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.is paper reports a stress analysis of some fundamental samples made of soft-matter quasicrystals with 8-fold symmetry based on
the generalized dynamics. .e most distinction from the hydrodynamics for solid quasicrystals is that the structure of soft matter
belongs to a complex liquid, which is an intermediate phase between solid and liquid and behaves natures of both solid and liquid. In
addition, the soft-matter quasicrystals possess high symmetry, and the symmetry breaking is of fundamental importance. So the
Landau symmetry breaking theory and elementary excitation principle are therefore the paradigm of the study of soft-matter
quasicrystals. Soft-matter quasicrystals belong to the complex fluid, in which the fluid phonon elementary excitation is introduced
apart from the phonon and phason elementary excitations. With this model and the equation of state, the equations of motion for
possible soft-matter quasicrystals of 8-fold symmetry are derived..e initial boundary value problems for the xy plane field are solved
by applying the finite difference method, in which the z-direction represents the 8-fold symmetry axis. A complete hydrodynamics
analysis is given to quantitatively explore the phonon, phason, and fluid fields as well as their interactions in the physical time-space
domain. .e analysis shows the governing equations are exact to the prediction of the dynamics of soft-matter quasicrystals. .e
computational results reveal the gigantic differences of physical properties between solid and soft-matter quasicrystals.

1. Introduction

Fan [1] suggested a theory of generalized hydrodynamics, or
generalized dynamics in brief, for soft-matter quasicrystals
observed in liquid crystals, colloids, and polymers during the
period 2004–2011 [2–6] and in surfactants more recently [7]
by analyzing and summarizing their symmetry, structure,
and dynamic behaviour. .e theory is inspired by the hy-
drodynamics of solid quasicrystals proposed by Lubensky
et al. [8], but there are principal differences between the
hydrodynamics of soft-matter and solid quasicrystals.

In the hydrodynamics of solid quasicrystals, the effects of
solid viscosity and elasticity are considered, while in the
hydrodynamics of soft-matter quasicrystals, the effects of
fluid and elasticity are studied. Due to this difference, in the

hydrodynamics of soft-matter quasicrystals, one should
introduce the fluid phonon elementary excitation apart from
the phonon and phason excitations in which the latter are
well known in the solid quasicrystal study, and the fluid
phonon is introduced for the first time by Fan [1] for the
soft-matter quasicrystal study although which was origi-
nated from the Landau school [9], and they claimed that the
fluid acoustic wave is a fluid phonon. In this case, the
equation of state p � f(ρ) for soft matter must be in-
troduced, where p denotes the fluid pressure and ρ the mass
density. It is well known that the equation of state of soft
matter is a longstanding puzzle in the thermodynamic study.
Based on the original Wensink’s work [10], Fan [1] made
some modifications to obtain a very simple and applicable
equation of state, which will be given in the next section.
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.e present paper develops a mathematical method for
solving the initial-boundary value problem of possible oc-
tagonal soft-matter quasicrystals. .e numerical imple-
mentation of the method by using the finite difference
approach is carried out, and systematical results are ob-
tained. .e method developed here is suitable for all qua-
sicrystals of the first kind of soft-matter quasicrystals
observed so far (or will be discovered in future), but here we
only discuss the possible ones with 8-fold symmetry, which
are more interesting than those with 12- and 18-fold
symmetry. In the latter two classes of quasicrystals, which
have already been observed experimentally, phonons and
phasons are decoupled to each other, leading to possible
missing of certain interesting physical properties. On the
contrary, there is strong coupling between phonons and
phasons in the quasicrystals with 8-fold symmetry, which
may give rise to very important phenomena.

.ough experimental data of soft-matter quasicrystals are
still very few up to now, the study on some fundamental
problems may be important. .rough the study, some basic
physical and mechanical properties can be explored, which
will give guidelines for the future material characterization of
soft-matter quasicrystals. In particular, the stress analysis is
theoretically fundamental and of practical significance. In this
paper, we are interested in the distribution, deformation, and
motion of the matter induced by the applied stress field. .e
interaction between the elementary excitations (e.g., phonons,

phasons, and fluid phonon) will be the core of this study.
Relevant results exploring the intrinsic differences between
soft-matter and solid quasicrystals will be given.

