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First-principles calculations combined with homogeneous deformation methods are used to investigate the second- and third-
order elastic constants of YNi2B2C with tetragonal structure. The predicted lattice constants and second-order elastic constants of
YNi2B2C agree well with the available data. The effective second-order elastic constants are obtained from the second- and third-
order elastic constants for YNi2B2C. Based on the effective second-order elastic constants, Pugh’s modulus ratio, Poisson’s ratio, and
Vickers hardness of YNi2B2C under high pressure are further investigated. It is shown that the ductility of YNi2B2C increases with
increasing pressure.

1. Introduction

Recently, a considerable number of superconducting binary,
ternary, and quaternary Ni-based systems are reported [1]
and Ni element is ferromagnetic; the identification of super-
conductivity in Ni-based compounds is of high current
interest. Cava et al. [2] have synthesized the quaternary nickel
borocarbides RNi2B2C (R=Y and rare earths) and found that
Lu and Y compounds exhibit the highest superconducting
transition temperatures (𝑇𝑐 = 16.6 and 15.6 K, resp.), while
compounds with magnetic rare earths exhibit lower 𝑇𝑐: 𝑇𝑚
(𝑇𝑐 = 11 K), 𝐸𝑟 (𝑇𝑐 = 10.5 K), and 𝐻𝑜 (𝑇𝑐 = 8K). Because
RNi2B2C [3] has the elevated superconducting transition
temperature for some of the members of the family (R = Lu,
Y) or the interesting interaction between superconductivity
and magnetic ordering phenomena for the compounds with
R = magnetic rare earth, considerable theoretical as well as
experimental attention has been focused on these quaternary
Ni-based compounds. Early work reported that single crystal
YNi2B2C, one of the quaternary intermetallic compounds,
is a traditional and isotropic superconductor. Therefore,
a lot of work including theory and experiment has been
done to examine various properties of YNi2B2C [4–10].
For example, Godart el al. [11] systematically investigated

the structural, superconducting, and magnetic properties of
YNi2B2C by X-ray diffraction measurements. Lee et al. [12]
systematically researched the electronic structures of Ni-
based superconducting quaternary compounds YNi2B2X (X
= B, C, N, and O) by employing the linearized muffin-tin
orbital band method. Meenakshi et al. [13] investigated the
high pressure behavior of YNi2B2C at room temperature
by electrical resistivity, thermopower, and X-ray diffraction
incorporating imaging plate. More recently, Wang et al. [3]
calculated the elastic and electronic structure properties of
YNi2B2C under pressure by performing the generalized gra-
dient approximation (GGA) and local density approximation
(LDA) correction scheme in the frame of density functional
theory (DFT). All these researches are very important to the
further scientific and technical investigations.

At it is well known, elastic constants of a solid are impor-
tant since some physical properties such as the bulkmodulus,
shear modulus, Young’s modulus, and Poisson’s ratio can be
derived from the elastic constants and the strength of materi-
als and the velocity of sound of longitudinal wave and shear
wave can be also determined from its elastic constants [14].
In the finite-strain theory of elastic deformation, the second-
order elastic constants (SOECs) are sufficient to describe the
linear elastic stress-strain response [15]. In nonlinear elastic
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theory, high-order elastic constants, such as third-order
elastic constants (TOECs), play an important role as well as
SOECs [16]. TOECs not only are useful in describing the
mechanical response of crystals under high stress and strain,
but also serve as a basis for describing anharmonic properties
such as thermal expansion, phonon-phonon interaction, and
Grüneisen parameter [17, 18]. Though many experiments
have been performed to determine SOECs and high-order
elastic constants [19], to obtain a complete set of TOECs
is still important. However, the TOECs are very difficult to
measure experimentally. Recently, a simple method using
first-principles calculations has been employed to determine
TOECs [20–22], and their results show good agreement with
experiments. So far, as we know, the nonlinear elasticity as
well as TOECs in YNi2B2C has not been reported in the
literature. To understand the physical properties of YNi2B2C
and provide significant information with respect to applica-
tions of YNi2B2C, it is very necessary to study the nonlinear
elastic properties. In this paper, the complete set of TOECs
for YNi2B2C are presented from first-principles calculations
combined with the method of homogeneous deformation,
and the effective SOECs are also obtained.

