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)is paper describes a study in which EPDM-based rubber composites were investigated aiming at developing formulations
subjected to restrictions on cost and the properties of the material. )e contents of components other than calcium carbonate,
para&nic oil, and CBS vulcanising accelerator, as well as additives and processing conditions, were kept constant. Fractional
factorial design coupled with computational numerical optimisation was used to minimise the number of mixtures. )e results
demonstrate that statistical design of experiments and particle swarm optimisation (PSO) algorithms are promising methods to
design composition variables. Mixture costs as low as 1.92 US$/kg can be achieved in compositions containing, for example,
107 phr of calcium carbonate, 95 phr of para&nic oil, and 1.13 phr of CBS accelerator. )e corresponding composite property-
predicted values were 66.8 Shore A for hardness, tensile strength of 7.8MPa, 570.8% elongation at break, and 23.0% rebound
resilience. )is demonstrates that, in this way, the desired product with speci>ed characteristics can be comfortably man-
ufactured at minimum cost.

1. Introduction

)e modern rubber industry o?ers a very wide variety of
technological products derived from synthetic elastomers
like ethylene–propylene–diene M-class rubber (EPDM
rubber). )ese products >nd applications in di?erent >elds,
namely, in automotive, naval, and mechanical industries.
Such rubber compounds (composites) are manufactured
from complex mixtures of di?erent raw materials (di?erent
kinds of EPDM elastomers, >llers, process oil, vulcanising
and protecting agents, etc.), and the production steps in-
volve a variety of processes (e.g., mixing, extruding, cutting,
moulding, and vulcanising) [1–6].

)e performance and manufacture of rubber products
has been receiving more and more attention, and the
industry has successfully introduced and applied the
usage of a series of quality certi>cation standards. Also,
stringent market and price competition demand shorter
product development cycles and reduced costs, which
include raw materials and processing, as well as research
and development costs. All of that makes it di&cult to

de>ne an adequate new formulation by simple adjust-
ment of older ones, based on rule of thumb or virtue of
experience.

)e application of statistical design of experiments
(DoE) to the industrial formulation of rubber composites
can be a convenient and accurate means of obtaining reliable
quantitative estimates of properties as the result of any
change in contents of raw materials [7, 8]. )e modelling of
a given property using the design of mixture experiments is
becoming common practice [9–17] and was proven, in all
cases reported, to lead to greater e&ciency and con>dence in
the results obtained, and to be less demanding in time and
both material and human resources.

Many studies on the e?ects of rawmaterial changes on the
physical properties of rubber composites coupled with DoE
can be found in the literature, but few data are available on
research carried out using the cost characteristics of rubber
compounds. However, although standard requirements for
physical andmechanical properties of a rubber compound are
mandatory, high costs might preclude the product’s com-
petitiveness in the market.
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)us, the rubber compound engineer most often needs
to produce an optimised formulation, which >ts the re-
quirements of physical and mechanical properties, while
subjected to processing and cost constraints [18]. In in-
dustrially oriented applications of materials like rubbers
or ceramics, the technique generally used to optimise
equality and inequality property constraints is the graphical
overlay of contour plots generated by the regression models
of the properties [10, 15, 19–21]. However, as the number of
functions and constraints increases, so do the di&culties
to handle and design the di?erent contour plots, and these
strategies begin to have a rather limited performance.

Computational optimisation of nonlinear programming
problems, which include numerical analysis of continuous
and discrete variables, has been an active and important
engineering research issue. )e optimisation problem
consists in >nding out a solution for the objective function
and related constraints. )e use of particle swarm optimi-
sation (PSO) algorithms for solving nonlinear, multimodal,
and nondi?erentiable optimisation problems, which are
not well >tted for conventional optimisation algorithms,
has gained increasing attention in recent years [22, 23].
PSO algorithms fundamentals result from the observation,
interpretation, and modelling of the movements of in-
dividuals in bird Gocks or >sh schools, as well as their group
behaviour as a swarm. It is a simple algorithm, so only a few
lines of the computer program based on simple mathe-
matical operations are needed to deploy the basic tool of
PSO. )e computer-aided optimisation method provides an
e&cient way to predict the optimum formulation without
using those awkward contour plot graphical overlays.

In this work, a fractional factorial design of experiments
was used to study the e?ect of >ller, process oil, and vul-
canising accelerator contents on the mechanical properties
(hardness, tensile strength, elongation at break, and rebound
resilience) of EPDM rubber composites. Regression models
were calculated from the results of the measured properties,
under constant processing conditions and contents of other
raw materials and additives. )e regression models were
then used in a PSO algorithm to obtain optimised EPDM
rubber formulations subjected to property constraints and
cost requirements.