1.1. Equation System of Generalized Dynamics of Soft-Matter
Quasicrystal with 8mm Symmetry in Two Dimensions.
Apart from the observed 12- and 18-fold symmetrical soft-
matter quasicrystals and possible 5- and 10-fold symmetrical
soft-matter quasicrystals, the 8-fold symmetrical soft-matter
quasicrystals may also be observed in a near future..is kind
of soft-matter quasicrystal is very stable and presents im-
portant meaning. Especially between phonons and phasons,
there is strong coupling effect, and it is more interesting in
the study of their mechanical and physical properties and
mathematical solutions. If we consider the plane field in the
xy plane and z-axis is 8-fold symmetry axis, the field
components relating to variable z vanish, and all field
variables are independent from z. As is shown in Figure 1,
the specimen’s center is placed at the coordinate system’s
origin, the x-axis is along the horizontal direction and the y-
axis is along the perpendicular direction. .e rectangular
specimen is symmetric about the x-axis in the horizontal
direction and symmetric about the y-axis in the perpen-
dicular direction. Hence for the possible soft-matter oc-
tagonal quasicrystals, there is a final governing equation
system of the generalized hydrodynamics [1]:
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where ∇ · u � i(z/zx) + j(z/zy), ∇2 � (z2/zx2) + (z2/zy2),
and u � iux + juy represents phonon displacement vector,
w � iwx+jwy the phason displacement vector,V � iVx+ jVy

the fluid velocity vector, L � C12, M � (C11 −C12)/2 the
phonon elastic constants, and K1, K2, andK3 the phason
elastic constants, R the coupling elastic constant between
the phonon and phason fields, and η the fluid dynamic
viscosity, respectively; for the details on constitutive law,
refer to Appendix. .e last equation in system (1) is the
equation of state, which is the thermodynamic result of
soft matter, and does not belong to the result of derivation
of the pure hydrodynamics, in which ρ0 denotes the
initial value of mass density, KB is the Boltzmann con-
stant, T is the absolute temperature, l is the characteristic
size of soft matter, in general is in 1∼100 nm, and in the
following computation, we take 8∼9 nm and achieved best
results.

2. Sample I, Fluctuation due to the
External Stress

2.1. Statement of the Problem. .e aim of this study lies in
revealing the characters of deformation and motion of soft-
matter quasicrystals from the point of view of hydrody-
namics, and the equation (1) provides a basis for the
analysis; the solving system of which in physical space-time
domain is of same importance and otherwise one cannot
get any worth information. First, only through the practical
computation, the correctness, efficiency, and solvability of
the equations can be verified. Second, the computation
determines key field variables of the hydrodynamics of the
matter, which provides the fundamental theoretical results
and applicable data in experiments. For this purpose, a
specimen made by the matter is designed as shown in
Figure 1, and the corresponding initial- and boundary-
value conditions are as follows:

t � 0, ux � uy � 0, wx � wy � 0, Vx � Vy � 0, p � f ρ0( 􏼁,

(2)

y � ±H, |x|<W, Vx � Vy � 0, σyy � σ0f(t), σyx � 0,

Hyy � Hyx � 0, p � p0,

x � ±W, |y|<H, Vx � Vy � 0, σxx � σxy � 0, Hxx �

Hxy � 0, p � p0.

(3)

In the present computation, we take the relevant geometry
parameters and material constants [11] as follows and assume
the dynamic loading function f(t) is the Heaviside [12]
function of time: 2H � 0.01m,2W � 0.01m,σ0 � 0.01MPa,
ρ0 � 1.5 × 103 kg/m3,η � 0.1Pa·s , L � 10MPa [13, 14], M �

4MPa [15], K1 � 0.5L, K2 � −0.1L, K3 � 0.05L, R � 0.04M,

Γu � 4.8 × 10−17 m·s/kg,Γw � 4.8 × 10−19 m3·s/kg. [16].
.e initial boundary value problem of equations (2)-(3)

with nonlinear partial differential equation (1) is consistent
mathematically, but the existence and uniqueness of solution
has not been proven from the theory of partial differential
equations yet due to the complexity of the problem. We can
solve it by the numerical method, and the stability and
correctness of solution can be verified by the numerical
results only.

2.2. Numerical Results. Here, we take a finite difference
method for solving the above initial boundary value prob-
lem, and some results are given through the illustrations
shown in Figures 2–7.