2. Theory and Computational Details

Ourmethod for calculating elastic constantsmentions homo-
geneous continuum elasticity theory [23–25]. After applying
a finite homogeneous deformation to a material, the initial
configuration 𝑥𝑖 at the equilibrium will move to the final
configuration 𝑥𝑖 . The deformation gradient is described as
follows:

𝐹𝑖𝑗 = 𝜕𝑥𝑖
𝜕𝑥𝑗 . (1)

From the deformation gradients, we may define the Lagran-
gian strain

𝜂𝑖𝑗 = 1
2
3

∑
𝑝=1

(𝐹𝑝𝑖𝐹𝑝𝑗 − 𝛿𝑖𝑗) . (2)

The elastic energy (Δ𝐸) can be expanded in a Taylor series in
terms of the strain tensor:

Δ𝐸 = 𝑉
2!∑
𝑖𝑗𝑘𝑙

𝐶𝑖𝑗𝑘𝑙𝜂𝑖𝑗𝜂𝑘𝑙 + 𝑉
3! ∑
𝑖𝑗𝑘𝑙𝑚𝑛

𝐶𝑖𝑗𝑘𝑙𝑚𝑛𝜂𝑖𝑗𝜂𝑘𝑙𝜂𝑚𝑛, (3)

where 𝑉 is the volume of the unstrained lattice. When the
elastic energy Δ𝐸 is the internal energy 𝑈 and the Helmholtz
free energy 𝐹, the elastic constants represent the isentropic
and isothermal, respectively. Since our first-principles calcu-
lations are performed at 0 K, 𝐹 = 𝑈 − 𝑇𝑆 = 𝑈, the isentropic
elastic constants are equal to the isothermal elastic constants.
After using the Voigt notation for the strain tensors 𝜂11 →
𝜂1, 𝜂22 → 𝜂2, 𝜂33 → 𝜂3, 𝜂23 → 𝜂4/2, 𝜂31 → 𝜂5/2, and
𝜂12 → 𝜂6/2, (3) can be simply expressed as

Δ𝐸 = 𝑉
2!
6

∑
𝑖,𝑗=1

𝐶𝑖𝑗𝜂𝑖𝜂𝑗 + 𝑉
3!
6

∑
𝑖,𝑗,𝑘=1

𝐶𝑖𝑗𝑘𝜂𝑖𝜂𝑗𝜂𝑘. (4)

For YNi2B2C with tetragonal structure, there are six
independent SOECs and twelve independent TOECs. The
number of applied strain tensors must be as large as the
number of independent TOECs for solving the TOECs. To
obtain all the SOECs andTOECs ofYNi2B2C,we select twelve
simple deformation modes such that the strain tensor only
has one or a few components. Any nonzero component of
each strain tensor is denoted by a single scalar parameter 𝜉.
After inserting various strain tensors into the above strain
energy,we canfind that the strain energy can be expressed as a
polynomial function of the strain tensor parameter 𝜉; namely,

Φ = Δ𝐸
𝑉 = 1

2Λ 2𝜉2 + 1
6Λ 3𝜉3 + 𝑂 (𝜉4) , (5)

where the coefficients Λ 2 and Λ 3 are of SOECs and TOECs
of the crystals, respectively.The selected twelve strain tensors
𝐴𝛼 (𝛼 = 1, 2, . . . , 12) and the corresponding coefficients Λ 2
and Λ 3 are presented in Table 1. For each strain tensor 𝐴𝛼,
the strain parameter 𝜉 varies from −0.05 to 0.05 with a finite
step size 0.005.

