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In order to optimize the wall thickness distribution of medical balloon, kyphoplasty balloon was chosen as the research object, the
uniformity of wall thickness distribution was taken as the evaluation index, and the influence of stretch blow molding process on
the uniformity of kyphoplasty balloon was investigated. In this paper, 16 sets of orthogonal test schemes were studied by selecting
four main parameters such as forming temperature, forming pressure, stretching distance, and holding time of stretch blow
molding process based on the L16(44) Taguchi method orthogonal table. )e statistical analysis showed that the forming
temperature was an utmost parameter on the uniformity, while an optimal scheme was obtained and an optimal balloon with the
uniformity of 95.86% was formed under the scheme. To further quantify the relationship between the uniformity and the
parameters, artificial neural network (ANN) and nonlinear regression (NLR) models were developed to predict the uniformity of
the balloon based on orthogonal test results. A feed-forward neural network based on backpropagation (BP) was made up of 4
input neurons, 11 hidden neurons, and one output neuron, an objective function of the NLR model was developed using second-
order polynomial, and the BFGSmethod was used to solve the function. Adequacy of models was tested using hypothesis tests, and
their performances were evaluated using the R2 value. Results show that both predictive models can be used for predicting the
uniformity of the balloon with a higher reliability. However, the NLR model showed a slightly better performance than the
ANN model.

1. Introduction

Medical balloon is a device used for interventional surgery
and has been widely used in many medical fields [1]. )e
balloon has extremely demanding performance require-
ment, and great attention has been paid to the balloon
forming process investigation to form high-quality products.
Sauerteig and Giese [2] described that balloon is manu-
factured by stretch blow molding process using the extruded
tube, which is the basic method of balloon manufacturing;
they also researched the influence of process parameters on
the manufacture of PTCA balloon and defined the pressure
and diameter characteristics. Some improvedmanufacturing
processes based on stretch blowmolding are documented on
patents [3–5]. Menary and Armstrong [6] researched the
forming process of angioplasty balloon through numerical
modeling and simulation and developed a finite element

simulation of the process to optimize the design and
manufacture of the balloon. Azarnoush et al. [7] assessed the
diameter of angioplasty balloon at different pressures
through coherence tomography monitoring. Lalli [8]
researched the relationship between wall thickness and four
main stretch blow molding parameters and expounded the
relationship between burst pressure, wall thickness, and
compliance. Fu et al. [9] analyzed the influence of process
parameters on wall thickness through numerical simulation
based on the orthogonal design method and established the
regression model of wall thickness. Mir et al. [10] simulated
the stretch blow molding process using the pressure-volume
thermodynamic relationship to predict the thickness of the
balloon. Ro and Davé [11] researched the effects of critical
design attributes of angioplasty balloons, such as residual
stresses on shrinkage, crystallite orientation, balloon com-
pliance, and mechanical properties.
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To summarize, there are some researches on the
forming processes for optimizing balloon characteristics
such as pressure, wall thickness, and compliance. However,
another important performance of the balloon, the uni-
formity of wall thickness distribution, is rarely studied.)is
performance not only limits burst pressure but also affects
flexibility. )e reason is that the thicker the balloon wall,
the greater the bursting pressure, and the worse the flex-
ibility, and if the balloon is too thin, the burst pressure will
be low.

2. Kyphoplasty Balloon Production
and Measurement

2.1. Kyphoplasty Balloon. Like other typical medical bal-
loons, a kyphoplasty balloon consists of five descriptive
areas, namely one body, two cones, and two necks. )e body
is a smooth cylindrical part to restore the vertebral height
lost during the operation, the necks are extreme ends which
are used to connect with the catheter, and the cones are
conical parts between the body and the necks. Figure 1 il-
lustrates the structure and size of kyphoplasty balloon
researched in this paper.

2.2. Material. Kyphoplasty balloon is a compliant balloon,
and its volume is able to expand to several times their
original size and usually return back to their original shape
and size once the pressure is reduced [12]. In order to meet
the performance requirements, thermoplastic polyurethane
(TPU) is usually used as the material for manufacturing the
balloon. In this paper, a new type of aromatic polyether-
based TPU (RxT90A; Texin®, Germany)with a melting point
of 199°C and a Vicat softening temperature of 106°C was
selected for forming experiments.