2.3. Analysis of Results. It is well known that the phonon
represents wave propagation, while phason represents dif-
fusion for solid quasicrystals and for soft-matter quasi-
crystals. In the soft-matter quasicrystals, there is another
elementary excitation—fluid phonon, which represents the
fluid acoustic wave propagation. .e wave propagation
dominates the physical process in the studied specimen,
while the phonon and phason fields are coupled to each
other.

.e specimen shown in Figure 1 is subjected to a dy-
namic loading at the upper and lower surfaces, and the
action of the outer field is equivalent to a wave emanated
from the surfaces. Before the wave arrives at the plane lo-
cated of computing point A1 (or A2), there is no any re-
sponse of any field variables at the location, and this is the
simplest and most important fact physically; all of our
computational results prove the point. For example, from
Figure 2(a), the wave emanated from the upper or lower
surface propagating to point A1(10−4 m, 10−4 m) (or
A2(10−4 m,−10−4 m)) experiences t0 � 4.07 × 10−5 s. Its
propagation distance is H0 � H− 10−4 � 0.0049m; thus,
the speed of the wave is c � H0/t0 � 0.0049/4.07 × 10−5 �

120.39m·s−1. Also we can see that the density of soft-matter
quasicrystals in Figure 3(a) decreases to ρmin � 1498 kg·m−3
and the speed of the elastic longitudinal wave is cmax ���������������������

(A + L + 2M− 2B/ρmin)
􏽰

� 109.6176m·s−1, which is very
close to measured wave speed c; in fact, the error is only 0.006.
Also the internal pressure decreases to pmin � 1.011 × 105 Pa
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Figure 1: Specimen of soft-matter quasicrystals of 8-fold symmetry
under dynamic loading.
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Figure 2: Normal stress of phonon field versus time (a) at the point A1 (or A2) of the specimen; (b) at the point A3 (or A4) 2mm from A1 (or
A2) towards the right in the horizontal direction; (c) at the point A8 (or A9) 2mm from A1 (or A7) up in the perpendicular direction.
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Figure 3: (a) Mass density at the point A1 (or A2) of the specimen versus time and (b) variation of mass density of the computational point
A1 (or A2) of the specimen versus time.
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(Figure 4). In the normal elastic solid matter, there is one
longitudinal wave speed c1 �

�����������������
(A + L + 2M− 2B/ρ)

􏽰
�

109.5445m/s. In addition, the speed of two elastic transverse
speeds c2 � c3 �

����
M/ρ

􏽰
� 51.6398m/s and the speed of fluid

acoustic longitudinal (c4)0 �
�����
zp/zρ

􏽰
|ρ�ρ0 � 11.6232m·s−1

(Figure 5). Comparing to the above results, it is obvious that c1
plays the dominated role although soft matter is an in-
termediate phase between solid and liquid, which has 4 kinds
of waves. .e above results examine the correctness of gov-
erning equations, initial- and boundary-value conditions, as
well as the effectiveness of the numerical method and com-
puter program from most fundamental physical fact.

Figures 2(a)–2(c) show the normal stress of the phonon
field versus time, about the points A1, A3, and A5. From the
figures, we can see that the magnitude of the normal stress is
almost equal, but the shapes of the waves are different.
Further comparison of the results about A1 and A5 shows
that the experienced time t0 is not the same since the
propagation distance from the upper to the point studied is
not equal and the experienced time for A5 is shorter than A1
because the propagation distance is shorter. However, the
experienced time of A1 and A3 is equal, it is easy to see that
the propagation distance is equal from Figures 2(a) and 2(b).

In Figures 6(a)–(6c), the normal stress of the fluid
phonon field varies versus time, the case is similar to the
above results, and the experienced time depends on the
propagation distance, so for A1 and A3, the experienced time
is the same but is not for A1 and A5. .ough the magnitude
of the fluid phonon stresses is nearly equal, but the shapes of
waves are also different for different points.

In Figures 7(a)–7(c), about the normal stress of the
phason field versus time, of course for the same reason the
case is similar too. Apart from Figures 2 and 6, the shape of
figures reveals dissipation effects. Meanwhile, we find out
that nearer to the boundary, such as for A3 and A5, the
phason stresses have smaller vibrations than A1.

Because A3 and A4 are symmetric about the x-axis, it is
not hard to imagine the results are the same for the same
kind of field. Also A5 and A6 are symmetric about the y-axis,
and the results are the same too. On further promotion, the
total sample is symmetric about the x- and y-axis, which
enables us to understand that the points in negative axis are
also symmetric to those points in the positive x- and y-axis;
so the results of them are identical.