We have performed first-principles calculations based on
the DFT level, using the VASP code developed at the Institut
für Materialphysik of Universität Wien [26–28].The ultrasoft
pseudopotentials are employed to describe the electron-ion
interactions. To compare the performance of different approx-
imations of exchange-correlation interaction, in the structure
calculations of YNi2B2C, both the GGA proposed by Per-
dew and Wang [29] and the LDA proposed by Vosko et al.
[30] are considered as the exchange-correlation potential.
For the elastic constants calculation, the effects of exchange-
correlation interaction are treated with the GGA. For the
Brillouin zone (BZ) integrals, reciprocal space is represent
by the Monkhorst-Pack special 𝑘-point scheme [31]. Since
high accuracy is needed to calculate the TOECs, the 𝑘-point
mesh size with 15 × 15 × 5 and cutoff energy with 550 eV are
used to calculate the lattice and elastic constants. The total-
energy of electronic self-consistency is converged to 10−6 eV.
All the calculations avoid wrap-around errors and use an
augmentation grid that is exactly twice as large as the coarse
grid for the representation of the pseudo wave functions.

3. Results and Discussion

3.1. Structure Parameters. For the tetragonal structure
YNi2B2C, the initial structural model is built according to
previous available lattice parameters 𝑎 and 𝑐. The tetragonal
YNi2B2C has 𝐼4/𝑚𝑚𝑚 space group and its crystal structure
is shown in Figure 1. In a unit cell, the atom of Y is set at
position (0, 0, 0), the two Ni atoms are set at positions (0, 0.5,
0.25) and (0, 0.5, 0.75), the two B atoms are set at positions
(0, 0, 𝑧) and (1, 1, 1−𝑧), and the C atom is set at position (0, 0,
0.5). We optimize the structural parameters; full relaxations
are carried out with respect to the volume, shape, and all
internal atomic positions for the unit cell. In Table 2, we
list our results together with the available experimental
data [10, 11, 32, 33] and other theoretical results [1, 3]. The
optimized lattice parameters are 𝑎 = 3.543 Å, 𝑐 = 10.428 Å
from the GGA method and 𝑎 = 3.478 Å, 𝑐 = 10.188 Å from
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Table 1: Selected strain tensors and the coefficients Λ 2 and Λ 3 in equation (5) as the linear combinations of the second- and third-order
elastic constants for tetragonal crystal.

Strain Λ 2 Λ 3
𝐴1 = (𝜉, 0, 0, 0, 0, 0) 𝐶11 𝐶111
𝐴2 = (𝜉, 𝜉, 0, 0, 0, 0) 2𝐶11 + 2𝐶12 2𝐶111 + 6𝐶112
𝐴3 = (0, 0, 𝜉, 0, 0, 0) 𝐶33 𝐶333
𝐴4 = (𝜉, 0, 𝜉, 0, 0, 0) 𝐶11 + 2𝐶13 + 𝐶33 𝐶111 + 3𝐶113 + 3𝐶133 + 𝐶333
𝐴5 = (𝜉, 0, −𝜉, 0, 0, 0) 𝐶11 − 2𝐶13 + 𝐶33 𝐶111 − 3𝐶113 + 3𝐶133 − 𝐶333
𝐴6 = (𝜉, 𝜉, 𝜉, 0, 0, 0) 2𝐶11 + 2𝐶12 + 4𝐶13 + 𝐶33 2𝐶111 + 6𝐶112 + 6𝐶113 + 6𝐶123 + 6𝐶133 + 𝐶333
𝐴7 = (𝜉, 0, 0, 2𝜉, 0, 0) 𝐶11 + 4𝐶44 𝐶111 + 12𝐶144
𝐴8 = (𝜉, 0, 0, 0, 2𝜉, 0) 𝐶11 + 4𝐶44 𝐶111 + 12𝐶155
𝐴9 = (𝜉, 0, 0, 0, 0, 2𝜉) 𝐶11 + 4𝐶66 𝐶111 + 12𝐶166
𝐴10 = (0, 0, 𝜉, 2𝜉, 0, 0) 𝐶33 + 4𝐶44 𝐶333 + 12𝐶344
𝐴11 = (0, 0, 𝜉, 0, 0, 2𝜉) 𝐶33 + 4𝐶66 𝐶333 + 12𝐶366
𝐴12 = (0, 0, 0, 2𝜉, 2𝜉, 2𝜉) 8𝐶44 + 4𝐶66 48𝐶456

