
Research Article
Probability of Exceeding Damage States in Plates Using BEM
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An approach to obtain fragility curves taking into account the formulation for shear deformable plate theory with combined
geometric and material nonlinearities and the boundary element method is proposed. It is assumed that the material undergoes
large deflection with small strains./e vonMises yield criterion is used to evaluate the plastic zone and is supposed to have elastic-
perfectly plastic material behaviour. An initial stress formulation is used to formulate the boundary integral equations. /e
domain integrals are evaluated using a cell discretization technique. A total incremental method is applied to solve the nonlinear
boundary integral equations. /e approach is illustrated in a plate subjected to incremental load. /e uncertainties in both
geometric and mechanical properties are considered in order to obtain the structural response. Results show that there are high
probabilities of exceeding the damage state, d, equal to 0.05 while for the rest of the values of d, these probabilities are low.

1. Introduction

Plates are structural elements of great importance because they
are used to characterize multiple mechanical conditions. Due
to this, their analysis and prediction under different conditions
and behaviours are of vital importance in their design. /e
probability that certain parameters exceed limits that could
lead to failure takes an important role in determining such
safety indicators in its design, for which probabilistic analyses
help to find appropriate values for those parameters.

Kirchhoff [1] developed a theory that is currently widely
used and is commonly known as the classical theory of
plates. Reissner [2] on the other hand, enriched the classical
theory with shear deformation contributions on the plate. In
general, the classical theory provides good approximations
when analysing some cases; however, for situations where
the modelling of the stress concentration is required, this
theory is not appropriate because it omits the shear de-
formations. In the theory proposed by Reissner, the problem
is modelled in terms of three degrees of freedom that in-
cludes the generalized displacements and tractions.

In the last three decades, the Boundary Element Method
(BEM) has emerged as a powerful numerical tool for plate
analyses [3]. With this technique, some analyses have been
developed in order to solve linear elastic behaviours on
plates [4, 5]./e boundary integral equation for the model of
the Reissner plate was presented in the work of Weeën [6].
Later, Karam and Telles [7] extended the formulation for
infinite regions and reported that this theory is suitable for
thin and thick plates. Recent works regarding plates can be
found in [8].

A thin plate can suffer large deflections with normal
service loads. In such cases, the behaviour cannot be
adequately described using the theory of small elastic
deformations. When that deflection in the plate is equal
or bigger than its thickness, effects of nonlinearity occurs
due to the coupling of forces and deflections in equi-
librium conditions. Some works that deal with the
geometrical linearity in plates using the classical theory
can be found in [9–14]. Dirgantara and Aliabadi [15]
reported the application of BEM for large deformations
in shells. Purbolaksono and Aliabadi [14] used this
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method in a plate under shear deformation where they
showed two methods to calculate the derivatives of the
nonlinear terms in the domain integral. To solve the
nonlinear problem, they concluded that the most effi-
cient approach is the method of total increase proposed
by Wen et al. [13].

Karam and Telles [16] introduced a BEM formulation
for the elastoplastic analysis of Reissner plates where the
classical theory of plasticity was used. /e combination of
geometric and material nonlinear analysis in 2D problems
using BEM was first presented by Chandra and Mukherjee
[17], and in this work he analysed large deformations for
an isotropic material. Supriyono and Aliabadi [18] made a
new formulation of boundary integral equations for
combined geometric and material nonlinearities of shear
deformable plate-bending analysis. /e cell discretization
approach is used for evaluating the domain integrals, and
the total increment method is used for the nonlinear
boundary integral equations, the same as was presented by
[13].

