and, on the border Γ, 𝐶𝑖 =1/2.
Theweight function𝑇∗ is the fundamental solution of the

two-dimensional Laplace equation:

𝑇∗ = 1
2𝜋 ln 1𝑟 . (17)

2.2.2. Boundary Discrete Equations for Mixed Boundary Con-
ditions. Formula (16) is discretized, and the boundary is
divided into 𝑁 units. On each boundary element, 𝑇 and 𝑞
can be uniformly interpolated by ordinary unit, linear unit,
or quadratic unit according to different interpolation to form
matrix:

𝑁∑
𝑗=1

𝐻𝑖𝑗𝑇𝑗 =
𝑁∑
𝑗=1

𝐺𝑖𝑗𝑞𝑗, (18)
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where

𝐻𝑇 = 𝐺𝑞. (19)

When 𝑖 = 𝑗, then𝐻𝑖𝑖 = 𝐶𝑖 + �̂�𝑖𝑖; when 𝑖 ̸= 𝑗, then𝐻𝑖𝑗 = �̂�𝑖𝑗;
and when “𝑗” falls Γ3, then𝐻𝑖𝑗 = 𝐻𝑖𝑗 + (ℎ/𝜆) ⋅ 𝐺𝑖𝑗; moving the
unknown amount to the right andmoving the known amount
to the left,

𝐴𝑋 = 𝐹. (20)

Solution for the above equations can be obtained in 𝑇 and 𝑞
in the unknown amount.

3. Inverse Problem

3.1. Improved Particle Swarm Optimization Algorithm. All
the individual optimal solutions pbest (best particle) in
particle swarm optimization algorithm are connected with
the population optimal solution gbest (best group), which
is a typical star structure with the center node gbest. In
this structure, each individual unconditionally follows the
population optimal, so that the individual optimal can easily
converge to the population optimal. When the gbest is the
local optimal, the particle swarm algorithm will fall into the
local optimal.Thus, an improved strategy is proposed named
social particle swarm optimization (SPSO). By setting a
different harsh threshold for each individual, one determines
whether the individual is following other individuals, or is
maintaining the current state, or is free to move, in order to
maintain the diversity of individuals in the population, to
avoid the algorithm precocious and into the local optimum.

In the social particle swarm algorithm, the characteristics
of social atoms are introduced into the particle swarm
algorithm, and each individual is given a skeleton threshold,
where the individual with a threshold of 0 means that the
movement is not affected by any other individual informa-
tion, and the threshold with a threshold of nonzero may have
different attraction points in the process of population updat-
ing to maintain the current state, so the social particle swarm
algorithm may have different attraction points in the process
of updating the population according to the new attracting
point.

There are two types of particles in the social particle
swarm algorithm: free particles and followers. The free parti-
cle is a particle with a threshold of zero, which is not affected
by the behavior of other particles and randomly determines
the next generation particle position. The follower particle
with a nonzero value is affected by the attraction point during
the search process. Whether or not to follow the attraction
point depends on how many other particles follow. The
updating formula of follower particle in SPSO algorithm is

V𝑖𝑗 (𝑡 + 1) = 𝑤V𝑖𝑗 (𝑡) + 𝑐1𝑟1 (𝑝𝑏𝑒𝑠𝑡𝑖𝑗 (𝑡) − 𝑥𝑖𝑗 (𝑡))
+ 𝑐2𝑟2 (𝑎𝑡𝑡𝑟𝑎𝑐𝑡𝑖𝑗 (𝑡) − 𝑥𝑖𝑗 (𝑡)) ,

(21)

𝑥𝑖𝑗 (𝑡 + 1) = 𝑥𝑖𝑗 + V𝑖𝑗 (𝑡 + 1) , (22)

where the third term in (21) is changed from the standard𝑔𝑏𝑒𝑠𝑡𝑖𝑗 in PSO to the attraction point 𝑎𝑡𝑡𝑟𝑎𝑐𝑡𝑖𝑗, and it may

be different for different particles. When the algorithm is
initialized, the individual with the best fitness is selected as
the initial attraction point in the particle selection population.
As the search progresses, each free particle is likely to become
a new attraction point, and if there is a fitness for a free
particle that is better than the fitness of all other particles, it
becomes a new attraction. Individuals with a threshold of 1 in
the particle are first attracted, and then the individual with
higher thresholds will also move toward the attraction point,
and the individuals whose attraction population does not
reach the threshold will remain unchanged.