Moreover, a comparison of the above results with those
for the solid quasicrystals (e.g., 5- and 10-fold quasicrystals
in [12]) is necessary. .e orders of the magnitude of the
stresses such as σyy and Hyy for the soft-matter quasicrystals
are the same to those for the solid quasicrystals. For example,
the order of the magnitude of the phonon normal stress of
the solid quasicrystal is 104, which is equal to those in
Figure 2; at the same time, that of the phason stress of the
solid quasicrystal is 102, which is also equal to those in
Figure 7, although there is a little difference. So the effect of
elastic is similar for both solid and soft-matter quasicrystals.
In contrast to this, the order of the magnitude for the
viscosity normal stress σij

′ of the solid quasicrystal (the order
is 10−10) is much smaller than the fluid normal stress Pij of
soft-matter quasicrystals (the order is 105) in Figure 6. .e

reason is that the effect of solid viscosity is too weak, while
the soft-matter quasicrystals belong to a complex liquid
between solid and liquid, whose fluid effect is very strong.
.is is a major difference between the solid and the soft-
matter quasicrystals.

At an earlier period due to the lack of the equation of
state, we have to compute by using ρ � const, in that case the
computation on fluid field and mass density cannot be
exactly determined, the present work has improved the
situation, we add the state equation, and the field variables p

and ρ can be exactly determined. It shows that the equation
of state suggested in [1] is most important for the dynamics.
However, the equation of state should be verified further by
experiments.

.e computation is stable, and it shows the solvability of
the equations; the well conditionality of the formulation on
the initial boundary value problem of the equations. All field
variables through the specimen are determined numerically,
including the important hydrodynamic variables: fluid
pressure p in Figure 4 andmass density ρ in Figure 3(a)..is
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Figure 4: Fluid pressure at the point A1 (or A2) of the specimen
versus time, reprinted from [11], copyright 2017 with permission
from Springer Nature.
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Figure 5: Velocity of the fluid acoustic wave at the point A1 (or A2)
of specimen versus time.
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Figure 6: Normal stress of fluid field versus time (a) at the pointA1 (orA2) of the specimen; (b) at the pointA3 (orA4) 2mm fromA1 (orA2)
towards the right in the horizontal direction; (c) at the point A8 (or A9) 2mm from A1 (or A7) up in the perpendicular direction, reprinted
from [11], copyright 2017 with permission from Springer Nature.
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improves the computational results, especially those related
with fluid field.

Figure 3(b) shows the time variation of δρ/ρ is about in
the order of magnitude 10−3 and 10 orders of magnitude
higher than that (in the order of magnitude 10−13) of solid
quasicrystals [12]. .ese computational results indicate that
the hydrodynamics of soft-matter quasicrystals is quite
different from that of solid quasicrystals.

3. Sample II, Flow of Soft-Matter
Quasicrystals Past a Circular Cylinder

3.1. Statement of the Problem. .at sample I in Section 2
introduced is only one type of motion of the matter and of
which there are other types. We here discuss another in-
teresting case that the soft-matter quasicrystals flow past an
obstacle, for example, a circular cylinder, shown in Figure 8,
and the governing equation (1) should be modified as the
generalized Oseen equations. But for simplicity, we here
consider only the steady dynamics, so the terms of time
derivative in (1) are omitted.

Suppose a slow flow along the direction x with the
velocity U∞ shown in Figure 8, the pressure p∞ at infinity is
omitted here, and the circular cylinder in an infinite soft-
matter quasicrystal. We have the boundary conditions in the
circular cylindrical coordinate system (r, θ, z):

r �

����������

x2 + y2 + z2
􏽱

⟶∞ :

Vr � U∞ cos θ, Vθ � −U∞ sin θ, σrr � σθθ � 0,

Hrr � Hθθ � 0,

r � a :

Vr � Vθ � 0, σrr � σrθ � 0, Hrr � Hrθ � 0.

