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,e oxide-scale structure and pickling behavior of oxided 2205 duplex stainless steel in the electrolytes containing hydrochloric acid
were investigated. ,e oxide scales mainly consist of two layers: the outer layer is dense Fe2O3, and the inner granular is FeCr2O4
spinel. During the pickling process, pittings form around the boundaries of FeCr2O4 particles or interfaces of two kinds of oxides,
which results in that the electrolyte can directly react with the chromium-depleted layer along the pittings to produce an “undercut”
effect so that the pickling efficiency is improved markedly. ,e pickling mechanism was discussed, and the model was established.

1. Introduction

Duplex stainless steel 2205 is one of the most common kinds
of DSSs with the volume fraction of each phase above 30%.
Due to the proper austenite-ferrite balance, 2205 exhibits
exceptional corrosion resistance properties except for ex-
cellent strength and impact toughness [1, 2] and thus has
been widely used in oil and gas exploration, shipping
preparation, flue gas desulfurization, desalination, and other
industrial fields [3–6].

Pickling is one of the most important steps in the
manufacture of 2205 and can become the limiting factor of
production efficiency. Pickling of 2205 is very difficult for
four reasons. Firstly, the oxide scales on 2205 are dense and
adherent strongly to the underlying metal. Secondly, the
removal of the chromium-depleted layer beneath the oxide
scales is imperative due to its low corrosion resistance [7–
10]. ,irdly, the alloying element contained in 2205, such as
molybdenum and nitrogen, can improve the stability of the
oxide scales remarkably [11]. Fourthly, the composition,
thickness, and protectiveness of the oxide scales formed on
the austenitic phase and ferritic phase are not the same due
to the different chromium contents in them [12–14].

Researches [15] have shown that electrolytes containing
hydrochloric acid can efficiently remove the chromium-
depleted layer for hot-rolled 304 due to the anodic
brightening mechanism [16]. But whether the hydrochloric
acid can improve the pickling efficiency of 2205 is still not
clear. Moreover, the researches on the pickling of 2205
mainly focus on the electrochemical pickling [17–19], and
little work has been done on the chemical pickling. ,is
paper mainly discussed the pickling behavior of 2205 in
electrolytes containing hydrochloric acid and the evolution
of the oxide scale by chemical pickling. Finally, a hydro-
chloric acid pickling model was built on these results.

2. Experiment Procedure

2205 duplex phase stainless steel (with a chemical compo-
sition of 0.018wt.% C, 1.2wt.%Mn, 22.6wt.% Cr, 5.3wt.%Ni,
and balanced Fe) was hot rolled into a plate, following
annealing and blasting treatment (called as oxidized 2205).
Specimens (30mm× 30mm) were machined from the plater.
,e phase components of the oxide scale were investigated
by a Japan Rigaku D/Max-IIIB X-ray diffractometer with
Cu Kα1 radiation (λ�1.5405 Å). ,e accelerating voltage,
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emission current, and scanning speed were 40 kV, 40mA, and
0.2°/s, respectively. ,e morphologies and microstructures of
the specimens were observed using a UK Leica Cambridge
S360 scanning electron microscope (SEM).

Analytical grade chemicals and distilled water were
used to prepare the electrolyte containing 110 g/L HCl. And
a little oxidant was added to the electrolyte to advertise
overcorrosion. ,e tests were carried out at 80°C under the
unstirred condition.

Corrosion potential during the pickling process was
measured by an electrochemical workstation (PARSTAT®2273, USA), and a saturated calomel electrode was used as the
reference electrode.When the electrodes were introduced into
the test electrolyte, the corrosion potential measurement
started. Furthermore, some specimens were immersed into
the same electrolyte and taken out after the following time
intervals: 30 s, 60 s, and 90 s. Afterwards, the specimens were
rinsed with distilled water to remove the residual electrolyte
and dried to analyze the evolution process of the oxide scale in
the pickling electrolyte by SEM. ,e specimen rinsed for 90 s
was then slightly brushed to remove the residual oxides to
observe the micromorphology of the matrix.