2. Experimental Procedure

2.1. Compound Ingredients and Base Composition. )e
elastomer used in this work was a commercial M-class
ethylene–propylene–diene (EPDM) monomer (Keltan, sup-
plied by Branco Indústria e Comércio Ltda). Other ingredients
included carbon black (Spheron 5000, Cabot Brasil Indústria e
Comércio), calcium carbonate (Mineração São Judas Ltda),
and para&nic oil (Ipiranga Indústria Quimica Ltda). Besides
these ingredients, the mixtures include special additives,
namely, vulcanising agent (sulphur, Basile Quı́mica), vul-
canising accelerator (CBS, N-cyclohexylbenzothiazol-2-
sulphenamide, Basile Quı́mica), vulcanising activator (ZnO,
Brazinco Indústria e Comércio), aging inhibitor (Naugard 495,
4-5-methyl-2-mercaptobenzimidazole, Chemtura Indústria
Qúımica do Brasil Ltda), and stearic acid (Basile Qúımica).

)e rubber formulations were based on that of heat- and
air-resistant products, such as the automotive hoses man-
ufactured by NSO Borrachas, Joinville, SC, Brazil. As shown
in Table 1, the contents (phr, per hundred of rubber, by
weight) of calcium carbonate >ller (CC), process (para&nic)
oil (PO), and vulcanising accelerator (VA) were varied in the
compositions, but the contents of the other raw materials
and additives, as well as processing conditions, were kept
constant. )e chosen processing conditions closely followed
the conventional laboratory rubber compound procedure
used in industrial practice [5, 6].

2.2. Experiment Design. A 33−1 fractional factorial design
was chosen to model the e?ect of varying contents of the
three factors CC, PO, and VA on the composite properties
because it required the minimum number of experiments
(nine mixture compositions) for which nonlinear e?ects and
interactions of all the factors could be investigated [7, 8].
Given that the contents of all raw materials and additives
other than the three factors were kept constant, a new
calculation basis was de>ned to translate contents of the
factors from their usual phr base values, mi, into fractions,
Xi, as needed in the factorial design, and vice versa. Among
the factors limiting phr values, the CC content is the highest
of them all (125 phr in the reference product). Hence, this
was chosen as the base reference value,M, and contents of all
the factors were then expressed as weight fraction relative to
that of the CC content, that is, Xi�mi/M. To design the
matrix of mixture experiments, three weight fraction content
levels were chosen within the usual ranges for the manu-
facture of general-purpose products, as shown in Table 2.

STATISTICA statistical software (StatSoft Inc., 2010)
was used to determine the geometric and coded notations as
well as randomise the treatment combinations, resulting in
a standard experiment order. Table 3 shows themixing ratios
of chosen factors for the nine compounds, obtained from the
33−1 fractional factorial design.

2.3. Mixture Preparation, Moulding, and Property
Evaluation. For each of the nine di?erent formulations, in
two replications, the selected amounts of raw materials were
mixed in a two-roll laboratory mill (Equipabor, Brazil) at
70°C and 1 : 1.20 speed ratio, as recommended by the ASTM

Table 1: Base composition of industrial EPDM rubber composites.

Ingredients Content [phr]a

EPDM 100.00
Carbon black 115.00
Calcium carbonate (CC) Variable
Para&nic oil (PO) Variable
Sulphur, vulcanising agent 0.40
CBS, vulcanising accelerator (VA) Variable
ZnO, vulcanising activator 5.00
Naugard 495, aging inhibitor 1.00
Stearic acid 1.00
aPer hundred of rubber, by weight.
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D 15 Standard [24]. )e sheets obtained were conditioned at
25± 2°C for 24 h in a sealed container before the estimation
of optimum curing time. Batches were then compression-
moulded to a 90% cure using an electrical resistance heated
hydraulic press (model EMIC) at ∼10MPa and 160°C during
10 minutes.

)e hardness (HD) test was carried out according to
ASTM D 676 Standard [25] using a Zwick durometer. )e
tensile strength (TS) and elongation at break (EB) tests were
carried out according to ASTMD 412 Standard [26] using an
EMICDL 2000 testing machine.)e rebound resiliency (RS)
was determined in accordance with ASTM D2632 using
a rebound tester [27]. For each mixture, in each replication,
the property >nal value was taken as the average of the test
results obtained for >ve di?erent test pieces.

