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+e springback is one of the main defects in the flexible 3D stretch-bending process. In this paper, according to the orthogonal
design of experiments, the numerical simulation analysis of the springback for the 3D stretch-bending aluminum profile is carried
out by the ABAQUS finite element software. And to investigate the effect of material properties on the springback, the range
analysis of the orthogonal experiment is performed. +e results show that these material properties of the aluminum profile
(elastic modulus E, yield strength σy, and tangentmodulus E1) might have the biggest influence on the springback of the aluminum
profile, and the optimized forming parameters are founded as follows: the horizontal bending degree is 14°, the vertical bending
degree is 14°, the number of multipoint stretch-bending dies is 10, the friction coefficient is 0.15, and aluminum alloy grade is 6063.
Moreover, the model of the BP neural network for the prediction of the springback is established and trained based on the
orthogonal experiment, and the results with the BP neural network model are in good agreement with experimental results. So it is
obvious that the BP neural network could predict effectively the springback of 3D multipoint stretch-bending parts.

1. Introduction

In recent years, lightweight requirements have grown more
demanding for reduction of energy consumption and en-
vironmental pollution caused by exhaust emissions [1–3];
especially, the design of the lightweight part plays a more
and more important role in economic and ecological aspects
[4]. Aluminum alloy is widely used in aerospace, rail vehicle
manufacturing, and automobile manufacturing as a light-
weight material because of its low density, high strength, and
ease of recycling [5–7].

Aluminum profile can meet many diversified re-
quirements, but the formation of the aluminum profile
brings many new problems in the part design and
manufacturing process. Because the elastic modulus of the
aluminum alloy is only one-third that of the steel sheet, the
springback of the aluminum alloy is much bigger than the
same data of the steel sheet, and the springback becomes one

of the main defects for the aluminum profile stretch-bending
part [8]. If not to make reasonable estimation for the
springback of the aluminum profile stretch-bending part, it
will have serious influence on the forming quality of
components and furthermore service life.

+ere are many influence factors on the springback
such as profile characteristics, processing parameters, and
die structure. During the flexible 3D multipoint stretch-
bending process of the aluminum profile, the springback
analysis is very complicated with geometric nonlinearity,
material nonlinearity, and contact nonlinearity, so it is hard
to find out an accurate mathematical model [9]. +e ar-
tificial neural network is widely used in the property
prediction of the metal material for high ability of non-
linear mapping and prediction of the output target
according to the finite training sample [10–12]. Kazan et al.
investigated the springback of the metal sheet in the
bending process and developed the prediction model for
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the springback by using the artificial neural network [13].
Jamli et al. built the springback prediction model for metal
sheet stretch bending and L-shaped bending, respectively,
based on finite element simulation and artificial neural
network [14, 15]. Nasrollahi and Arezoo investigated the
springback prediction for a bending area of the metal sheet
with hole by the experiment, finite element simulation, and
artificial neural network [16]. Babu et al. developed an
artificial neural network system to predict the behavior of
deep drawing for welding blank made by steel and alu-
minum alloy [17]. However, the neural network model is
not used for the springback prediction of three-di-
mensional stretched profiles.

Based on the orthogonal experiments, the numerical
simulation of the springback in 3D multipoint stretch
bending of the aluminum profile is investigated by the
ABAQUS finite element software, the training samples of the
BP neural network are achieved, and the mapping ability
between stretch-bending parameters and output value of the
springback is built by using the powerful function mapping
ability of the BP neural network. +e results show that it can
save a lot of simulation time and provide important refer-
ence data for the forming precision and springback com-
pensation of the aluminum profile-forming part.

2. Concept and Finite Element Model of
Multipoint Stretch Bending (MPSB)

2.1. Principle of the Multipoint Stretch-Bending Process.
+e multipoint stretch bending (MPSB) is improved on the
basis of the traditional stretch bending. +e stretch-bending
die in the traditional stretch bending is discretized. It can
solve the 3D stretch bending of the profiles through the
multipoint technology combined with the traditional stretch
bending. +erefore, the MPSB process is more diversified
than conventional bending process because of the additional
vertical bending stage of the profile.