(4)

It is well known that, in the classical incompressible fluid
dynamics, there was a famous work given by Oseen [17, 18]
who overcame the well-known Stokes paradox. .e key was
modifying the Navier–Stokes equations, i.e., the Navier–

Stokes equations of two-dimensional viscous fluid dynamics
were revised as follows:
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(5)

where Ux and Uy are the given values of corresponding
velocities in the boundary conditions, and this means that, in
momentum conservation equations, part of velocity com-
ponents are replaced by known functions; equation (4) is
called the Oseen equations. According to this modification,
people solved successfully the flow past cylinder and other
two-dimensional obstacles. In the next section, we present an
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Figure 7: Normal stress of phason field versus time (a) at the point A1 (or A2) of the specimen; (b) at the point A3 (or A4) 2mm from A1 (or
A2) towards the right in the horizontal direction; (c) at the point A8 (or A9) 2mm from A1 (or A7) up in the perpendicular direction,
reprinted from [11], copyright 2017 with permission from Springer Nature.

y
r
θ

U∞

a
x

Figure 8: Flow of soft-matter quasicrystal past a circular cylinder
with the radius a, reprinted from ref. [11], copyright 2017 with
permission from Springer Nature.
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example about the applications. However, Oseen has studied
only an incompressible viscous fluid past a cylinder; in this
case, there is no need for an equation of state. Cheng and Fan,
refer to Fan [11], developed the classical Oseen solution and
studied a compressible viscous fluid past a cylinder, in which
the equation of state is necessary, but this is only a numerical
solution, named the generalized Oseen solution. At present,
we have developed the work of Ref [11] and solved the flow of
soft-matter quasicrystal with 8-fold symmetry past a cylinder,
and the finite difference scheme is shown in Figure 9.

In the numerical analysis, the following material constants
[11] U∞ � 0.01m/s, ρ0 � 1.5 g/cm3, η � 1 Poise, l � 7∼
8 nm, r/a � 1.55, a � 1 cm, kB � 1.38 × 10−23 J/K, T �

293K, L � 10MPa, M � 4MPa, K1 � 0.5 L, K2 � −0.1 L,
K3 � 0.05 L, Γu � 4.8 × 10−17m3 ·s/kg, Γw � 4.8 × 10−19
m3 ·s/kg, A ∼ 0.2MPa, B ∼ 0.2MPa, and the phonon-phason

coupling constant R� 0.04M are used, and the computation is
stable.

3.2. Numerical Results. A part of numerical results obtained
are listed in the following through a series of illustrations.
We find that among influence factors to the computational
results the Reynolds number Re � ρU∞a/η is most im-
portant. .e variation of mass density versus time is shown
in Figure 3(a). Here, we take the finite difference method to
solve the present problem, and some results are given
through the illustrations shown in Figures 10–13.

3.3. Analysis of Results. Figures 10–13 show the angular
distribution of every kind of stress under different Reynolds

2c
m

Figure 9: Finite difference grid in the polar coordinate system, reprinted from ref. [11], copyright 2017 with permission from Springer
Nature.
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Figure 10: Angular distribution of velocity under different Reynolds number at r � 1.55a and t� 350μs. (a) Radial velocity. (b) Cir-
cumferential velocity.
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number, which explores the importance of degrees of
freedom of phonons and phasons in quasicrystals.

Figures 10(a) and 10(b) show the angular distribution
about radial and circumferential velocities under different
Reynolds number. Due to the soft-matter, quasicrystals are
influenced by the elementary excitation of phonons, pha-
sons, and fluid phonons, so the magnitude of Vr and Vθ
should be slower than the conventional liquid.

Figure 11 shows the angular distribution of normal stress
of fluid phonon under different Reynolds number. .e
results are similar to the case of the 12-fold symmetry soft-
matter quasicrystals. .is is understandable since the two
classes of quasicrystals both belong to the first kind of soft-
matter quasicrystals, and they have very similar structures.
.e viscous fluid stress components are small, but total

values of the normal stresses are quite considerable by
adding the fluid pressure so that, for the soft-matter qua-
sicrystals, fluid phonon and its effect are very important..is
is the most evident distinction of soft-matter quasicrystals
with the solid ones.

Figure 12 shows the angular distribution of normal stress
of phonon under different Reynolds number. Also the re-
sults of 8-fold and 12-fold symmetry soft-matter quasi-
crystals are quite similar for the same reason. But the results
of phonon are only for soft-matter quasicrystals, while there
are no results of phonon for the conventional liquid as they
have not the phonon elastic stresses.

More remarkable, contrast to 12-fold symmetry quasi-
crystals due to the decoupling between phonons and pha-
sons in them, the 8-fold symmetry quasicrystals due to the
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FIGURE 11: Angular distribution of normal stress, due to fluid viscosity under different Reynolds number, at r � 3.55a and t� 350 μs:
(a) radial normal stress, (b) circumferential normal stress, and (c) shear stress Prθ(Pθr).
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coupling between phonons and phasons, of which the so-
lution of phasons in Figure 13 is strongly exhibited. .is is
the main difference between the 8-fold and 12-fold soft-
matter quasicrystals.