Y 
Ni 

C 
B

z

Figure 1: Crystal structure of YNi2B2C.

the LDA method. The results with GGA are slightly larger
than those with LDA. Comparing with the results with LDA,
the results with GGA are closer to the previous results. We
also obtained the crystal coordinate 𝑧 = 0.358 from the GGA
method, which agrees well with the results by Wang et al.
[3], Ravindran et al. [1], and Siegrist et al. [32] but is far from
that by Belger et al. [33]. The crystal coordinate obtained
from the LDA method is 0.355; the difference between GGA
and LDA is small; however, the result from GGA is closer
to the experimental results. In a word, from the structural
parameters, it is found that the results from GGA seem to
be the best. Therefore, in the following, the calculations with
GGA are used to obtain the SOECs and TOECs of YNi2B2C.

3.2. The SOECs and TOECs. The strain-energies for
YNi2B2C, including the results of the first-principles
calculations and the fitted polynomials, are shown in
Figure 2. The discrete points denote the values from the
first-principles calculations and the solid lines represent
the results determined from the third-order polynomial
fitting. It is worth noting that for YNi2B2C with Lagrangian
strains up to 5.0%, including the terms up to third order in
energy expansion sufficed to obtain good agreement with
our ab initio results. In other words, the terms up to the
third order in energy expansion produce the reliable results.
Furthermore, we focus on examining for which range of
strains the third-order effects dominate the properties of
YNi2B2C. Taking 𝐴6 as an example, Figure 3 shows the
curves of the linear elasticity in comparison with nonlinear
elasticity as well as the first-principles calculations. It is
easily found that the linear elasticity is not sufficient and the
relative error between the linear elasticity and the nonlinear
elasticity is larger than 11.3% in strain energy density when
the applied strain is larger than about 3.0%, so the nonlinear
elasticity needs to be considered.

Knowledge of the values of elastic constants is cru-
cial for understanding the structural stability, the bonding
characteristic between the adjacent atomic planes, and the
anisotropic character of the bonding. Table 3 gives the present
SOECs as well as the experimental results [7, 8] and the
other theoretical data [3]. For SOECs values, sometimes
we possibly obtain slightly different results from different
fitted curves. For example, 𝐶13 calculated from coefficients
in 𝐴4(𝜉), 𝐴5(𝜉), and 𝐴6(𝜉) are 136.74GPa, 132.84GPa, and
137.47GPa, respectively, and 𝐶44 calculated from coefficients
in 𝐴7(𝜉), 𝐴8(𝜉), and 𝐴10(𝜉) are 62.60GPa, 65.07GPa, and
59.32GPa, respectively. In these cases, we give the average
of all obtained values in Table 3. It is found that our values
of SOECs provide good agreement with the results obtained
from the previous calculations and experiments, which
provides guarantee for calculating the TOECs accurately.
Obviously, the calculated elastic constants of YNi2B2C obey
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Table 2: Calculated lattice parameters at 𝑇 = 0K and 𝑃 = 0GPa compared with the experimental data and other theoretical results.

Ref. number Methods 𝑎/Å 𝑐/Å 𝑐/𝑎 𝑧
Present VASP ultrasoft GGA 3.543 10.428 2.943 0.358

VASP ultrasoft LDA 3.478 10.188 2.929 0.355
[1] LMTO 3.507 10.485 2.937 0.353

[3]

CASTEP ultrasoft GGA 3.597 10.433 2.9 0.358
CASTEP ultrasoft LDA 3.477 10.232 2.943
CASTEP OTF GGA 3.541 10.482 2.960
CASTEP OTF LDA 3.479 10.256 2.948
CASTEP norm-conserving GGA 3.667 10.947 2.985
CASTEP norm-conserving LDA 3.726 10.617 2.849

[10] Exp. (neutron scattering) 3.51 10.53 3.0
[11] Exp. (X-ray diffraction, 300K) 3.524 10.545 2.992 0.375
[32] Exp. (X-ray reflections) 3.526 10.543 2.990 0.358
[33] Exp. (single crystal diffraction) 3.5258 10.5425 2.990 0.1409