2.4. Optimisation Strategy. )e experimental results ob-
tained for each property were used to iteratively calculate,
with STATISTICA, the coe&cients of a regression equation,
until a statistically relevant model and response surface was
obtained, relating that property value with the weight
fractions of calcium carbonate (CC), para&nic oil (PO), and
vulcanising accelerator (VA) present in the corresponding
mixture of raw materials.

A PSO algorithm was developed using the property
model equations obtained with STATISTICA and common
limiting property values (those of the reference automotive
hoses manufactured by NSO Borrachas, Joinville, SC, Bra-
zil), aiming at >nding the best composition range (weight
fractions) that meets the property limits while minimising
costs of the composites.

3. Results and Discussion

3.1. Measured Properties and Statistical Analysis. Table 4
presents the values of hardness (HD), tensile strength (TS),
elongation at break (EB), and rebound resiliency (RS) ob-
tained for the nine mixtures in two replications. Material costs
for the ninemixtures in replication 1 are also shown in Table 4.

Table 5 shows the results of the variance analysis of the
regression equations obtained for HD, TS, EB, and RS, using
the nomenclature commonly found in the literature (major
statistical properties: p values and coe&cient of multiple de-
termination R2) [7, 8]. It can be seen that, in all cases,
the nonlinear models are statistically signi>cant at the required
level (p value≤ signi>cance level) and present small variability
(high coe&cients of multiple determination). Although only
e?ects with p value lower than 0.10 were considered signi>cant,
p values higher than 0.10 were kept in Table 5 because those
e?ects should appear in the models. In all cases, the errors
could be considered randomly distributed around a zero mean
value (i.e., they are uncorrelated), which suggests a common
constant variance. On the basis of this analysis, the regression
models obtained were accepted to describe the e?ect of con-
tents of raw materials (CC, PO, and VA) on HD, TS, EB, and
RS, and the >nal results are (1). )ese equations are all referred
to the weight fractions of the components calcium carbonate
(X1), para&nic oil (X2), and vulcanising accelerator (X3), so that
mixing of raw materials can easily be carried out.

HD � 91.45− 42.13X2 + 252.07X3 + 10.64X1X2
2
,

TS � 12.39− 0.06X1 + 1.72X1
2 − 1.76X2

2 − 890.02X3
2

− 19.51X1X2 + 16.22X1X2
2
,

EB � 475.55− 56.58X1 − 103.51X2 + 471.24X2
2

− 1040.76X3 − 77.94X1X2
2
,

RS � 29.49− 4.94X1 − 132.57X3 − 2.44X1X2
2
.

(1)

3.2. Experimental Validation of the Models. )ree extra
mixtures, F1, F2, and F3 (check-point mixtures), were used
to validate the calculated statistical models (the mixtures
and their test pieces were prepared following the same
procedure as before). Table 6 presents the compositions of
those three mixtures and the corresponding measured and
predicted values for HD, TS, EB, and RS. It can be seen that
the estimates calculated using (1) can be higher or lower
than, but are always very close to, the corresponding ex-
perimental value (low error), which validates the calculated
models.

3.3. Cost and Property Optimisation Using PSO Algorithm.
Following the same procedure and reasoning described
above for the compounds mechanical properties, a valid and
signi>cant regression model was also obtained for the cost of
mixtures (CT), which can be described by the following
equation:

CT � 2.68− 0.66X1 − 0.26X2 + 0.28X3. (2)

Table 3: Mixture compositions (weight fractions of chosen factors
only) in the 33−1 fractional factorial design.

Mixture
Weight fraction

CC (X1) PO (X2) VA (X3)
1 0.000 0.400 0.008
2 0.000 0.600 0.020
3 0.000 0.800 0.014
4 0.500 0.400 0.020
5 0.500 0.600 0.014
6 0.500 0.800 0.008
7 1.000 0.400 0.014
8 1.000 0.600 0.008
9 1.000 0.800 0.020

Table 2: Factors and levels (weight fraction) adopted for the 33−1

fractional factorial design used to de>ne EPDM rubber composites.

Factor
Level (weight fraction)

Low Medium High
Calcium carbonate (CC) 0.000 0.500 1.000
Para&nic oil (PO) 0.400 0.600 0.800
Vulcanising accelerator (VA) 0.008 0.014 0.020
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In mathematical language, the optimisation problem
consists in minimising this objective function (CT) with
respect to the design variables X1, X2, and X3, subjected to
the nonlinear inequality constraints posed on HD, TS,
EB, and RS, as presented in Table 7. )ese property ranges
(optimisation goals) were chosen having in mind the
standard property speci>cation range commonly required
for the heat- and air-resistant products used as reference.
From an industrial competitiveness point of view, property
values outside (above) that range are not so interesting, as
they certainly imply extra cost.