3. Results

3.1.Compositionof SurfaceOxide Scale. Figure 1 presents the
X-ray diffraction pattern of the 2205 surface oxide scale. It
clearly shows the typical diffraction peaks of the matrix
indicating that the X-rays completely penetrated the oxide
layer so that the possibility of undetected oxide phases was
minimized. Moreover, the pattern reveals that the oxide
scale consists of Fe2O3, FeCr2O4 spinel, and SiO2, which is in
accordance with the research of Li et al. [12].

3.2. Cross-sectional Morphology and Elements Distribution of
Surface Oxide Scale. Figure 2 shows the SEM image of the
cross-sectional morphology and the EDS maps showing the
distribution of the main elements, which combine with
oxygen to form the surface oxide scale. ,e thickness of the
oxide scale is approximately 10 μm. And the scale can be
divided into two layers: the outer layer of iron-rich oxidation
and the inner layer of chromium-rich oxidation. And also
some silicon oxides are mainly enriched at the interface of
the chromium oxide and matrix. Combining this result with
the X-ray spectra, it can be inferred that the outer layer is
Fe2O3 and the inner layer is FeCr2O4 (a kind of spinel).

3.3. Corrosion Potential of Pickling Process. ,e corrosion
potential of 2205 pickling in the electrolyte containing
hydrochloric acid shows a typical characteristic of hydro-
chloric acid pickling [16] (Figure 3). In the initial stage, the
corrosion potential decreases sharply as the electrolyte per-
meates the interface of the oxide scale and the chromium-
depleted layer.,e corrosion potential stays first at a low level
after decreasing down and then abruptly increases up to a
relatively high value after duration because of the dissolution
of the chromium-depleted layer. ,is reflects an active-to-
passive transition rather than an anodic brightening [16].

In addition, as shown in Figure 3, the whole pickling
process lasted 60 s. However, the pickling process was kept
for 90 s to ensure the uniformity of pickling in the im-
mersion test.

3.4. Evolution Process of Oxide Scales in Pickling Electrolyte.
,e SEM images of the oxide scales after immersion in the
pickling electrolyte for different times and the matrix after
pickling are shown in Figure 4.,e EDS results show that the
outer layer of Fe2O3 is dense and the FeCr2O4 spinel stacking
beneath the outer layer is granular. In the whole pickling
process, the lumpy Fe2O3 had little changes, but the amount
of FeCr2O4 decreased gradually. ,ere were some cavities at
the boundaries of the FeCr2O4 particles or the interfaces of
two kinds of oxides (as indicated by the arrows). As the
immersion time increased, the number and size of the
cavities increased constantly. Up to 90 s, the surface oxide
scale detached completely from the matrix, and the residual
oxide could be easily removed by a nylon brush. ,e surface
of the matrix after pickling was smooth without local pitting
corrosion or other obvious corrosions, which can satisfy the
requirements of cold rolling.

4. Discussion

Based on the XRD and EDS analysis results, it is known that
the oxide scale is mainly composed of Fe2O3 and FeCr2O4.
,e reaction in the electrolyte containing hydrochloric acid
is as follows:

Fe2O3 + 6H+
� 2Fe3+

+ 3H2O (1)

FeCr2O4 + 8H+
� 2Cr3+

+ Fe2+
+ 4H2O (2)

,e variations of the standard Gibbs free energy ΔGθ for
chemical reactions (1) and (2) at 80°C are 19.128 kJ and
−63.122 kJ [20], respectively, suggesting that FeCr2O4 could
be dissolved prior to Fe2O3 when immersed in the same
reducing acid liquor. ,is accounts for why Fe2O3 shows
little variation with the increase of time during the whole
pickling process, while the FeCr2O4 spinel particles reduce
with the increase of time.