On the other hand, there are different factors that affect
the response of a certain structure such as manufacturing
errors that could change both mechanical and geometrical
properties. So, the loads to which the structure could be
exposed are variable inmagnitude, occurrence, duration, etc.
/is implies to consider all possible parameters as stochastic
variables that affect the response of the structural element
subjected to a certain load. According to this, several authors
such as Rahman and Chen [19] and Huang and Aliabadi [20]
have used the BEM method for probabilistic analysis in
order to solve crack problems, elastic-linear problems
[21–23], elastostatic problems [24–27], and optimization
problems [28]. Fragility curves have been estimated in some
kind of structural systems such as bridges, buildings, and
transmission towers under different loads, i.e., seismic
[29–33], wind [34, 35], and tsunami [36]. Unfortunately, the
mentioned approaches have not used BEM to obtain fragility
curves that represent the probability of exceeding a certain
damage state considering the uncertainties related to both
mechanical and geometrical properties of the structural
element.

It is important to take into account since the load is
increasing, and the probability of exceeding a certain
established damage threshold increases. When the proba-
bility of exceeding a certain threshold is known before all
possible loads, decisions can be made on the structural el-
ement through redesign or, if appropriate, verifying that the
proposed element will develop a proper behaviour.

/is research presents an approach to obtain fragility
curves using BEM that takes into account the combination of
large deformations and plasticity using the formulations
shown in the work of Supriyono and Aliabadi [18]. /e
uncertainties related with mechanical (modulus of elasticity,
yield stress, and ultimate stress) and geometric (thickness,
base, height) properties were considered. So, different
damage states were selected to estimate the probability of
being exceeded. A simple supported plate at its ends with
uniformly distributed load increased in every step was used
for the analysis.

2. Formulation

2.1. Governing Equations. /e relationships between stress
resultants and strains by using the Reissner’s variational
theorem of elasticity are shown in [29]. /e development to
get this formulation can be reviewed in [18]. /en, the
relationship can be written as

μxy � D
1 − ]
2

2χxy +
2]

1 − ]
χccδxy  − μp

xy,

ηxy � B
1 − ]
2

εxy + εyx +
2]

1 − ]
εccδxy  − ηp

xy,

φx � Ccx3,

(1)

where D � Eh3/(1 − ]2), B � Eh/(1 − ]2), and C � Ekh/
(2(1 + ])), k � 5/6.

/e equilibrium equations are

μxy,x − φx � 0,

φx,x + ηxyw3,y 
,x

+ q3 � 0,

ηxy,y � 0,

(2)

where μxy, φx, and ηxy are the moment stress resultants, the
shear stress resultants, and membrane stress resultants,
respectively. q3 is uniform load per unit area in the x3
direction.

2.2. Displacement Integral Equations. /e following are the
displacement boundary integral equations for the mem-
brane and the plate, see [18]. /ese can be written for the
plate as

cijwi X′(  ± 
Γ
P
∗
ij X′, x( wj(x)dΓ � 

Γ
W
∗
ij X′, x( pj(x)dΓ

− 
Ω

W
∗
i3,x X′,X(  ηxyw3,y 

×(X)dΩ

+ 
Ω

W
∗
i3 X′,X( q3(X)dΩ

+ 
Ω
χ∗ixy X′,X( μp

xy(X)dΩ.

(3)

Also, for the membrane, these can be written as

cθxuθ X′(  + 
Γ
T
∗
θx X′, x( ux(x)dΓ � 

Γ
U
∗
θx X′, x( tx(x)dΓ

− 
Ω

U
∗
θx,y X′,X( ηnl

xy(X)dΩ

+ 
Ω
ε∗θxy X′,X( ηp

xy(X)dΩ,

(4)

where 
 denotes a Cauchy principal value integral, and cij

are the jump terms. Equations (3) and (4) constitute the
boundary displacement integral equations for plate bending
problem.
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2.3. Stress Integral Equations. As is shown in [18], the stress
integral equations for moment stress resultants can be stated
as

μxy X′(  � 
Γ
W
∗
xyk X′, x( pk(x)dΓ

− 
Γ
P
∗
xyk X′, x( wk(x)dΓ + 

Ω
W
∗
xy3 X′,X( q3(X)dΩ

− 
Ω

W
∗
xy3,c X′,X(  × ηcyw3,y (X)dΩ

+ 
Ω
χ∗xycθ X′,X( μp

θc(X)dΩ

−
2(1 + ])μp

xy +(1 − 3])μp

θθδxy 

8
.