A1

A2

A3

A4

A5

A6

×108

−0.02 0 0.02 0.04−0.04
Lagrangian strain 𝜉

0

5

10

15

20

25

30

St
ra

in
 en

er
gy

 d
en

sit
y
Φ

(Jm
−
3
)

(a)

A7

A8

A9

A10

A11

A12

×108

−0.02 0 0.02 0.04−0.04
Lagrangian strain 𝜉

0

2

4

6

8

10

12

14

16
St

ra
in

 en
er

gy
 d

en
sit

y
Φ

(Jm
−
3
)

(b)

Figure 2:The strain energy relations for tetragonal YNi2B2C.The discrete points denote the values from first-principles calculations and the
solid curves represent the results obtained from the third-order polynomial fitting.

the following well-known mechanical stability criteria [34]
for the tetragonal structure:

𝐶11 > 𝐶12 ,
2𝐶213 < 𝐶33 (𝐶11 + 𝐶12) ,
𝐶44 > 0,
𝐶66 > 0.

(6)

Thus, YNi2B2C with tetragonal structure is mechanically
stable at the ground state. The elastic constants 𝐶11 and𝐶33 are directly related to sound propagation along the
crystallographic direction, while other shear elastic constants

(𝐶12, 𝐶13, 𝐶44, and 𝐶66) are dominated along the nonaxial
sound propagation. The results show that it has larger 𝐶𝑖𝑗
along the axial directions rather than the nonaxial directions
indicating that it is more uncompressible along axial direc-
tions. We care, moreover, that 𝐶11 > 𝐶33, which indicates
that the atomic bonding strength along the [100] direction
between the nearest neighbors is stronger than that along the
[001] direction.

The calculated TOEC values of tetragonal YNi2B2C single
crystal are summarized in Table 4. Unfortunately, there are
currently no experimental and other theoretical values for
comparison. It is known that the TOECs provide a compre-
hensive knowledge concerning the vibrational anharmonicity
of the acousticmodes in long-wavelength limit. FromTable 4,
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Table 3: Second-order elastic constants 𝐶𝑖𝑗 (GPa) of tetragonal YNi2B2C at 0K and 0GPa, in comparison with the previous calculations and
available experimental measurements.

Ref. number Methods 𝐶11 𝐶12 𝐶13 𝐶33 𝐶44 𝐶66
Present VASP ultrasoft GGA 282.60 147.22 135.68 269.91 62.33 140.68
[3] CASTEP GGA and OTF 292.7 133.6 138.6 282.4 68.6 129.8

[7]
Exp. (RUS, 300K) 294.6 157.7 125.6 261.5 64.4 142.1
Exp. (time-of-flight, 300K) 284.7 145.7 — — 67.1 143.3
Exp. (time-of-flight, 2 K) 292 149.8 — — 67.4 132

[8] Exp. (time-of-flight, 14.2 K) 222 102a — 212 54.5 131
aCalculated from the quoted values of 𝐶11 and (𝐶11 − 𝐶12)/2 [8].

Table 4: Third-order elastic constants (𝐶𝑖𝑗𝑘) of tetragonal YNi2B2C (in GPa).

𝐶111 𝐶112 𝐶113 𝐶123 𝐶133 𝐶144 𝐶155 𝐶166 𝐶333 𝐶344 𝐶366 𝐶456
−1136.50 −945.04 −624.38 195.47 −973.51 −173.89 −358.18 −889.92 −494.51 −43.66 111.09 −70.61

DFT results
The third-order polynomial fitting
The second-order polynomial fitting
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Figure 3: Energy as a function of the Lagrangian strain parameter 𝜉
for the particular strain tensor 𝐴6. The circles indicate the values of
the first-principles calculations; solid and dashed curves represent
the results obtained from nonlinear and linear elasticity theory,
respectively.

it is observed that the TOECs values of tetragonal YNi2B2C
are calculated to be negative except for two positive values
of 𝐶123 (=195.47GPa) and 𝐶366 (=111.09GPa). Furthermore,
the absolute value of 𝐶111 is the greatest among the TOECs
indicating the anisotropy along the basal plane to be more
pronounced than along the unique axis.