As shown in Figure 1, when the profile is three-di-
mensionally stretched and formed, the bending machine can
move the die units back, forth, up, and down. So the rotation
angle of the profile can be adjusted on two planes, thereby
decomposing the 3D stretch bending into the horizontal
bending and the vertical bending.

2.2. Material Model. Because the aluminum alloys have
lightweight and good mechanical properties, they are used
widely for structural parts of the railway vehicle. In this
study, five aluminum alloy grades are used which are as
follows: 6063, 6005A, 5052, 5083, and 6082, the profile
length is 3200mm, and the profile weight is about 3.3 kg. It is
assumed that the aluminummaterial is isotropic, the elastic-
plastic constitutive behavior is isotropic hardening, and
relevant mechanical properties are as shown in Table 1.

2.3. Setup of Finite Element Model. In the finite element
simulation of 3D stretch bending, the reasonable simplification
of the finite element model can reduce the calculation time,
avoid other problems caused by the complexity of the model,

and affect the accuracy of the results. +erefore, it is necessary
to rationally simplify the finite element model. As shown in
Figure 2, the die is simplified on the stretch-bending machine,
using only the die units in contact with the profile, and the limit
screw that limits the displacement of the die units in the vertical
direction of the x-z plane is simplified as a planar flap, which is
50mm in length with the die units. Meanwhile, the clamp is
simplified to the same shape as the profile and is bound to the
profile, the length of which is 100mm. So only different die
sections and clamps need to be replaced when forming dif-
ferent geometric profiles.

When selecting the appropriate element type for the
finite element model, not only the accuracy of the simulation
result but also the operation time should be considered. It is
necessary to obtain the most accurate simulation result in
the shortest possible calculation time. +e finite element
model consists of the aluminum profile, clamp, die units,
and limit screw. +e unit types and unit and node number
information of each component are shown in Table 2.

3. Orthogonal Experiment for the Springback of
Aluminum Profile

3.1. Selecting the Level of Various Factors. +e orthogonal
experiment is a kind of design method which has a good
effect to study and deal with multifactor problems, and it is
based on the orthogonality of the data to design the scheme.
It has the advantage of being able to obtain reliable and
representative test results in as few test times as possible.
+rough the analysis and integration of the test results, the
best test conditions can be selected as the optimal level
combination of each factor.

In the MPSB process, many factors influence the spring-
back of the aluminum profile such as yield strength, elastic
modulus, tangent modulus, bending angle in horizontal and
vertical directions, die structure, die clearance, prestretching
value, and friction force. According to the stretch-bending
process and orthogonal experiment, seven important impact
factors are as follows: elastic modulus (E), yield strength (σy),
tangent modulus (E1), horizontal bending angle (α), vertical
bending angle (β), die number (N), and friction coefficient (μ).
Five aluminum alloy grades used in the orthogonal experiment
are 6063, 6005A, 5052, 5083, and 6082. +e values of each
factor level are as shown in Table 3.

3.2. Orthogonal Design. +e table of the orthogonal exper-
iment is usually expressed as La(S1 × S2 × S3 × · · · × Sb),
where L is the orthogonal table, a is the test number, b is the
maximum value of impact factors, and S1－Sb are the value
of the impact factor level from column 1 to column 9. +e
orthogonal experiment can effectively reduce the number of
experiments. In this study, the design of the L25(55) or-
thogonal table is selected, and seven impact factors (E, σy, E1,
α, β, N, and μ) all select five levels.

+e design of the orthogonal experiment and the
springback of the aluminum profile are shown in Table 4. And
the springback of the aluminum profile is simulated using the
ABAQUS software, based on the parameters in the orthogonal
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Figure 1: Schematic diagram of the flexible 3D multipoint stretch-bending equipment. (a) Bending forming in the horizontal direction.
(b) Bending forming in the vertical direction.

Table 1: Aluminum alloy grade and mechanical properties.