)e result of the PSO algorithm procedure (minimum
costs) is returned as a composition range (weight fraction)
for each of the raw materials CC, PO, and VA. )ese ranges
are also presented in Table 7.

An endless number of mixture composition points can
be found which meet the requirements of the properties at
low cost values. Alternatively a 2D graphical visualisation
can be used, by keeping constant one of the factors (fea-
sibility curve). In the present case, the CC content was
chosen as the base reference value, and contents of all the
factors were expressed as weight fraction relative to that CC
content. )us, feasibility curves can be obtained as VA
versus PO for various constant CC contents, as shown in
Figure 1.

Figure 1 clearly shows that the function describing the
in>nite number of mixtures with properties within the
speci>ed ranges is complex and nonlinear. For a constant
CC weight fraction equal to 1.00, optimised costs vary from
1.82 to 1.87 US$/kg, and the PO weight fraction can vary
between 0.60 and 0.78, whereas the VA weight fraction has
a much narrower range, varying from 0.008 to 0.009.
Similarly, when the CC level is kept constant at 0.50, the
composite costs vary between 2.17 and 2.23 US$/kg. )e
optimum VA weight fraction varies nearly in the same
range, but the optimum PO weight fractions have a dif-
ferent range, in this case from 0.47 to 0.68. Calcium
carbonate at lower levels has a more complex e?ect on the
optimisation and results in higher costs, ranging from
2.53 to 2.58 US$/kg. Although the PO weight fraction
range is narrower (0.40 to 0.60), the VA weight fraction has
a broader range, from 0.008 to 0.017.

Table 8 presents the raw materials’ weight frac-
tions and property-predicted values for three illustrative
mixtures within the optimum range and shows the
corresponding costs, ranging from 1.92 to 2.37 US$/kg.
From those weight fractions’ compositions, the formu-
lations of the corresponding optimised EPDM rubber
composites can now be calculated back from the refer-
ence CC content (125 phr). )e full formulations corre-
sponding to the mixtures in Table 8, meeting the

Table 4: Measured values of hardness (HD), tensile strength (TS), elongation at break (EB), rebound resilience (RS), andmaterial costs (CT)
for the nine designed mixtures in two replications.

Mixture HD (Shore A) TS (MPa) EB (%) RS (%) Cost (US$/kg)

Replication 1

1 77.0± 0.7 12.5± 0.1 496.7± 08.2 27.8± 1.1 2.63
2 70.8± 0.5 10.7± 0.2 588.0± 10.9 26.6± 0.6 2.55
3 59.4± 0.6 11.2± 0.6 670.0± 11.6 26.8± 0.5 2.47
4 79.0± 0.0 9.5± 0.2 453.3± 10.3 25.0± 0.7 2.22
5 70.0± 0.7 9.0± 0.2 550.0± 10.0 24.4± 0.6 2.17
6 61.4± 0.6 8.7± 0.2 636.0± 08.9 26.4± 0.6 2.11
7 80.8± 0.5 8.1± 0.2 403.3± 08.2 22.6± 0.9 1.91
8 72.4± 0.9 7.2± 0.2 468.0± 10.9 23.8± 0.5 1.89
9 65.2± 1.3 7.4± 0.2 565.0± 10.5 24.6± 0.6 1.87

Replication 2

1 79.8± 0.5 11.6± 1.8 496.6± 08.2 29.6± 0.9 —
2 70.8± 0.8 11.8± 0.4 552.0± 10.6 26.0± 0.0 —
3 63.4± 0.9 11.1± 0.4 670.0± 11.6 29.0± 1.2 —
4 82.4± 1.1 9.3± 0.2 436.0± 08.9 25.2± 1.1 —
5 76.4± 0.9 9.6± 0.2 512.5± 09.6 26.2± 0.5 —
6 61.2± 0.8 9.0± 0.2 647.5± 09.6 26.6± 0.6 —
7 73.0± 0.7 8.8± 0.2 470.0± 11.6 ∗ —
8 73.0± 1.2 7.5± 0.2 486.6± 10.3 25.2± 0.5 —
9 75.6± 0.6 7.4± 0.2 566.7± 10.3 22.6± 0.6 —

∗Value could not be measured.