Another evident feature is that the Reynolds number is
very important and influences the results largely. .e above
analysis show that all the results are under different Reynolds
number, that is to say, at different flow velocity U∞ and
cylinder radius a.

.e equation of state is important too; if there is not this
equation then the basic equation set is not closed, there are
no solutions.

.e last but the most noteworthy feature is that the soft-
matter quasicrystals are complex liquids, so they are very

different from the conventional liquids. Compared the
magnitudes of the results of soft-matter quasicrystals with
the conventional liquids as shown in Ref [11] (see page 64 in
chapter 6)..emagnitude of the conventional liquids is 10−3
for radial velocity Vr, and the one of soft-matter quasi-
crystals in Figure 10(a) is also 10−3, but the former is a little
larger than the latter. In contrast to that, for circumferential
velocity Vθ, the orders of magnitude of the former are 10−2,
while the ones of the latter are 10−4, so the former are two
times larger than the latter. .is shows that the flow effect of
the conventional liquids is stronger than the soft-matter
quasicrystals which belong to a complex liquid between solid
and liquid. Although there are some differences of the
magnitudes in the results between the numerical solution for

–200

–150

–100

–50

0

50

100

150

200
σ r

r (
Pa

)

–50 500 100 150 200 250 300 350 400
θ

Re = 1.5, U = 0.01m/s, a = 0.01m
Re = 4.5, U = 0.01m/s, a = 0.03m
Re = 4.5, U = 0.03m/s, a = 0.01m

(a)

–150

–100

–50

0

50

100

150

σ θ
θ 

(P
a)

–50 500 100 150 200 250 300 350 400
θ

Re = 1.5, U = 0.01m/s, a = 0.01m
Re = 4.5, U = 0.01m/s, a = 0.03m
Re = 4.5, U = 0.03m/s, a = 0.01m

(b)

–50

–40

–30

–20

–10

0

10

20

30

40

50

–50 500 100 150 200 250 300 350 400
θ

σ r
θ 

(P
a)

Re = 1.5, U = 0.01m/s, a = 0.01m
Re = 4.5, U = 0.01m/s, a = 0.03m
Re = 4.5, U = 0.03m/s, a = 0.01m

(c)

Figure 12: Angular distribution of normal stress of phonon under different Reynolds number at r � 1.55a and t� 350 μs: (a) radial normal
stress, (b) circumferential normal stress, and (c) shear stress σrθ(σθr).
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soft-matter quasicrystals and the Oseen solution for the
conventional liquids, the structure of solutions is very
similar. .is verifies that the present model and method are
correct and effective.

4. Conclusion and Discussion

A complete solution of equation set of hydrodynamics of
possible soft-matter octagonal quasicrystals is constructed
through the finite difference method. As computational ex-
amples, we have studied two different samples: one is a
specimen under impact tension which is quite simple and can
easily be tested experimentally and the other is the flow past a
cylinder. .e computation is systematical covering all

hydrodynamic field variables, and the results verify the theory
suggested in [1] and show the correctness of the formulation
given in Section 2..e numerical procedure is very stable and
is highly precise. In particular, the results reveal the nature of
elementary excitations such as phonons, phasons, and fluid
phonon; their interaction; and the gigantic differences in the
physical behaviour between soft-matter and solid quasi-
crystals. For example, the compressibility of soft-matter
quasicrystals is 1010 times greater than that of solid quasi-
crystals and the ratio Pij/σij

′ of the fluid stress of soft-matter
quasicrystals over the viscous stress of the solid quasicrystals is
1015. .ese great quantitative differences characterize quali-
tative differences of the dynamic nature between soft-matter
and solid quasicrystals as well.
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Figure 13: Angular distribution of the normal stress of phason under different Reynolds number at r � 1.55a and t� 350 μs: (a) radical
normal stress, (b) circumferential normal stress, (c) shear stress Hrθ, and (d) shear stress Hθr.
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From the angle of generalized hydrodynamics of
the complex system in Section 2, the present work is a
heritage and development of hydrodynamics of solid
quasicrystals of Lubensky et al. [8] which was derived by
the Poisson bracket method, based on which Fan [1]
derived the equation system of soft-matter quasicrystals,
in which the key lies in that supplementation of the
equation of state, which originated from Wensink [10].
.e computation shows the nature of the intermediate
phase between solid and fluid, so the equation system of
soft-matter quasicrystals suggested in [1] is important,
valid, and effective.