Aluminum alloy
grade

Treatment
state

Elastic modulus E
(MPa)

Tangent modulus E1
(MPa)

Tensile strength
σb (MPa)

Yield strength
σs (MPa)

Poisson’s
ratio υ

Density ρ
(g/cm3)

6063 T5 68300 341.667 186 145 0.33 2.69
6005A T5 69000 210 262 241 0.33 2.7
5052 H32 69300 291.667 230 195 0.33 2.68
5083 H112 70300 687.5 303 193 0.33 2.66
6082 T6 71000 666.67 290 250 0.33 2.7

Multipoint dies

Limit screw

Aluminum profile

Clamp

Figure 2: Finite element model for the flexible 3D stretch-bending process.
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table. In the MPSB process, the aluminum profile is formed
along the space curve, which has more complex deformation
than the traditional stretch-bending process. So the springback
of the 3D stretch-bending process can be divided into two
parts, as shown in Figure 3; one part is horizontal springback
along the horizontal direction in the x-y plane, and the other
part is vertical springback along the vertical direction in the x-z
plane. δy is the value of horizontal springback in the x-y plane,
δz is the value of vertical springback in the x-z plane, and δ is
the value of total springback for the aluminum profile.

3.3. Range Analysis in Orthogonal Experimental Data.
+e range analysis table of the orthogonal experiment is
shown in Figure 4.

According to Figure 4, the main factors affecting the
horizontal springback along the x-y plane in order of im-
portance are elastic modulus (E), yield strength (σy), tangent
modulus (E1), friction coefficient (μ), die number (N),
horizontal bending angle (α), and vertical bending angle (β).
And the main factors affecting the vertical springback along
the x-z plane in order of importance are elastic modulus (E),
yield strength (σy), tangent modulus (E1), horizontal
bending angle (α), die number (N), vertical bending angle
(β), and friction coefficient (μ). +e main factors affecting
the total springback in order of importance are elastic
modulus (E), yield strength (σy), tangent modulus (E1),
horizontal bending angle (α), die number (N), friction co-
efficient (μ), and vertical bending angle (β).

3.4. Optimized Parameters and Verification. +e optimized
parameter combination means that the combination of
levels can make test results reach the optimum state in the
range of all factors. +e optimized parameter combination is
founded by the experiment index. +e larger the experiment
index is, the better the level corresponding to the maximum
value of the index selected is. In contrast, the smaller the test
index is, the better the level corresponding to the minimum
value of the index selected is.

In this study, the experiment index is the value of springback
clearance. According to data in Table 5, the best combination for
horizontal springback along the x-y plane is A4B1C5D1E3, and
the best combination for vertical springback along the x-z plane
and the best combination for total springback are A1B1C1D4E3.
+ese two combinations have little deviation for horizontal
springback along the x-y plane, but the deviation is big for
vertical springback along the x-z plane and total springback. So
the optimized parameter combination selected in the orthog-
onal experiment is A1B1C1D4E3, and the corresponding pa-
rameters are as follows: the aluminum alloy material is 6063,
horizontal bending angle is 14°, vertical bending angle is 14°,
multipoint die number is 10, and friction coefficient is 0.15.

+e optimized parameter combination A1B1C1D4E3 is
validated by using the ABAQUS software simulation, and
the simulated results are shown in Table 5.

Compared to data in Tables 4 and 5, it is found that the
best values of vertical springback and total springback are
achieved by using the optimized parameter combination
A1B1C1D4E3, and the deviation is little for horizontal
springback. +e stress-strain chart of 3D stretch bending
under the combination A1B1C1D4E3 is shown in Figure 5.

As can be seen from Figure 5, the stress and equivalent
strain are evenly distributed, and the forming part has no
defects. It shows that the forming effect is very good.

4. Prediction of the Springback Based on BP
Neural Network

4.1. Setup of BP Neural Network Model. +e BP neural net-
work is a kind ofmultilayer forward feeding neural network. Its
main feature is that the signals feed forward and the errors
propagate backward. +e output error is used to predict the
error of the direct leading layer for the output layer. +en, the
error of the direct leading layer is used to predict the error of
the further layer, and the errors of others layers are gained from
layer-by-layer backpropagation [18, 19].