The implementation steps of social particles swarm algo-
rithm are shown as follows.

Step 1 (algorithm initialization). The population size 𝑁, the
largest evolution algebra Gen, acceleration factors 𝑐1, 𝑐2, and
inertia weight 𝑤 are given in advance. Give each particle a
follow threshold, which is taken as an integer in [0, 𝑁]. The
optimal individual in initial population is set to attraction
point.

Step 2. Update the speed and position of the following par-
ticles according to (21) and (22), and free particles randomly
generate the next generation position.

Step 3. Calculate the fitness 𝑓(𝑥𝑖+1) of all individuals.
Step 4. Update optimal positions pbest of all individuals.

Step 5. If the optimal fitness value of free particle is bet-
ter than the population optimal fitness value, then update
attracting point attraction equal to pbest, which indicates the
free individual is more attractive and will attract the individ-
ual of getting the threshold.These attractive points that follow
the individual will be updated to the optimal position of the
free particle individual, and the attraction point of the other
unattended individuals will remain unchanged.

Step 6. Repeat Steps 2 to 5 until the algorithm termination
condition is met.

The flow chart of SPSO algorithm is shown in Figure 3.

3.2. Conjugate Gradient Method. The conjugate gradient [25]
transforms the inverse problem into three problems: direct
question, sensitive problem, and concomitant problem. The
problem is based on the assumed boundary shape (1d) and
other boundary conditions, using the boundary element
method to solve (1a)–(1e), then calculating the minimum
value of the objective function (2). The circulation mode of
conjugate gradient method is

𝑓𝑛+1 (𝑥) = 𝑓𝑛 (𝑥) − 𝛽𝑛𝑝𝑛 (𝑥) , 𝑛 = 0, 1, 2, . . . , (23)

where 𝛽𝑛 is the search step of 𝑛 to 𝑛+1 and 𝑝𝑛(𝑥) is the search
direction:

𝑝𝑛 (𝑥) = 𝐽𝑛 (𝑥) + 𝛾𝑛𝑝𝑛−1 (𝑥) , (24)

where 𝐽𝑛(𝑥) is gradient direction, so the 𝑛th search direction𝑝𝑛(𝑥) is the conjugate of gradient direction 𝐽𝑛(𝑥) and search
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Figure 3: SPSO algorithm flow chart.

direction 𝑝𝑛−1(𝑥) of 𝑛 − 1. 𝛾𝑛 is conjugate coefficient, which
can be calculated by the equation

𝛾𝑛 = ∫𝐿
𝑥=0

(𝐽𝑛)2 𝑑𝑥
∫𝐿
𝑥=0

(𝐽𝑛 − 1)2 𝑑𝑥 , (25)

where 𝛾0 = 0.

3.2.1. Sensitivity Problem. For the inverse problem of heat
transfer, the existence of solutions can be determined from
the physical problem; for example, for a transient problem,
the temperature distribution has changed, which must be
caused by a change in the parameters, such as boundary
conditions and geometric conditions. For some individual
antirecognition problems, we can also prove the uniqueness
of the strict solution. Although the validity of the solution
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must be judged from the physical problem formost problems,
the biggest problem of the inverse problem is that when
the temperature distributed measurement results with some
error may cause some parameters of the anticalculation
results with unpredictable errors. Therefore, in the process of
calculation, we must use some technical means to ensure the
stability of the results, so as to detect whether an inverse
problem calculation method is effective but also to discuss
the calculation results on the temperaturemeasurement error
sensitivity. So the conjugate gradient needs to solve the prob-
lem of sensitivity when solving the inverse problem.