Table 5: Major statistical properties [7, 8] relevant for variance
analysis (R2, p value for the signi>cance and lack-of->t tests) of the
calculated regression models (X1 calcium carbonate, X2 para&nic
oil, and X3 vulcanising accelerator).

E?ect
p value∗

HD TS EB RS
X1 — 0.00 0.00 0.00
X1
2 — 0.07 — 0.07

X2 0.00 — 0.00 —
X2
2 — 0.00 0.13 0.00

X3 0.06 0.10 0.12 0.10
X3
2 — 0.20 — 0.20

X1X2 — 0.27 — 0.27
X1X2

2 0.03 0.26 0.09 0.25
R2 0.85 0.82 0.96 0.96
Lack-of->t 0.99 0.89 0.77 0.55
∗p values of the e?ects used in the regression models. Other insigni>cant
p values (>0.10) are not presented.
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requirements of all the mechanical properties, are pre-
sented in Table 9.

4. Conclusions

)is study showed that fractional factorial design of experi-
ments in two replicates based on three mixture ingredients

generally used on EPDM rubber composites and a particle
swarm optimisation (PSO) algorithm are promising methods
to design composition variables.

For the chosen key raw materials (calcium carbonate,
para&nic oil, and CBS vulcanising accelerator) and the
processing conditions under consideration, the optimisa-
tion results readily show that there is an in>nite number

Table 7: Constraint requirements posed on mechanical properties (HD, TS, EB, and RS) and raw materials’ (CC, PO, and VA) weight
fraction ranges that minimise costs of the composites, as returned by the PSO algorithm.

Name Goal Lower limit Upper limit
HD (Shore A) In the range 65 75
TS (MPa) In the range 7.5 12.5
EB (%) In the range 490 560
RS (%) In the range 23 28
CT (US$/kg) Minimise — —
X1 (CC) In the range 0.00 1.00
X2 (PO) In the range 0.40 0.80
X3 (VA) In the range 0.008 0.020

0.017

0.015

0.013

0.011

0.009

0.007

V
A

 fr
ac

tio
n 

(X
3)

0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.80
PO fraction (X2)

CC = 0.0

CC = 0.5
CC = 1.0

Figure 1: Feasibility curves relating VA and PO weight fractions for optimised cost of composites with properties within the speci>ed
ranges, when the CC weight fraction is kept constant at 1.0, 0.5, and 0.0.

Table 8: Examples of optimised mixture compositions and predicted values of the corresponding properties.

Mixture point
Weight fractions HD RS EB TS Cost

X1 (CC) X2 (PO) X3 (VA) (Shore A) (%) (%) (MPa) (US$/kg)
1 0.860 0.755 0.009 66.8 23.0 570.8 7.8 1.92
2 0.677 0.616 0.015 72.0 23.5 516.7 8.3 2.08
3 0.303 0.438 0.008 75.6 26.8 490.6 10.5 2.37

Table 6: Composition (weight fraction) of the check-point mixtures F1, F2, and F3 and corresponding measured (M) and predicted (P)
values of hardness (HD), tensile strength (TS), elongation at break (EB), and rebound resilience (RS).

Wt. fraction F1 F2 F3
X1 (CC) 0.303 0.677 0.860
X2 (PO) 0.438 0.616 0.755
X3 (DV) 0.008 0.015 0.009
Property P M P M P M
HD (Shore A) 68.5 69.8± 0.7 76.2 78.4± 0.7 69.5 70.6± 0.7
RS (%) 26.5 27.0± 0.0 25.0 25.0± 0.0 24.3 24.0± 0.0
EB (%) 585.3 668.3± 9.8 470.5 522.0± 19.2 551.0 526.7± 12.1
TR (MPa) 10.47 10.10± 0.3 8.92 9.32± 0.3 7.65 7.43± 0.2
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of compositions that meet speci>ed property values with
minimum costs. For example, within the base composi-
tion range investigated, mixture costs as low as 1.92 US$/kg
can be achieved with the use of 107 phr of calcium
carbonate, 95 phr of para&nic oil, and 1.13 phr of CBS
vulcanising accelerator. )e predicted values for the cor-
responding compound properties are 66.8 Shore A for
hardness, tensile strength of 7.8MPa, 570.8% elongation
at break, and 23.0% rebound resilience.

In this way, this investigation showed that the speci>ed
characteristics of the desired product can be subjected
to restrictions typical of the manufacture process, and
a broad range of compositions can still be selected so that the
>nal product has minimum cost and can be comfortably
manufactured.
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