+e model of the BP neural network is composed of the
input layer, hidden layer, and output layer. +e input layer
and output layer are usually determined based on the
practice problem, the neuron number in the input layer is
equal to the dimension of input sample data, and the neuron
number in the output layer is equal to the dimension of the
result sample. +e neuron number in the hidden layer is
usually calculated by the following empirical equation [20]:

l<
�����
m + n

√
+ p, (1)

where m is the neuron number in the input layer; n is the
neuron number in the output layer; p is the constant, and
1<p< 10; and l is the neuron number in the hidden layer.

Table 2: Unit types and number of units and nodes for finite element components.

Finite element components Unit types Number of units Number of nodes
Aluminum profile C3D8R 9858 13912
Die units R3D4 216 250
Clamp R3D4 500 550
Limit screw R3D4 80 99

Table 3: Levels and impact factors of the orthogonal experiment.

Level
Impact factor

A B C D E
Alloy grade α (°) β (°) N μ

1 6063 14 14 4 0.05
2 6005A 18 18 6 0.1
3 5052 22 22 8 0.15
4 5083 26 26 10 0.2
5 6082 30 30 12 0.25
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In this study, the neuron number in the input layer is 7,
and the neuron number in the output layer is 3. +e neuron
number in the hidden layer is 10 based on the training time
and accuracy of the BP neural network. +e 7-10-3 three-
layer frame of the BP neural network is set up, as shown in
Figure 6.

+e mathematical model of neural network function
which has 10 hidden layers is as follows:

yk � 
10

j�1
wjk × sig 

7

i�1
wij × xi + bj

⎛⎝ ⎞⎠ + bk (k � 1, 2, 3),

(2)

where wij is the weight of the input layer to the hidden layer,
wjk is the weight of the hidden layer to the output layer, bj is
the offset weight of the hidden layer, bk is the offset weight of
the output layer, sig is the sigmoid activation function, xi is
the input value of the neural network, and yk is the output
value of the neural network.

4.2. Training and Testing of BP Neural Network. +e data
are normalized before training the BP neural network in
order to avoid large difference order of magnitude of the
input-output data result in big error of prediction, and the

Table 4: Design and results of the orthogonal experiment.

Number A B C D E Horizontal springback value
δy (mm)

Vertical springback value
δz (mm)

Total springback value
δ (mm)

1 6063 14 14 4 0.05 2.401 4.673 5.566
2 6063 18 18 6 0.1 3.185 4.711 5.933
3 6063 22 22 8 0.15 2.777 4.953 5.880
4 6063 26 26 10 0.2 3.529 5.289 6.438
5 6063 30 30 12 0.25 3.493 5.918 6.905
6 6005A 14 18 8 0.2 4.133 6.793 8.840
7 6005A 18 22 10 0.25 5.310 7.807 9.955
8 6005A 22 26 12 0.05 5.112 7.345 9.433
9 6005A 26 30 4 0.1 3.166 9.064 9.968
10 6005A 30 14 6 0.15 5.144 8.727 10.41
11 5052 14 22 12 0.1 3.228 5.704 7.033
12 5052 18 26 4 0.15 1.896 6.395 7.118
13 5052 22 30 6 0.2 4.471 7.328 8.626
14 5052 26 14 8 0.25 3.958 5.657 7.211
15 5052 30 18 10 0.05 2.773 5.824 6.818
16 5083 14 26 6 0.25 4.097 6.420 7.864
17 5083 18 30 8 0.05 3.259 7.597 8.324
18 5083 22 14 10 0.1 2.924 5.318 6.718
19 5083 26 18 12 0.15 2.539 6.731 7.628
20 5083 30 22 4 0.2 1.471 6.735 7.791
21 6082 14 30 10 0.15 4.401 6.086 7.500
22 6082 18 14 12 0.2 7.764 7.705 10.94
23 6082 22 18 4 0.25 8.251 9.178 12.30
24 6082 26 22 6 0.05 7.289 9.630 12.09
25 6082 30 26 8 0.1 9.359 9.835 13.70

δy

δz

δ

Figure 3: +e front and back spatial positions of the end face contours.
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maximum-minimum method is applied on the normali-
zation of data:

xk
′ � 2 ×

xk − xmin

xmax − xmin
− 1, (3)

where xk
′ is the value after the normalization of the data

sequence, xmax is the maximum value of the data sequence,
and xmin is the minimum value of the data sequence.