The determination of the search step in (23) needs to
find out a sensitivity problem called the increment problem.
The sensitivity problem refers to the variation of the change
amount Δ𝑇(𝑥) of surface temperature 𝑇 when the boundary
shape𝑓(𝑥) has an increment Δ𝑓(𝑥), and the formula is

( 𝜕𝐽𝜕𝑓)
𝑇 = ( 𝜕𝐽𝜕𝑓1 ,

𝜕𝐽
𝜕𝑓2 , . . . ,

𝜕𝐽
𝜕𝑓𝑛) . (26)

The specific approach is as follows: in the formula (1a)–(1e),𝑇 + Δ𝑇 replaces the original 𝑇, and 𝑓(𝑥) + Δ𝑓(𝑥) replaces
the original𝑓(𝑥). And then subtract the original equations to
get the sensitivity problem, so, in the region Ω, the thermal
equation is

𝜕2Δ𝑇
𝜕𝑥2 + 𝜕2Δ𝑇

𝜕𝑦2 = 0. (27a)

When 𝑥 = 0, the thermal equation is

𝜕Δ𝑇
𝜕𝑥 = 0. (27b)

When 𝑥 = 10, the thermal equation is

𝜕Δ𝑇
𝜕𝑥 = 0. (27c)

When 𝑦 = 0, the thermal equation is

𝜕Δ𝑇
𝜕𝑦 = 0. (27d)

When 𝑦 = 𝑓(𝑥), the thermal equation is

Δ𝑇 = Δ𝑓𝜕𝑇𝜕𝑦 . (27e)

Similarly, the boundary element method is used to discretize
the above equations and obtain the temperature incrementΔ𝑇. According to formula (2), iteration 𝐽(𝑓𝑛+1) of 𝑛 + 1 can
be written:

𝐽 (𝑓𝑛+1) = 𝑚∑
𝑖=1

[𝑇𝑖 (𝑓𝑛 − 𝛽𝑛𝑝𝑛) − 𝑌𝑖]2 . (28)

Take Taylor expansion 𝑇𝑖(𝑓𝑛 − 𝛽𝑛𝑝𝑛) and take out two linear
terms, and the following equation can be drawn:

𝐽 (𝑓𝑛+1) = 𝑚∑
𝑖=1

[𝑇𝑖 (𝑓𝑛) − 𝛽𝑛Δ𝑇𝑖 (𝑝𝑛) − 𝑌𝑖]2 . (29)

Seeking derivative for 𝛽𝑛 and making it zero, the search step
is available:

𝛽𝑛 = ∑𝑚𝑖=1 (𝑇𝑖 − 𝑌𝑖) Δ𝑇𝑖
∑𝑚𝑖=1 (Δ𝑇𝑖)2 . (30)

3.2.2. Adjoint Problems. In formula (23), the new boundary
shape function 𝑓𝑛+1(𝑥) is calculated according to the boun-
dary function𝑓𝑛(𝑥) of the last iteration, and the search direc-
tion 𝑝𝑛(𝑥) is also needed to be found out. Therefore, the
gradient direction 𝐽𝑛(𝑥) is needed to be calculated according
to (24), which is the so-called functional derivative problem,
known as the adjoint problem. In order to derive the equation
of the adjoint direction, we need to multiply the basic control
formula (1a) by a Lagrangian operator 𝜆(𝑥, 𝑦) (also called
adjoint function) and integrate the spatial domain and then
add the result to the right of (2). The expression of the
function 𝐽[𝑓(𝑥)] is as follows:

𝐽 [𝑓 (𝑥)] = ∫𝐿
𝑥=0

[𝑇 − 𝑌]2 𝛿 (𝑥 − 𝑥𝑖) 𝑑𝑥

+ ∫𝐿
𝑥=0

∫𝑓(𝑥)
𝑦=0

𝜆[𝜕2𝑇𝜕𝑥2 +
𝜕2𝑇
𝜕𝑦2 ]𝑑𝑦𝑑𝑥.

(31)

With𝑇+Δ𝑇 instead of𝑇 and𝑓+Δ𝑓 instead of𝑓, the following
are obtained after a series of arrangement:

∫𝑏
𝑎
[𝑇 − 𝑌]2 𝑑𝑥 = ∫𝑏

𝑎
∫𝐿
0
[𝑇 − 𝑌]2 𝛿 (𝑥 − 𝑥𝑖) 𝑑𝑥 𝑑𝑦. (32)

Then

Δ𝐽 = 𝐽 (𝑞 + Δ𝑞) − 𝐽 (𝑞)
= ∫𝐿
𝑥=0

2 (𝑇 − 𝑌)Δ𝑇𝛿 (𝑥 − 𝑥𝑖) 𝑑𝑥

+ ∫𝐿
𝑥=0

∫𝑓(𝑥)
𝑦=0

𝜆[𝜕2Δ𝑇𝜕𝑥2 + 𝜕2Δ𝑇
𝜕𝑦2 ]𝑑𝑦𝑑𝑥.