(5)

Also, the shear stress resultants can be written as

φx X′( 
Γ
W
∗
3yk X′, x( pk(x)dΓ − 

Γ
P
∗
3yk X′, x( wk(x)dΓ

+ 
Ω

W
∗
3y3 X′,X( q3(Χ)dΩ − 

Ω
W
∗
3y3,c X′,X( 

× ηcyw3,y (X)dΩ + 
Ω
χ∗3ycθ X′,X( μp

θc(X)dΩ.

(6)

Finally, membrane stress resultants can be expressed as

ηxy X′(  � 
Γ
U
∗
xyc X′, x( tc(x)dΓ − 

Γ
T
∗
xyc X′, x( uc(x)dΓ

− 
Ω

U
∗
xyc,θ X′,X( ηnl

cθ(X)dΩ − 
Ω
ε∗xycθ X′,X( ηp

cθ(X)dΩ

−
2(1 + ])ηp

xy +(1 − 3])ηp

θθδxy 

8
,

(7)

where the kernels W∗iyk and P∗iyk are linear combination of
the first derivatives of W∗ij and P∗ij, respectively. /e kernels
U∗xyc and T∗xyc are the linear combination of the first de-
rivatives of U∗xy and T∗xy, respectively. /e kernels χ∗iycθ and
ε∗xycθ are the linear combination of the first derivatives of χ∗ixy

and ε∗xyc, respectively. /e free terms appear in equations (5)
and (7) arising from using Leibnitz formula./e expressions
of the kernels are listed in [37].

2.4. Discretization and System of Equations. /e displace-
ment boundary integral equations for membrane and plates
mentioned above are discretized, which makes possible to
analyze the problem applying the boundary element
method. Due to plasticity, it is necessary to discretize the
domain Ω into cells and the boundary Γ into boundary
elements. For the discretization of the domain nine nodes,
quadrilateral quadratic cells were used and the boundary was
divided by quadratic isoparametric elements. /e corner
problems are solved using semidiscontinuous boundary
elements, and for the coincident side problems between the

boundary and domain, semidiscontinuous cells were ap-
plied. In order to avoid the calculation of the deflection
derivative on the boundary nodes, the internal values in the
nodes of the cells were utilized. To compute the nonlinear
terms due to large deflection, it was necessary to use the
derivative of the deflection.

Dividing the boundary in quadratic elements and the
domain in cells and using the collocation point method, the
equations (3) and (4) can be written in a matrix form as
follows:

Hw 0

0 Hu
 

w

u
  �

Gw 0

0 Gu
 

p

t
  +

b

0
  −

Bw 0

0 Bu
 

·
ηcβw3,y

ηcy

nl

⎧⎨

⎩

⎫⎬

⎭ +
Tw 0

0 Tu
 

μp

ηp
 ,

(8)

where the variables [H] and [G] are the matrices of influence
of boundary elements and [B] and [T] are the influences for
the case of large deflection and plasticity. /e plate and the
in-plane mode are considered by using w and u. /e dis-
placement and traction rate vectors are represented by w{ },
u{ }, p , and t{ }. /e variable that represents the load rate
vector is b{ }. /e stress resultant terms for bending and the
membrane are denoted by μp  and ηp  , respectively.
Applying boundary conditions, we obtain the following
equation:

[A] χ  � f{ } −
Bw 0

0 Bu
 

ηcyw3,y

_ηnl
cy

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
+

Tw 0

0 Tu
 

μp

ηp
 ,

(9)

where [A] is the system matrix, χ  is the unknown vector,
and f{ } is the vector of prescribed boundary values. Anal-
ogously, the stress integral equations can be presented in a
matrix form as