.e analysis displayed in Section 3 explored the typical
nature of soft matter of the material and exhibited once again
the importance of the equation of state..e sample of the flow
past cylinder in soft-matter quasicrystals with 8-fold sym-
metry reveals the fluid effect of the soft-matter quasicrystals
and their effect is weaker than the conventional liquids, in
which the Reynolds number plays an important role.

.e work opens a field in dynamics of the soft-matter
quasicrystal study and might be significant for other
branches of soft matter science.

Appendix

The Constitutive Equations Relations

To solve the equations, we must give the constitutive
equations and geometry gradient equations of deformation
of the soft-matter quasicrystals in detail:

σij �
zF

zεij

� Cijklεkl + Rijklwkl,

Hij �
zF

zwij

� Kijklwkl + Rklijεkl,

(A.1)

where the function F � F(εij, wij) is the elastic free energy
density of the system with strain tensors for phonons and
phasons:

εij �
1
2

zui

zxj

+
zuj

zxi

􏼠 􏼡,

wij �
zwi

zxj

,

(A.2)

where Cijkl is the phonon elastic constant tensor, Kijkl is the
phason elastic constant tensor, and Rijkl is the phonon-
phason coupling elastic constant tensor. For the fluid part of
the stress tensor, there is

pij � −pδij + 2η _ξij −
1
3

_ξkkδij􏼒 􏼓 + ζ _ξkkδij, (A.3)

with the deformation velocity tensor,

_ξij �
1
2

zVi

zxj

+
zVj

zxi

􏼠 􏼡, (A.4)

where η is the first viscosity coefficient and ζ is the second
one of the matter.

In order to make the closeness of the equation set, we
must add an additional relation between pressure and mass
density:

p � f(ρ), (A.5)

which is often the named state equation and is given to
equation (1) in the text.

In application to the 8-fold symmetry soft-matter qua-
sicrystals, Cijkl have only five nonzero and independent ones
[16], i.e.,

C1111 � C2222 � C11,

C1122 � C12,

C1212 � C1111 −C1122 � C11 −C12 � 2C66,

C2323 � C3131 � C44,

C1133 � C2233 � C13,

C3333 � C33.

(A.6)

For the two-dimensional case, we have

Cijkl � Lδijδkl + M δjkδjl + δilδjk􏼐 􏼑, i, j, k, l � 1, 2,

L � C12,

M �
C11 −C12( 􏼁

2
� C66.

(A.7)
Also, applying the same to 12-fold symmetry quasi-

crystals, the phason elastic constant components are
K1111 � K2222 � K1,

K1122 � K2211 � K2,

K1221 � K2112 � K3,

K2121 � K1212 � K1 + K2 + K3,

⎫⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

(A.8)

and the others are zero. Equation (A.8) can also be expressed
by

Kijkl � K1 −K2 −K3( 􏼁 δik − δil( 􏼁 + K2δijδkl + K3δilδjk

+ 2 K2 + K3( 􏼁 δi1δj2δk1δl2 + δi2δj1δk2δl1􏼐 􏼑,

i, j, k, l � 1, 2.

(A.9)
Due to the phonon-phason coupling for 8-fold sym-

metry quasicrystals, we have

R1111 � R1122 � −R2222 � R1221 � R2121 � −R1212 � −R2121

� R,

Rijkl � R δi1 − δi2( 􏼁 δijδkl − δilδjk + δiljk􏼐 􏼑, i, j, k, l � 1, 2.

(A.10)

For simplicity, only the scalar quantity form of ηijkl is
considered here, i.e.,
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pij � −pδij + η _ξkl −
1
3

_ξkkδij􏼒 􏼓 + ζ _ξkkδij,

_ξij �
1
2

zVi

zxj

+
zVj

zxi

􏼠 􏼡,

_ξkk � _ξ11 + _ξ22 + _ξ33.

(A.11)

where η is the first viscosity coefficient and ζ is the second
one, but we put ζ � 0 because its value is too small, also Γu
and Γw denote the phonon and phason dissipation co-
efficients, and A and B are the material constants due to
variation of mass density, respectively.
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