(33)

Make the second distribution equal to integral twice in the
right side of (33), and use the boundary conditions of sensi-
tivity problem, then make Δ𝐽 closer to 0, and finally adjoint
problems can be as follows.

In the regionΩ,
𝜕2𝜆
𝜕𝑥2 +

𝜕2𝜆
𝜕𝑦2 = 0. (34a)

When 𝑥 = 0,
𝜕𝜆
𝜕𝑥 = 0. (34b)

When 𝑥 = 10,
𝜕𝜆
𝜕𝑥 = 0. (34c)
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When 𝑦 = 0,
𝜕𝜆
𝜕𝑦 = −2 (𝑇 − 𝑌) 𝛿 (𝑥 − 𝑥𝑖) . (34d)

When 𝑦 = 𝑓(𝑥),
𝜆 = 0. (34e)

The boundary element method is used to solve the corre-
sponding value of the adjoint function 𝜆(𝑥, 𝑦), so that the
functional increment is

Δ𝐽 = ∫𝐿
0
−[𝜕𝜆𝜕𝑦 ⋅ 𝜕𝑇𝜕𝑦 ]𝑦=𝑓(𝑥) Δ𝑓 (𝑥) 𝑑𝑥. (35)

So according to Alifanov’s definition,

Δ𝐽 = ∫𝐿
0
𝐽 (𝑥) Δ𝑓 (𝑥) 𝑑𝑥. (36)

The derivative of the functional 𝐽 is
𝐽 (𝑥) = − 𝜕𝜆

𝜕𝑦 ⋅ 𝜕𝑇𝜕𝑦
𝑦=𝑓(𝑥) . (37)

The above three problems including the forward problem,
the sensitivity problem, and the adjoint problem can be
solved, and the following are iterative calculation step of
conjugate gradient method:

(1) Select a stochastic initial value of inner wall shape
in 𝑓(𝑥) to solve the forward problem (1a)–(1e) and
calculate the temperature distribution 𝑇(𝑥, 𝑡) in the
domain.

(2) According to𝑇𝑖 and𝑌𝑖 determine whether tomeet the
convergence stop standard (3) 𝐽[𝑓𝑘+1(𝑥)] < 𝜀; if sat-
isfied, then stop the iteration; otherwise, calculate the
next step.

(3) Solve the adjoint problem (34a)–(34e), and get the
adjoint function 𝜆(𝑥).

(4) Calculate the gradient 𝐽(𝑥).
(5) Calculate the conjugate gradient coefficient 𝛾𝑘 and the

descent direction 𝑝𝑘.
(6) MakeΔ𝑓(𝑥) = −𝑝𝑘(𝑥) to solve the sensitivity problem

(27a)–(27e) to get the temperature increment Δ𝑇(𝑥).
(7) Calculate the search step 𝛽𝑘 by formula (30).
(8) Make 𝑘 = 𝑘 + 1 to calculate the new boundary shape

𝑓𝑘(𝑥) and new 𝑇𝑖 and go back to step (2).
3.3. CGM-SPSO Hybrid Algorithm. CGM is computationally
fast, but it usually converges to local optimal solutions and
relies heavily on the initial approximation of the iterative
process. The SPSO algorithm requires tens of thousands of
iterations and a lot of computation time. The fitness function
evaluation of a complex problem is very time-consuming, so
we propose a hybrid algorithm of CGM and SPSO, whose
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Figure 4: Inverse solution of different geometric inversion parame-
ters number.

purpose is to combine global search ability of SPSO and fast
convergence ability of CGM. Since CGMneeds a smooth and
appropriate initial value, it can converge to a very precise
solution. Therefore, this paper gets the temperature of the
measured point 𝑇 (𝑇1, 𝑇2, . . . , 𝑇𝑖) by the SPSO method when
the boundary shape is unknown, and then the value obtained
by SPSO is processed by the interpolation calculation to
obtain a smooth function as the initial value of CGM.