μ

φ

η

⎧⎪⎪⎨

⎪⎪⎩

⎫⎪⎪⎬

⎪⎪⎭
�

Hwα 0

Hw3 0

0 Hu

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

w

u
  +

Gwα 0

Gw3 0

0 Gu

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

p

t
  +

bα

b3

0

⎧⎪⎪⎨

⎪⎪⎩

⎫⎪⎪⎬

⎪⎪⎭

−

Bwα 0

Bw3 0

0 Bu

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

ηcβw3,y

ηnl
cy

⎧⎨

⎩

⎫⎬

⎭ +

Twα + Ewα 0

Tw3 0

0 Tu + Eu

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

μp

ηp
 ,

(10)

where μ , φ , and η  are the vectors of bending stress
resultants, shear stress resultants, and membrane stress
resultants, respectively. Superscripts wα and w3 denote the
bending and shear modes, respectively.

2.5.ElastoplasticConstitutiveEquations. A yield function for
the elastoplastic analysis is considered here. In terms of the
hardening parameter k and the stresses σxy, such yield
function is stated, while in the loading process there is
yielding and the stresses σxy must remain at the yield
surface. We satisfy the following equation:
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Φ σxy  � f σxy  − Ψ(k) � σe − σ0, (11)

where σ0 is the uniaxial yield stress and σe is the
equivalent stress using von Mises yield criteria. In our
case, for an elastic-perfectly plastic material, k � 0.
Recalling that we are applying the Reissner theory for the
case when the membrane and moment stresses exist at
the same time, the aforementioned values can be written
as [38]

σe �
1
h
ηe +

4
h2μe, (12)

σ0 �
1
h
η0 +

4
h2μ0. (13)

In the abovementioned equations (12) and (13), the
equivalent membrane and moment stress are represented by
ηe and μe, respectively. /e uniaxial membrane and moment
stress are designated by the letter η0 and μ0, respectively.
Equations (12) and (13) are shown in [18]. When the
equivalent stress σe reaches the yield stress, there is yielding
in the whole cross section at the same time. After yielding,
the behavior of the stress-strain relationship is characterized
incrementally as

dμxy � C
ep

xycθdχcθ −
1
c′

Cxyμρaμρaηζδηζ , (14)

dηxy � C
ep

xycθdεcθ −
1
c′

Cxyμρaμρaηζδηζ , (15)

where

C
ep

xycθ � Cxycθ −
1
c′

CxyμρaμρaηζCηζcθ, (16)

where, Cxycθ represents the components of fourth order
isotropic tensor of elastic constants, c′ and acθ, which are
given by

c′ � axyCxycθacθ + H′,

acθ �
zΦ
zμcθ

,
(17)

for moment and for membrane, and acθ can be stated as

acθ �
zΦ
zηcθ

, (18)

where H′ � zΨ/zχp
e for moment and H′ � zΨ/zεp

e for
membrane. H′ is called the slope of the stress-plastic strain
curve.

/e additional equations required to calculate the
nonlinear term due to large deflection are given by

w3,c X′(  + 
Γ
P
∗
3j,c X′, x( wj(x)dΓ � 

Γ
W
∗
3j,c X′, x( pj(x)dΓ

− 
Ω

W
∗
33,cx X′,X(  ηxyw3,y 

×(X)dΩ

+ 
Ω

W
∗
33,c X′,X( q3(X)dΩ,

ηnl
xy � B

1 − ]
2

w3,yw3,x

+
]

1 − ]
w3,cw3,cδxy.

(19)

2.6. Solution Algorithm. By applying the total increment
method, asWen et al. [13] proposed, it is possible to linearize
the nonlinear integral equations. An incremental procedure
for the method is divided in several steps as follows: firstly,
the terms considering plasticity and large deflections are
zero, and then in the (k − 1)th step, the approximations of
the nonlinear terms are calculated for the kth step using the
following equations:

ηcyw3,y 
k

� ηcyw3,y 
k− 1,

ηnl
cy 

k
� ηnl

cy 
k− 1,

μp
( k � μp

( k− 1,

ηp
( k � ηp

( k− 1.