2.3. Forming Process. )e forming process of kyphoplasty
balloon usually includes three main phases. First, the tube
with an inner diameter of 3.5mm and an outer diameter of
4.3mm is extruded, and it must have a high concentricity
and a uniform wall thickness. Second, a parison is achieved
when both ends of the tube are stretched at a high tem-
perature and an unstretched segment is left in the middle.
)ird, the balloon is formed in stretch blowmolding process,
which is the phase of research in this paper. In this phase, the
tube with a parison passes through center mold and two ends
of the tube are placed in the plugs, respectively, followed by
axial prestretching of both ends at low pressure; then, a
balloon is formed when the parison is extended and ex-
panded inside the mold as the pressure raised after mold
heating and keep warming for a while; at the end of this
process, the mold is cooled down and the pressure is
released.

Both of the parison and balloon are formed in a balloon
forming system, which includes a double-end stretcher (DES)
and a balloon-forming machine (BFM). Figure 2 illustrates a
balloon forming system (CMBPL-01; Changmei Medtech,
China).

2.4. Measurement and Characterization. Five continuously
produced balloons were taken as the samples, and each
sample was marked with 7 positions along axial direction, as
shown in Figure 3. )ree sets of double-wall thickness data
were measured along a circle at each position, and the result
of the sum of one-sixth of the three data at one position is
taken as the result. )e mean of the results at the same
position of the five samples was calculated as the experi-
mental result on each position, regarded as δi(i � 0, 1, ..., 7).
All measurements were measured using the micrometer.

)e uniformity of kyphoplasty balloon wall thickness
distribution is developed as the following objective function
[13]:

G � 100% −
Std

δ
× 100%, (1)

where G is the uniformity of wall thickness, Std is the
standard deviation of wall thickness, δ is the mean of wall
thickness, and Std and δ can be calculated according to the
following two formulas:

Std � 􏽘
n

i�1

δi − δ􏼐 􏼑
2

n
⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦

1/2

, (2)

δ �
1
n

δ1 + δ2 + · · · + δn( 􏼁. (3)

3. Orthogonal Test and Results

3.1. Orthogonal Test Factors. Orthogonal test is an efficient,
fast, and economical method for seeking the best level
combination with multiple factors [14]. Some important test
factors and representative level combinations are selected in
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Figure 1: Structure and size of kyphoplasty balloon.

Figure 2: Balloon forming system: DES (left) and BFM (right).

2 Advances in Materials Science and Engineering



order to find the optimal and effective level combination. It
can be concluded from previous studies [8–10] that forming
temperature (Q), forming pressure (P), stretching distance
(D), and holding time (T) are four important factors in
stretch blow molding process. In this paper, the above four
factors are selected as test factors, and each factor is set with
four different levels according to the appropriate range of
preliminary tests, as shown in Table 1. In preliminary tests,
some other stretch blow molding parameters were deter-
mined, such as the length of parison, 10mm, the cooling
water temperature, 23°C, the cooling time, 90 s, the pre-
stretching force, 80 g, and the initial pressure, 2 atm.

3.2.OrthogonalTest Schemes. )e Taguchi orthographic table
was selected to design the test schemes based on Table 1
[15, 16]. 16 sets of orthogonal test schemes were established
according to the L16(44) orthogonal table, as shown in
Table 2.

3.3. Orthogonal Test Results. Balloons were formed
according to the schemes, and the uniformity of the balloon
wall thickness under each scheme was measured and cal-
culated according to formulas (1)–(3). )e full orthogonal
test results are shown in Table 3.

3.4. RangeAnalysis. )ere are two important parameters, Ki

andR, in range analysis, and they are described as shown in
the following equation [17]:

Ki �
1
n

􏽘

n

j�1
Ej,

R � Kimax − Kimin,

(4)

where Ej is the value of a certain factor, Ki is the average of
each factor, and R is the range and used to estimate design
variable sensitivities [18]. In general, the greater the Ki value,
the higher the indicator values under this level, and if the
value of R is larger, the factor value would be more in-
fluential [19]. )e range analysis of the orthogonal test re-
sults was calculated according to equation (4), as shown in
Table 4.

It can be clearly found from Table 4 that the primary and
secondary order of influence of each parameter on the
uniformity of wall thickness is BADC. )e optimal com-
bination of the uniformity as the evaluation criterion is
A3B3C3D2, namely, P� 6 atm, Q� 160°C, T� 40 S, and

Table 1: Level table of orthogonal test factors.