4. Exponential Analysis

As shown in Figure 1, the physical model of the inner wall
defect detection of industrial thermal equipment is a two-
dimensional thermostatic heat conduction problem. The
domain Ω is a two-dimensional space composed of 𝑥 = 0.0,𝑥 = 10.0, 𝑦 = 0, and 𝑦 = 𝑓(𝑥). Here, both sides of 𝑥 = 0.0
and 𝑥 = 10.0 are adiabatic, and a known constant heat flow𝑞0 is passed out by cooling at 𝑦 = 0 so that a constant known
temperature 𝑇0 is maintained at 𝑦 = 𝑓(𝑥).
4.1. Influence of the Number of Geometric Inversion Parame-
ters. Assume the function of the thermal device boundary is
expressed as

𝑓 (𝑥) = 0.75 + 0.4 exp(−(𝑥 − 5)23 ) . (38)

Considering the uniform distribution of the temperature
measurement points in the outer boundary of the thermal
equipment, there is no measurement error. Three geometric
inversion parameters 𝑀 = 50, 𝑀 = 100, and 𝑀 = 150 are
geometrically inversed. The inversion results are shown in
Figure 4.

The experimental data for each group are as follows.
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When𝑀 = 50,
1 to 13 columns

0.7515 0.7523 0.7535 0.7552 0.7576 0.7609
0.7654 0.7712 0.7788 0.7884 0.8003
0.8148 0.8318

14 to 26 columns

0.8515 0.8738 0.8982 0.9242 0.9512 0.9782
1.0042 1.0282 1.0490 1.0656 1.0772 1.0832
1.0833

27 to 39 columns

1.0774 1.0659 1.0494 1.0286 1.0047 0.9787
0.9517 0.9247 0.8987 0.8742 0.8519 0.8322
0.8151

40 to 50 columns

0.8006 0.7886 0.7790 0.7714 0.7655
0.7610 0.7577 0.7553 0.7535 0.7523
0.7515

When𝑀 = 100,
1 to 13 columns

0.7512 0.7515 0.7518 0.7523 0.7528 0.7535
0.7543 0.7553 0.7564 0.7578 0.7594 0.7613
0.7635

14 to 26 columns

0.7660 0.7690 0.7724 0.7762 0.7806
0.7856 0.7912 0.7974 0.8043 0.8119 0.8203
0.8294 0.8393

27 to 39 columns

0.8499 0.8613 0.8734 0.8862 0.8996
0.9135 0.9279 0.9427 0.9577 0.9729
0.9880 1.0029 1.0176

40 to 52 columns

1.0318 1.0453 1.0581 1.0698 1.0805 1.0900
1.0980 1.1046 1.1097 1.1131 1.1148 1.1148
1.1131

53 to 65 columns

1.1097 1.1047 1.0981 1.0900 1.0806 1.0699
1.0582 1.0454 1.0319 1.0177 1.0031 0.9881
0.9730

66 to 78 columns

0.9579 0.9428 0.9281 0.9137 0.8997 0.8863
0.8735 0.8614 0.8500 0.8394

0.8295 0.8204 0.8120

79 to 91 columns

0.8044 0.7975 0.7912 0.7856 0.7807
0.7763 0.7724 0.7690 0.7661 0.7635 0.7613
0.7594 0.7578

92 to 100 columns

0.7564 0.7553 0.7543 0.7535 0.7528 0.7523
0.7518 0.7515 0.7512

When𝑀 = 150,
1 to 13 columns

0.7505 0.7506 0.7507 0.7508 0.7510 0.7511
0.7514 0.7516 0.7519 0.7522 0.7526 0.7530
0.7535

14 to 26 columns

0.7540 0.7547 0.7554 0.7562 0.7571
0.7582 0.7594 0.7607 0.7622 0.7638
0.7656 0.7677 0.7699

27 to 39 columns

0.7724 0.7751 0.7782 0.7814 0.7850 0.7889
0.7932 0.7977 0.8027 0.8080
0.8137 0.8198 0.8263