(20)

To evaluate the plastic zone of the model, the von Misses
criterion is used.

By considering that,

μe
xy � μxy + μp

xy,

ηe
xy � ηxy + ηp

xy.
(21)

Equation (10) can be written as

μ

φ

η

⎧⎪⎪⎨

⎪⎪⎩

⎫⎪⎪⎬

⎪⎪⎭
� −

Hwx 0

Hw3 0

0 Hu

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

w

u
  +

Gwx 0

Gw3 0

0 Gu

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

p

t
  +

bx

b3

0

⎧⎪⎪⎨

⎪⎪⎩

⎫⎪⎪⎬

⎪⎪⎭

−

Bwx 0

Bw3 0

0 Bu

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

ηcyw3,y

ηnl
cy

⎧⎨

⎩

⎫⎬

⎭

+

Twx + Ewx + I 0

Tw3 0

0 Tu + Eu + I

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

μp

ηp
 ,

(22)
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where μe and ηe are elastic moment stress resultant and
elastic membrane stress resultant, respectively and I is an
identity matrix.

After calculating all the matrices and known vectors for
every load step, the following system matrices are solved.

[A] χ  � f{ } −
Bw 0

0 Bu
 

ηcyw3,y

ηnl
cy

⎧⎨

⎩

⎫⎬

⎭ +
Tw 0

0 Tu
 

μp + Δμp

ηp + Δηp
 ,

μe

φe

ηe

⎧⎪⎪⎨

⎪⎪⎩

⎫⎪⎪⎬

⎪⎪⎭
� −

Hwx 0

Hw3 0

0 Hu

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

w

u
  +

Gwx 0

Gw3 0

0 Gu

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

p

t
  +

bx

b3

0

⎧⎪⎪⎨

⎪⎪⎩

⎫⎪⎪⎬

⎪⎪⎭

−

Bwx 0

Bw3 0

0 Bu

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

ηcyw3,y

ηnl
cy

⎧⎨

⎩

⎫⎬

⎭

+

Twx + Ewx + I 0

Tw3 0

0 Tu + Eu + I

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

μp + Δμp

ηp + Δηp
 ,

(23)

where Δμp and Δηp denote the increment plastic resultants.
/e nonlinear terms due to plasticity can be calculated as

shown by Karam and Telles [16]. Assuming an incremental
fictitious “elastic moment and membrane” we have

dμe
xy � Cxycθdχcθ, (24)

dηe
xy � Cxycθdεcθ. (25)

Taking into account equations (14), (15), (24), and (25),
the folloeing equationscan be written as

dμxy � dμe
xy −

1
c′

Cxyμρaμρaςζdμ
e
ςζ ,

dηxy � dηe
xy −

1
c′

Cxyμρaμρaςζdη
e
ςζ .

(26)

A procedure to compute the nonlinear terms due to
plasticity is showed in the following flowchart (see Figure 1).

3. Verification

To verify the results obtained with BEM, we compared the
results against FEM, specifically with the ABAQUS soft-
ware. So, we analyzed a square plate with dimensions of
1.0m per side, thickness of 0.05m an elastic modulus of
200,000MPa, and a Poisson’s ratio of 0.3. /e plate was
simulated simply supported on all its sides with a uniform
load of 100 ton-force applied on the complete surface of the
squared plate of 1.0m (see Figure 2). In this plate, we did
the analysis for the combination of plasticity and large
deformation. Both analyzes according to the graphs are in
good agreement as shown in Figure 2. /e results corre-
spond to the node in the middle of the plate which is the
most critical.

After comparing these two results, we conclude our code
is reliable and good enough to do any kind of analysis for
such combination.