+e training parameters are as follows: the maximum
training time is 10000, the expected training error is 1e− 6,
the learning rate is 0.02, and the momentum factor is
0.65. A total of 41 pairs of data in which 15 pairs of

simulated data are from ABAQUS software are used for
training and testing the BP neural network. Among these
data, under the optimized parameter combination
A4B1C5D1E3, orthogonal experiment sample nos. 7, 13,
19, and 25 are used for sample testing, and the others are
used for training the BP neural network. +e comparison
of finite element simulation and prediction results of the
BP neural network after MATLAB training is shown in
Figure 7.

As seen from Figure 7, it is shown that there is little
difference between the prediction results of the BP neural
network and the simulation results, the training accuracy is
high, so the BP neural network method can replace the finite
element simulation to predict the springback of the 3D
stretch-bending process, reduce the simulation runtime, and
increase the simulation efficiency.

4.3. Test Verification. To validate the finite element simu-
lation and BP neural network on the springback of the 3D
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Figure 4: Relationship between experimental factors and springback index: (a) horizontal springback; (b) vertical springback; (c) total
springback.

Table 5: Springback value of the optimized parameter
combination.

Optimized parameter combination δy (mm) δz (mm) δ (mm)
A1B1C1D4E3 2.354 4.098 5.204
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Figure 5: Stress-strain chart of 3D stretch bending (combination A1B1C1D4E3).
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Figure 6: Frame chart of the BP neural network.
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stretch-bending process, the comparison of experimental
results, simulation results, and prediction results is in-
vestigated. +e experimental results are founded based on
the optimized parameter combination A1B1C1D4E3, whose
forming parameters are as follows: the aluminum alloy
material is 6063, horizontal bending angle is 14°, vertical
bending angle is 14°, multipoint die unit number is 10, and
friction coefficient is 0.15. +e detection setup and the
forming part through the MPSB process are shown in
Figure 8.

+e detection setup is used to detect the value of the
springback after stretch bending of the aluminum profile, as
shown in Figure 8, and the detected values are shown in
Table 6.

As seen from Table 6, the results with the BP neural
networkmodel and simulation results are in good agreement

with experimental results. +erefore, it is obvious that a new
prediction method of the springback in the flexible 3D
stretch-bending process is provided by using the BP neural
network.

5. Conclusion

(1) According to the range analysis of the orthogonal
experiment, the main factors affecting the springback
in the 3D stretch-bending process in order of im-
portance are elastic modulus (E), yield strength (σy),
and tangent modulus (E1), and it is shown that the
material properties of the aluminum profile should be
considered firstly; then, the forming parameters of the
3D stretch-bending process are investigated.

(2) Based on the orthogonal experiment and the influ-
ence on the springback, the optimized parameter
combination is as follows: the aluminum alloy ma-
terial is 6063, horizontal bending angle is 14°, vertical
bending angle is 14°, multipoint die number is 10,
and friction coefficient is 0.15.
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Figure 7: Stress-strain chart of 3D stretch bending (combination A1B1C1D4E3).

Figure 8: +e detection setup and the forming part through the
MPSB process.

Table 6: Comparison of experimental results, simulation results,
and BP neural network-predicted results.

Horizontal
springback

value δy (mm)

Vertical
springback

value δz (mm)

Total
springback
value δ (mm)

Experimental
results 2.79 4.55 5.73

Simulation
results 2.53 4.10 5.20

BP neural
network-
predicted
results

2.70 4.50 5.67
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(3) Compared to orthogonal experimental data, the
results of BP neural network simulation show that it
is an effective way to predict the springback by using
the BP neural network and provide a newmethod for
practice production.
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