,e electrolyte contains a large amount of Cl−, which can
be preferentially adsorbed at the regions with higher energy,
such as the boundary of the FeCr2O4 spinel and the interface
of the two oxides. ,e adsorption of Cl− promotes the
dissolution of the oxides and the formation of cavities. ,e
volume and depth of the cavities increase constantly with the
increase of time till reaching the chromium-depleted layer.
,en, the elements in the chromium-depleted layer react
with the electrolyte as follows (taking Fe and Cr for
example):

Fe + 2H+
� Fe2+

+ H2↑ (3)

Cr + 3H+
� Cr3+

+ 1.5H2↑ (4)

,e variations of the standard Gibbs free energy ΔGθ

at 80°C are −91.283 kJ and −197.861 kJ, [20] respectively,
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meaning that the chromium-depleted layer will dissolve
prior to the oxides. 	ese reactions will produce an “un-
dercut” e�ect on the oxide scale, and the reaction product H2
can also degrade the integrality and adhesiveness of the
oxide scale. 	erefore, the oxide can be removed easily at the
end of pickling.

According to the results above, a pickling mechanism
model is built for the oxidized 2205 in hydrochloric acid

solution, as shown in Figure 5. After hot rolling and high
temperature annealing, the black-oxide scales on the surface
of 2205 are integrated and compact (Figure 5(a)). 	e oxide
scales consist of two layers: the outer layer is dense Fe2O3,
and the inner is FeCr2O4. A thin chromium-depleted layer is
formed between the inner oxide layer and matrix because of
the formation of the oxide scales. After blasting, the outer
Fe2O3 is mechanically ruptured and partially falls o� from
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Figure 1: XRD pattern of the 2205 matrix and the surface oxide scale.
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Figure 2: SEM images of the cross-sectional morphology (a) and EDS maps of Fe (b), Cr (c), and Si (d) for oxidized 2205.
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Figure 3: Corrosion potential of the oxidized 2205 in the electrolytes as a function of the pickling time at 80°C (containing 110 g/L HCl).
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Figure 4: SEM images of the oxide scales after immersion in the pickling electrolyte for 30 s (a), 60 s (b), and 90 s (c), respectively.,ematrix
after pickling (d) and EDS spectrums corresponding to points A (e) and B (f) in (a), respectively.
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the surface and then the FeCr2O4 is exposed (Figure 5(b)).
When immersed in the electrolyte, the oxidized stainless
steel fully contacts with the solution. At the initial stage
of pickling, Cl− ions in the electrolyte are adsorbed at the
boundaries of the FeCr2O4 particles and the interface
of Fe2O3 and FeCr2O4, where pits nucleate (Figure 5(c)).
According to the thermodynamic calculation, the electro-
lyte will preferentially react with FeCr2O4. ,erefore, the
FeCr2O4 crystals around the pit nucleus continuously dis-
solve, and the pits propagate along the grain boundaries to
the matrix (Figure 5(d)). ,e electrolyte replenishes into the
pits to maintain the continuous dissolution of the FeCr2O4
crystals. When the pits penetrate the oxide layer, the
chromium-depleted layer is exposed to the electrolyte and
preferentially reacts to dissolve. At this time, dissolution of
the chromium-depleted layer becomes the main reaction of
pickling and causes the “undercut” effect (Figure 5(e)). In
addition, the hydrogen bubbles (not marked) generated can
promote the fluidity of the electrolyte and mechanically
damage the oxide scales. With prolongation of the pickling,
the chromium-depleted layer is continuously dissolved until
the whole oxide scale breaks away from the matrix, which
indicates the end of the pickling process.

5. Conclusions

In conclusion, the oxide scales formed on the 2205 hot-
rolled plate after annealing is mainly divided into two layers:

the outer layer is the dense Fe2O3 crystal, and the inner is the
granular FeCr2O4 spinel. ,e outer layer is broken after shot
blasting treatment. When put in the electrolyte, the potential
of the oxided 2205 decreases rapidly to the minimum value
for some time and then gradually increases, showing
obvious characteristics of hydrochloric acid pickling. During
the pickling process, pittings are firstly formed around
the boundaries of the FeCr2O4 particles or interfaces of the
two kinds of oxides and then the electrolyte penetrates the
oxide scales along the pittings to react with the chromium-
depleted layer directly.,is reaction produces an “undercut”
effect so that the oxide scales are effectively removed.
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