3.3. Elastic Properties under Pressure. It is helpful to describe
the effective SOECs under different pressure using the SOECs
and TOECs. The effective SOECs 𝐶𝑃𝑖𝑗 of a crystal can be

obtained when subjected to pressure 𝑃. For YNi2B2C with
tetragonal structure, the expressions for the six effective
SOECs are as follows [35]:

𝐶𝑃11 = 𝐶11 + 𝜂 (4𝐶11 + 2𝐶12 + 𝐶111 + 𝐶112)
+ 𝜁 (−𝐶11 + 2𝐶13 + 𝐶113) ,

𝐶𝑃12 = 𝐶12 + 𝜂 (2𝐶12 + 2𝐶112) + 𝜁 (−𝐶12 + 2𝐶123) ,
𝐶𝑃13 = 𝐶13 + 𝜂 (𝐶113 + 𝐶123) + 𝜁 (𝐶13 + 𝐶133) ,
𝐶𝑃33 = 𝐶33 + 𝜂 (4𝐶13 − 2𝐶33 + 2𝐶133)

+ 𝜁 (5𝐶33 + 𝐶333) ,

𝐶𝑃44 = 𝐶44 + 𝜂 (1
2𝐶11 + 1

2𝐶12 + 𝐶13 + 𝐶144 + 𝐶155)

+ 𝜁 (1
2𝐶13 + 1

2𝐶33 + 𝐶44 + 𝐶344) ,

𝐶𝑃66 = 𝐶66 + 𝜂 (𝐶11 + 𝐶12 + 2𝐶66 + 2𝐶166)
+ 𝜁 (𝐶13 − 𝐶66 + 𝐶366) ,

(7)

where the Lagrangian strains 𝜂 and 𝜁 can be obtained in terms
of the pressure 𝑃 and SOECs as

𝜂 = (𝐶13 − 𝐶33) 𝑃
(𝐶11 + 𝐶12) 𝐶33 − 𝐶233

,

𝜁 = 2 (𝐶13 − 𝐶11 − 𝐶12) 𝑃
(𝐶11 + 𝐶12) 𝐶33 − 𝐶233

.
(8)

The variation of the effective SOECs 𝐶𝑃𝑖𝑗 with pressure in the
range of 0–5GPa for YNi2B2C on the basis of the calculated
SOECs and TOECs is shown in Figure 4. It is observed
that the longitudinal mode 𝐶11 as well as the shear modes
𝐶12, 𝐶13, 𝐶44, and 𝐶66 of YNi2B2C can increase linearly;
in contrast the longitudinal mode 𝐶33 decreases linearly
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Figure 4: The effective second-order elastic constants (𝐶𝑃𝑖𝑗) versus pressure (𝑃) of tetragonal YNi2B2C.
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Figure 5: The pressure dependence of (a) 𝐵 and 𝐺 and (b) 𝐺/𝐵, ], and 𝐻V.

with increasing the pressure. 𝐶11 and 𝐶13 move up very
sharply, and 𝐶12, 𝐶44, and 𝐶66 have the same growth rate.
For a tetragonal crystal, the mechanical stability leads to
restrictions on the elastic constants under pressure as follows
[36]: 𝐶𝑃11 − 𝐶𝑃12 > 0, 𝐶𝑃11 + 𝐶𝑃33 − 2𝐶𝑃13 > 0, 𝐶𝑃𝑖𝑖 > 0, and 2𝐶𝑃11+
𝐶𝑃33 + 2𝐶𝑃12 + 4𝐶𝑃13 > 0, where 𝐶𝑃𝛼𝛼 = 𝐶𝑃𝛼𝛼 − 𝑃 (𝛼 = 1, 3, 4, 6),
𝐶𝑃12 = 𝐶𝑃12 + 𝑃, and 𝐶𝑃13 = 𝐶𝑃13 + 𝑃. It is obvious that the
elastic constants of YNi2B2C satisfy all of these conditions in
the pressure range of 0–5GPa.