Levels
Factors

A B C D
P (atm) Q (°C) T (s) D (mm)

1 4 140 20 8
2 5 150 30 10
3 6 160 40 12
4 7 170 50 14

Table 2: Orthogonal test schemes.

Test serial
numbers

Factors Corresponding parameters

A B C D P
(atm)

Q
(°C)

T
(s)

D
(mm)

1 A1 B1 C1 D1 4 140 20 8
2 A1 B2 C2 D2 4 150 30 10
3 A1 B3 C3 D3 4 160 40 12
4 A1 B4 C4 D4 4 170 50 14
5 A2 B1 C2 D3 5 140 30 12
6 A2 B2 C1 D4 5 150 20 14
7 A2 B3 C4 D1 5 160 50 8
8 A2 B4 C3 D2 5 170 40 10
9 A3 B1 C3 D4 6 140 40 14
10 A3 B2 C4 D3 6 150 50 12
11 A3 B3 C1 D2 6 160 20 10
12 A3 B4 C2 D1 6 170 30 8
13 A4 B1 C4 D2 7 140 50 10
14 A4 B2 C3 D1 7 150 40 8
15 A4 B3 C2 D4 7 160 30 14
16 A4 B4 C1 D3 7 170 20 12

Y

X
86420–2–4–6–8

δ0 δ1 δ2 δ3 δ4 δ5 δ6

Figure 3: Marked positions.

Table 3: Orthogonal test results.

Test serial numbers G
1 80.95%
2 87.22%
3 89.47%
4 83.51%
5 83.76%
6 88.18%
7 93.74%
8 93.67%
9 85.69%
10 92.58%
11 95.26%
12 93.27%
13 85.51%
14 90.27%
15 92.13%
16 90.23%

Table 4: Influence analysis of parameters on the uniformity.

Parameters P (atm) Q (°C) T (s) D (mm)
K1 85.29% 83.99% 88.66% 89.83%
K2 89.84% 88.56% 89.10% 90.22%
K3 91.70% 92.65% 89.78% 89.11%
K4 89.54% 90.17% 88.84% 88.20%
R 6.41% 8.67% 1.12% 3.03%
Sorting 2 1 4 3
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D� 10mm. )e poor combination of the uniformity as the
evaluation criterion is A1B1C1D4, namely, P� 4 atm,
Q� 140°C, T� 20 S, and D� 14mm.

4. Development of Predictive Models

In order to quickly obtain appropriate process conditions,
the method of directly predicting test results with the help of
numerical simulation is a simple and economical method for
enterprises [20]. It is necessary, for this purpose, to establish
a mathematical model for quantifying the relationship be-
tween the uniformity and main parameters.

4.1. Artificial Neural Networks (ANN). ANN became more
and more popular in the recent past for the development of
process parameter predictive models [21–23].)is method is
an efficient modeling technique that can capture and gen-
erate both linear and nonlinear complex relationships be-
tween the independent and dependent variables [24]. In this
paper, a feed-forward backpropagation (BP) algorithm was
used to model the wall thickness uniformity of the balloon.
)e network has three layers, namely, input layer, output
layer, and hidden layer. )ere are four neurons in the input
layer, namely, forming temperature, forming pressure,
stretching distance, and holding time, and there is one
neuron in the output layer, namely, the wall thickness
uniformity. )e hidden layer performs nonlinear mapping
between input and output layers through a suitable basis
function, and the number of neurons in this layer can be
calculated by using the following formula [25]:

s �
�����
m + k

√
+ a, (5)

where s is the number of hidden neurons,m is the number of
input neurons, k is the number of output neurons, and a is a
constant between 0 and 10. )e neurons of the hidden layer
are determined to be 11. )e architecture of this 4-11-1
network is shown in Figure 4.

)e training, testing, and validation of the ANN analysis
were conducted using MATLAB, 2017a ()e MathWorks,
Inc.). Based on the recommendations of Kurra et al. [26],
95% of the data were used for training, 5% of the data were
used for testing, and 5% of the data were used for validation.

)e network was trained using the Levenberg–Marquardt
function, which was found to be an efficient training
function [26, 27].