4. Fragility Curves

/e structural elements are made to resist a certain design
load which is commonly an extraordinary load established
by the technical regulation of the site. /e response of the
structural element due to this load can be expressed in terms
of displacements, shear, fatigue, stresses, and so on, which
commonly are known as damage indicators. In the case of
structural elements subjected to loads that could be variable
in duration, magnitude, occurrence, direction, and so on, it

START

Solve equation (23) to 
obtain elastic stress 

increments

Solve equation (26) to 
compute true moments and 
membrane stress increments

END

(μxy)k = (∆μxy)k–1 + (∆μxy)k–1
p p

Accumulate the nonlinear term values for 
plasticity

(ηxy)k = (∆ηxy)k–1 + (∆ηxy)k–1
p p

Calculate the plasticity nonlinear terms 
with

∆μxy = ∆μxy – ∆μxy 
p e

∆ηxy = ∆ηxy – ∆ηxy 
p e

Figure 1: Procedure to calculate the nonlinear terms due to
plasticity.
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is important to know the probability of exceeding certain
damage state. /is allows the redesign of the structural el-
ement in order to maintain the structural element in ac-
ceptable performance levels.

A fragility curve can be defined as a graphical repre-
sentation that relates the probability of exceeding a certain
damage state for a given load. Both parameters, load, q, and
damage state, d, are defined in accordance to the specific
problem. /en, the structural response for a given load is
defined in this study as the structural demand, D. Con-
sidering that the structural demand, D, follows a lognormal
distribution [39], the representation of the fragility curve is
as follows:

P[D≥d | q] � 1 − Φ
ln(d) − ln(D)

σlnD

 , (27)

where Φ is the standard normal cumulative distribution
function; D is the mean value of the natural logarithm of the
structural demand; and σln(D) is the standard deviation of the
natural logarithm of the structural demand.

5. Illustrative Example

Fragility curves of a plate are estimated considering the
uncertainties in its geometrical properties (thickness, length,
and width) and mechanical properties (yielding, ultimate
stress, and modulus of elasticity). /e nominal geometric
properties are the dimensions of the plate are 1.0m wide, a,
by 1.0m long, b, with a thickness, h, equal to 0.05m (see
Figure 3). In case of the nominal mechanic properties such
as the yield stress, σY, is 250MPa, the ultimate stress, σU, is
400MPa, the Poisson coefficient, ], is 0.3, and the modulus
of elasticity, E, equal to 200,000MPa. Based on the men-
tioned nominal properties and the statistical parameters
reported by [40, 41] (see Table 1), it is possible to simulate
different cases by taking into account the mean and the
coefficient of variation for each parameter that is associated
to a different type of distribution. /e Monte Carlo method
was used to simulate the study cases [42]. Moreover, it is
noticed in Table 1 that the mean of each parameter is

estimated by means of multiplying the nominal parameter
by a certain constant. /ese constants were reported in
[40, 41].

Figure 4 shows the results obtained by the present
formulation. As previously mentioned, by using the Monte
Carlo method considering both the nominal properties and
the statistical parameters in Table 1, a number of 100
different plates were simulated. /e variability of each plate
corresponds with the specific uncertainty expressed in
terms of the coefficient of variation that reports each pa-
rameter in Table 1. According to this , Figure 4 shows that
the 100 simulated cases presented differences in their be-
havior due to the fact of considering the uncertainties in
mechanical and geometrical properties in which w is the
deflection at the center point of the plate and q is the
uniform load. /is figure shows the deflection calculated at
the center of the plate for 100 simulated cases. Also, it is
noticed that the applied load that represents the yield of
displacement of the cases varies between 3.9-7.6MPa while
the inelastic behavior due to the effect of the combined
large deformations and plasticity are presented between
0.03-0.07m.