40 to 52 columns

0.8332 0.8405 0.8482 0.8563 0.8648
0.8736 0.8829 0.8925 0.9024 0.9126
0.9231 0.9339 0.9448

53 to 65 columns

0.9559 0.9671 0.9783 0.9896 1.0008 1.0120
1.0229 1.0337 1.0441 1.0543 1.0640 1.0732
1.0820

66 to 78 columns

1.0901 1.0976 1.1044 1.1105 1.1159 1.1204
1.1241 1.1269 1.1288 1.1298 1.1299 1.1291
1.1274

79 to 91 columns

1.1249 1.1214 1.1171 1.1120 1.1061 1.0994
1.0921 1.0841 1.0755 1.0664
1.0568 1.0467 1.0364

92 to 104 columns

1.0257 1.0148 1.0037 0.9925 0.9812 0.9699
0.9587 0.9476 0.9366 0.9258 0.9153
0.9050 0.8950
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105 to 117 columns

0.8853 0.8759 0.8670 0.8584 0.8502
0.8424 0.8350 0.8280 0.8214 0.8152
0.8094 0.8040 0.7990

118 to 130 columns

0.7943 0.7900 0.7860 0.7823 0.7790
0.7759 0.7731 0.7705 0.7682 0.7661
0.7642 0.7626 0.7610

131 to 143 columns

0.7597 0.7585 0.7574 0.7564 0.7556
0.7548 0.7542 0.7536 0.7531 0.7527
0.7523 0.7519 0.7517

144 to 150 columns

0.7514 0.7512 0.7510 0.7509 0.7507
0.7506 0.7505

As can be seen from Figure 4, when using the CGM-
SPSO hybrid algorithm for geometric inversion, regardless of
whether the number of inversion parameters is𝑀 = 50,𝑀 =100, or𝑀 = 150, the estimated boundary shape and the exact
boundary shape are very close, and this happens equally in
the edge and peak.The average relative errors of the inversion
are 1.12%, 0.73%, and 0.52%, respectively, which shows
CGM-SPSO algorithm is good to overcome the influence of
the number of inversion parameters on the exact value of
the inversion. It can be seen from the above experiments
that when the number of geometric inversion parameters
increases, the inversion solution accuracy is improved, but it
can be seen from the figure that increasing the number does
not have much effect on the accuracy of the inversion solu-
tion. Therefore, the conclusion is that the proposed method
is not affected by the influence of the number of inversion
parameters on the inversion solution.The following discusses
the convergence of SPSO and CGM when the number
of inversion parameters is 𝑀 = 100, as shown in Figures 5
and 6.

As shown in Figures 5 and 6, the convergence curve of the
SPSO algorithm shows that the objective function converges
rapidly after the fifth iteration. Then, CGM obtains initial
value from SPSO. After 10 iterations, a convergent optimal
solution is produced. It shows that CGM-SPSO algorithm
spends the less computation time and has not only high
accuracy of the solution but also the higher efficiency of the
algorithm.

5. Conclusion

In this paper, a hybrid algorithm of conjugate gradient
method and particle swarm optimization algorithm is used to
study the inversion problem of the boundary shape. The
social particle swarm optimization algorithm and the con-
jugate gradient method are introduced, and the two-
dimensional steady-state model is used to verify and discuss
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Figure 5: Convergence curve of SPSO algorithm.
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Figure 6: Convergence curve of CGM algorithm.

the algorithm. The influence of the number of inversion
parameters on the inversion results is discussed, and the
convergence of the SPSO algorithm and the CGM algorithm
is obtained. The main conclusions are as follows.

(1) The CGM-SPSO algorithm is used to reconstruct the
geometric shape of the two-dimensional steady-state thermal
conduction system.When the number of geometric inversion
parameters increases, the inversion solution is improved,
but when the number of geometric inversion parameters is
appropriate, increasing the number does not havemuch effect
on the inversion solution. It is proved that CGM-SPSO is
effective for two-dimensional steady-state thermal boundary
identification.

(2) CGM-SPSO algorithm has high accuracy to the peak
and edge value of geometric shape.

(3) Less times of iterations can meet the convergence
conditions; thus calculation time is greatly reduced.
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