4.2. Regression Model and Calculation

4.2.1. Regression Model. A nonlinear objective function
G(x) was established considering the nonlinear relationship
between the uniformity and main parameters, and the
variables of the model were assumed such as forming
temperature, forming pressure, stretching distance, holding
time, and the wall thickness uniformity. According to the
studies [28, 29], second-order polynomial function can
better represent the relationship between process conditions
and assessment indicators than first-order function, and the
amount of fitting calculation required for the second-order
polynomial function is less than the third-order and higher-
order polynomial functions. )e objective function can be
defined as follows:

G(x) � β0 + 􏽘
k

i�1
βiXi + 􏽘

k

i�1
βiiX

2
i + 􏽘 􏽘

i<j
βijXiXj + εi,

(6)

where k is number of factors, β0 is the free term, βi is the
linear effect, βii is the squared effect, and βij is the interaction
effect.

4.2.2. Calculation Based on BFGS. )e quasi-Newton
method is an effective method for solving nonlinear function
[30] and is proved very successful based on the numerical
experiment [31]. In this paper, the BFGSmethod, a branch of
quasi-Newton methods, was used to solve function (6). )e
solution and convergence steps based on the BFGS algo-
rithm were illustrated by Nocedal and Wright [32]. )e
nonlinear regression (NLR) model, described as follows, was
obtained after calculation according to the parameter
combinations in Table 3 and the corresponding test results in
Table 4 with the help of the mathematical analysis software
1stOpt:

G(x) � f(Q, P, D, T) � 0.88384389 − 76.517016Q + 2.1043957P + 27.562052 D − 5.9743062T

+ 0.00048819Q · P + 2.778543Q · D − 6.93864e − 5Q · T − 0.0733895P · D − 0.00102068P · T

+ 0.217053 D · T − 0.000201625Q
2

− 0.0167875P
2

− 1.0074298D
2

− 3.45e − 5T
2
.

(7)

4.3.Results andDiscussion. )e predictive models of the wall
thickness uniformity were developed as a function of
forming temperature, forming pressure, stretching distance,
and holding time. )ere are two different techniques—ANN
and NLR—that can be used to develop these models for the
estimation of the wall thickness distribution of the balloon.
Results of ANN and NLR are compared with experiments in
Table 3 for 16 check sets, and their relative errors are

calculated between predicted and experimental values. )e
comparison results and errors are depicted in Table 5.

)e results predicted by ANN and NLR are compared
with experimental results in Figure 5. From this figure, it can
be seen that both models’ prediction present good agree-
ment with the experimental data.

Performances of these techniques were evaluated
through calculating errors. )e statistic of the errors with
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different modeling techniques is summarized in Table 6. It
can be known from this table that the mean test errors for
ANN and NLR are about 0.99% and 0.69%, respectively, and
the maximum test errors for them are about 2.76% and
1.83%, respectively. Both methods are suitable for estimating
wall thickness uniformity in an acceptable error range.
However, both of the mean error and maximum error in
NLR was found to be less compared with ANN.

)ree hypothesis tests, namely, mean paired t-test, F-test,
and Levene’s test, were conducted to test the goodness of fit.
Results of the hypothesis tests of two modeling techniques
(ANN and NLR) were compared with the significance level
0.05 in Figure 6. From this figure, it can be known that the
calculated P value with three hypothesis tests are greater than
0.05. )is indicates that there is no significant difference be-
tween experimental and predicted values using ANN andNLR.

)e validity of the ANN and NLR models have been
tested with correlation coefficient R2 value, which is cal-
culated using [27]:

R
2

� 1 −
􏽐 yi − fi( 􏼁

2

􏽐 yi − y( 􏼁
2 , (8)

where yi, f, and y are experimental, predicted, and mean
values of wall thickness uniformity, respectively. )e R2

values of wall thickness uniformity with ANN and NLR were
0.945 and 0.954, respectively. For the adequacy of model, R2

value should be between 0.8 and 1. )e high R2(>0.94) value
indicated that the developed model can be used to predict.
)e R2 values of the two methods were higher than 0.94,
which indicated that the presented model fits the data very
well. However, the R2 values for the NLRmodel were smaller
than that for ANN.

Table 5: Comparison of ANN and NLR model results with experimental measurements and their relative error.