Thebulkmodulus𝐵 represents the resistance of amaterial
to volume (bond-length) change under hydrostatic pressure,
and the shear modulus 𝐺 describes the resistance to shape

(angle-bond) change caused by a shearing force. Materials
with high bulk modulus but low shear modulus will reflect
good ductility.The bulk modulus 𝐵 and shear modulus 𝐺 can
be calculated by 𝐵 = (1/9)(2𝐶𝑃11 + 2𝐶𝑃12 + 4𝐶𝑃13 + 𝐶𝑃33) and
𝐺 = (1/15)(2𝐶𝑃11 − 𝐶𝑃12 − 2𝐶𝑃13 + 𝐶𝑃33 + 6𝐶𝑃44 + 3𝐶𝑃66) [37].
Substituting the values of the effective SOECs𝐶𝑃𝑖𝑗 into the bulk
modulus 𝐵 and shear modulus 𝐺 expressions, we can obtain
the values of 𝐵 and 𝐺 under different pressure. Figure 5(a)
shows the pressure dependence of 𝐵 and 𝐺 for YNi2B2C. It
can be seen from Figure 5(a) that bulk modulus increases
but the shear modulus reduces with increasing pressure,
which indicates that the ductility of YNi2B2C increases with
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increasing pressure. Based on the bulkmodulus and the shear
modulus, Pugh [38] has proposed that the quotient of 𝐺/𝐵
can predict the brittle and ductile behavior of materials, and
thus a low value of 𝐺/𝐵 is associated with ductility while a
high value is associatedwith brittleness. All the values of Pugh
ratio 𝐺/𝐵 in the pressure range of 0–5GPa are showed in
Figure 5(b). Obviously, all the values of 𝐺/𝐵 decrease with
pressure which means that pressure can improve ductility. In
addition, Poisson’s ratio with ] = (3𝐵−2𝐺)/2(3𝐵+𝐺) can also
reflect the ductile properties. Poisson’s ratio is reversely pro-
portional to 𝐺/𝐵 [39]; that is to say, the larger the Poisson
ratio, the better the ductility. Figure 5(b) also presents Pois-
son’s ratio of YNi2B2C as a function of pressure. It is clearly
shown that Poisson’s ratio has the opposite change tendency
with 𝐺/𝐵; that is, we can obtain the same conclusion from
the change of Poisson’s ratio and 𝐺/𝐵; namely, the ductility
of YNi2B2C increases with increasing pressure. As we all
known, both Pugh’s modulus ratio and Poisson’s ratio have
close relationship with the hardness of materials. Hardness
is another important parameter to describe the mechanical
properties of a material. The formula of the Vickers hardness
proposed by Chen et al. [40, 41] can be expressed as 𝐻V =
2(𝑘2𝐺)0.585 − 3, where 𝑘 = 𝐺/𝐵. The change in Vickers hard-
ness versus pressure for YNi2B2C is shown in Figure 5(b).
Obviously, the hardness of YNi2B2C decreases with increas-
ing pressure. Besides, the low 𝐺/𝐵 ratio corresponds to
poor hardness. Therefore, the ductility is enhanced with the
decreasing of hardness.

4. Conclusions

In the present work, the SOECs and TOECs of tetragonal
YNi2B2C are systematically investigated using first-principles
methods combined with finite-strain theory. In comparison
with the linear elastic theory, the nonlinear elastic effects
must be considered when the applied strain is larger than
about 3.0%. In terms of the SOECs and TOECs, the effective
SOECs of YNi2B2Care presented. By the elastic stability crite-
ria under isotropic pressure, it is predicted that YNi2B2Cwith
tetragonal structure is mechanically stable in the pressure
range of 0–5GPa. Based on the effective SOECs, Pugh’s mod-
ulus ratio, Poisson’s ratio, and Vickers hardness of YNi2B2C
under high pressure from 0 to 5GPa are further investigated.
Pugh’s modulus ratio and the Vickers hardness decrease and
Poisson’s ratio increases with increasing pressure, resulting in
a decrease of the hardness and an increase of the ductility of
YNi2B2C.
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