Figure 5 shows the fragility curves obtained by using
equation (27), it is noticed that the x-axis is represented in
terms of the incremental uniform load, q, that the plate is
subjected. Moreover, different damage states in terms of
displacement, d, are selected in order to estimate the
probability the structural demand, D, is greater than a
certain damage state, d, for a given load measure, q. Figure 5
shows that there is a high probability of exceeding the
different damage states, w, as the load, q, increases. Also,
Figure 5 shows that the probability equal to 1 is reached for
the damage state equal to 0.005. /is implies that there is a
certain probability of exceeding the mentioned damage
states with a value equal to 1 (safe event). /e rest of the
selected damage states (i.e., 0.01 to 0.07) present a null
probability that the safe event, P[D≥d | q], can be presented.

Table 1: Statistical parameters used in the present study.

Nominal Mean Coefficient of variation Type of distribution
h 1.05 h 0.044 Lognormal
a 0.988 a 0.046 Lognormal
E 0.987 E 0.076 Lognormal
Fy 1.3 Fy 0.124 Normal
Fu 1.05 Fu 0.075 Normal
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Figure 2: Verification between FEM and BEM for a square plate.
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Figure 3: Schematic representation of the plate with the loading
and boundary conditions.
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6. Conclusions

Fragility curves were estimated using the Boundary Element
Method that considers the nonlinear problem of plasticity and
large deformations. /e classical theory of plasticity and a for-
mulation of initial stresses that allow the formulation of integral
boundary equations due to plasticity, were used. For the calcu-
lation of the plastic zone, the von Mises criterion was also used.

/e obtained fragility curves consider the uncertainties in
both geometrical and mechanical characteristics in order to
estimate the probability that the structural demand exceeded
different damage states, for a given load. /e results indicate
that there is a probability that certain selected damage states
could be exceeding. Moreover, the approach provides in-
formation to the structural engineers about the load that
produces a certain probability of exceeding each damage states.

Indicial notation is used throughout this work. Indices
x andy vary from 1 to 2; indices i, j, and k vary from 1 to 3;
index θ vary from 1 to 2. /e following symbology is used
throughout the paper:

Abbreviations

μxy: Moment stress resultant
μp

xy: Moment stress resultant nonlinear term
ηxy: Membrane stress resultant
μxy,x: Moment stress resultant derivative
ηxy,y: Membrane stress resultant derivative
B: Tension stiffness
C: Shear stiffness
D: Bending stiffness
ηp

xy: Membrane stress resultant nonlinear term
φx: Shear stress resultant
φx,x: Shear stress resultant derivative
χxy: Generalized displacements in direction 1
δxy: Kronecker delta function
εxy: Generalized displacements in direction 2
cx3: Generalized displacements in direction 3
]: Poisson’s rate
q3: Uniform load
cij: Jump term
wx: Two rotations in plate
w3: Deflection in plate
ux: Displacements in-plane
Γ: Boundary of the plate
pj: Generalized tractions
Ω: Domain of the plate
U∗θx: Weighting functions
H: Boundary element influence matrix
G: Boundary element influence matrix
B: Influence matrices for large deflection
T: Influence matrices for plasticity
b: Load rate vectors
[A]: System matrix
f{ }: Vector of prescribed boundary values
Φ: Shape functions
Wi3: Plate bending displacement fundamental

solutions for displacement integral equations
σxy: Normal and shear stresses
Ψ(k): Yield stress as a function of a hardening

parameter k
h: /ickness of the plate
Cxycθ: Components of fourth order isotropic tensor

of elastic constants
I: Identity matrix
W∗ij(X′, x): Fundamental solution of displacement
P∗ij(X′, x): Fundamental solution of traction
χ∗ixy(X′,X): Fundamental solution of strains
U∗θx(X′, x): Fundamental solution of displacement on

membrane
T∗θx(X′, x): Fundamental solution of traction on

membrane
ε∗θxy(X′,X): Fundamental solution of strains on membrane
P: Probability of failure
D: Structural demand
d: Damage state
p: Load measure
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Figure 4: Deflection in the center of the plate with uniform load.
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Figure 5: Fragility curves for different thresholds.
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Φ: Standard normal cumulative distribution
function

D: Mean value of the natural logarithm of the
structural demand.
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