Test serial numbers
G Error

Experimental measurements ANN model NLR model ANN model NLR model
1 80.95% 80.93% 80.16% 0.02% 0.79%
2 87.22% 85.72% 87.66% 1.50% 0.44%
3 89.47% 89.39% 89.04% 0.08% 0.43%
4 83.51% 84.26% 84.31% 0.75% 0.80%
5 83.76% 84.27% 83.87% 0.51% 0.11%
6 88.18% 87.40% 90.01% 0.78% 1.83%
7 93.74% 90.98% 93.00% 2.76% 0.74%
8 93.67% 93.42% 92.40% 0.25% 1.27%
9 85.69% 84.05% 85.50% 1.64% 0.19%
10 92.58% 91.74% 93.32% 0.84% 0.74%
11 95.26% 92.89% 93.44% 2.37% 1.82%
12 93.27% 93.52% 94.49% 0.25% 1.22%
13 85.51% 86.49% 85.28% 0.98% 0.23%
14 90.27% 90.31% 90.34% 0.04% 0.07%
15 92.13% 90.74% 92.06% 1.39% 0.07%
16 90.23% 91.89% 90.45% 1.66% 0.22%

Q

P

D

T

G(x)O(x)

h(x)

h(x)

h(x)

h(x)

Input
layer

Hidden
layer

Output
layer

I(x)

I(x)

I(x)

I(x)

Figure 4: Backpropagation network.
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4.4. Model Validation. To verify the practicability of the
ANN and NLR models, two parameter combinations, the
optimal combination A3B3C3D2 and the poor combination
A1B1C1D4 that obtained from the range analysis, were
simulated and experimented. Results of the ANN and re-
gression analysis were compared with experiments for 2
check sets, and their relative errors were calculated between

predicted and experimental values. )e comparison results
and errors are depicted in Table 7. From this table, it can be
known that the predicted errors for ANN and NLR are about
0.06% and 0.34%, respectively, in the poor combination
A1B1C1D4 and the errors are about 1.73% and 0.28%, re-
spectively, in the optimal combination A3B3C3D2. It indi-
cates that both methods are suitable for estimating wall
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Figure 5: Predicted and actual values of G using (a) ANN and (b) NLR.

Table 6: Error statistics with ANN and NLR.

Model Count Mean Std Dev Minimum Maximum
ANN 16 0.99% 0.0083 0.02% 2.76%
NLR 16 0.69% 0.0059 0.07% 1.83%

Mean paired t-test F-test Levene’s test
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Figure 6: Descriptive statistics of hypothesis tests.
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thickness uniformity in an acceptable error range, and the
two models can be used to express the relationship between
wall thickness uniformity and main parameters for balloon
forming. Nevertheless, the maximum error occurred in the
ANN model, and both of the mean error and maximum
error in NLR were found to be less compared with ANN.
)is comparison results were consistent with previous 16
check sets. )e model generation and training procedure of
the ANN model took more time than that of the regression
model, and the same conclusion is described in the study by
Caydas and Hascalik [28]. )ese reveals that the NLR
techniques have better performance than ANN. Figure 7
illustrates the cross-sectional picture of balloons that are
randomly selected from the two groups.

5. Conclusions

To optimize the wall thickness distribution of medical
balloon, the influence of stretch blowmolding process on the
wall thickness uniformity of kyphoplasty balloon was in-
vestigated. )e 16 sets of orthogonal test schemes were
researched based on the L16(44) Taguchi method orthogonal
table by selecting the four main parameters—forming
pressure (P), forming temperature, stretching distance, and
holding time of the process. An optimal scheme with the
forming pressure of 6 atm, the forming temperature of
160°C, the stretching distance of 10mm, and the heating
time of 40 s was obtained; and an optimal balloon with the
uniformity 95.86% was formed under the scheme. Based on
the range analysis, the most dominant parameter of the wall
thickness uniformity was forming temperature, the second
ranking factor was forming pressure, and stretching distance
and holding time were less effective on wall thickness
uniformity. In addition, to ascertain the relationship be-
tween forming parameters and wall thickness uniformity of
medical balloon formed by stretch blow molding process, an
ANN analysis and anNLR analysis were carried out based on
the orthogonal test results. Comparisons were made of the
above approaches after testing their performances on all 16

test cases; both ANN andNLR approaches were sufficient for
estimating wall thickness uniformity of medical balloon with
in an acceptable error range. Adequacy of models was tested
using hypothesis tests, and performance of models was
evaluated by using R2 value. Results showed that both
predictive models can be used for predicting wall thickness
uniformity of medical balloon in stretch blow molding
process with a higher reliability, and the predicted results
were found to be close with the actual performance results.
However, the NLR model showed a slightly better perfor-
mance than the ANN model.
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