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-is study proposes a prediction model for accurately detecting styrene-butadiene-styrene (SBS) content in modified asphalt
using the deep neural network (DNN). Traditional methods used for evaluating the SBS content are inaccurate and complicated
because they are prone to produce errors by manual computation. Feature data of SBS content are derived from the spectra, which
are obtained by the Fourier-transform infrared spectroscopy test. After designing DNN, preprocessed feature data are utilized as
training and testing data and are fed into the DNN via a feature matrix. Furthermore, comparative studies are conducted to verify
the accuracy of the proposed model. Results show that the mean square error value decreased by 68% for DNN with noise and
dimension reduction. -e DNN-based prediction model showed that the correlation coefficient between the target value and the
mean predicted value is 0.9978 and 0.9992 for training and testing samples, respectively, indicating its remarkable accuracy and
applicability after training. In comparison with the standard curve method and the random forest method, the precision of DNN is
greater than 98% for the same test conditions, achieving the best predicting performance.

1. Introduction

Asphalt pavement is widely used owing to its remarkable
durability. However, several factors, such as increased traffic
and extreme weather conditions, poses great threat to
pavement longevity, which gives rise to pavement distress,
such as permanent deformation, fatigue cracking, and
thermal cracking. As a triblock copolymer, styrene-buta-
diene-styrene (SBS) is the most popular polymer used for
modifying asphalt, which is of great significance for im-
proving the toughness of asphalt pavement against rutting
deformation and cracking in high and low temperatures,
respectively. Additionally, it also enables the improvement
of antifatigue and antiaging features of the pavement [1–3].
It has been found that the properties of the modified asphalt
are related to the amount of SBS, considering that it has a
close relation with the microstructure of the SBS-modified

asphalt [4–6]. However, due to the high cost of SBS mod-
ifiers, adequate content of SBS in modified asphalt is not
always guaranteed during the production process.-erefore,
an effective method should be proposed for quantifying the
content of SBS in modified asphalt. Furthermore, it is of
great importance to regulate the supply market of the asphalt
binder and guarantee the reliability of asphalt pavement.

Traditional methods for evaluating the content of the
SBS modifier in asphalt is dependent on the storage stability
test, which is conducted to measure the physical properties,
such as penetration, ductility, softening point, and viscosity,
of the modified asphalt [7]. Nevertheless, some disadvan-
tages for this method were found, which include high time,
inaccuracy, and unrepeatability [8, 9]. Although fluores-
cence microscopy can be employed to observe the dispersion
of the SBS modifier in modified asphalt with different
contents, it is quite challenging to detect the SBS content
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quantitatively [10]. In a previous study, an electrochemical
technique was developed to evaluate the storage stability of
SBS-modified asphalt [11]. However, there is a need to
improve this technology for quantifying the SBS content
accurately. Several researchers have suggested that an ac-
curate and effective method for quantifying the SBS content
in modified asphalt could be proposed based on the Fourier-
transform infrared spectroscopy (FTIR) test [12–14]. To
identify the C�C bond in butadiene and determine the
existence of styrene, 966 and 699 cm− 1 bands are adopted,
respectively [15]. Absorbance peak and area show a sig-
nificant correlation with the SBS content, which can be used
for quantifying the SBS content in modified asphalt accu-
rately [12]. A simple single variable linear regression relation
between SBS content and their absorption peak properties is
utilized to estimate the SBS content of an unknown sample.
-ese peak properties are artificially identified and extracted
to calculate the SBS content based on the infrared spectrum.
Obviously, these estimations are prone to produce errors
during the spectra addressing process, and an enormous
computational task is required to obtain accurate predicting.
However, considering that the infrared spectrum comprised
all absorption peaks of an asphalt sample, it is a novel
method for predicting the SBS content via deep learning
based on the infrared spectra.

Neural network has significant advantages in the field of
object recognition and evaluation and has been applied
widely in civil engineering [16, 17]. It was successfully
employed to detect concrete cracks [18–20] and structure
damages [21, 22]. Besides the outstanding recognition and
detection capability, the accuracy of the neural network
prediction model has been of great interest in recent years.
-e deep neural network (DNN) with multiple hidden layers
can be obtained after its model is trained completely using a
considerable amount of data. DNN can learn sufficient and
complicated information, which is significantly important
for improving the accuracy of prediction or classification. It
comprises input and output layers and contains more than
three hidden layers in most cases. Considerable amount of
data are input and used to train and improve the model.
Finally, an accurate prediction model is generated by a deep
learning method. It has been found that the neural networks
are more effective in predicting the fatigue life of asphalt
mixtures than traditional statistical-based prediction models
[23]. Moreover, it was observed that the neural network has
great potential for predicting the compressive and tensile
strength of high-performance concrete [24]. Additionally,
the temperature prediction model of ice pavement in winter
could be obtained using an improved backpropagation
neural network and its applicability was validated for a given
time period [25]. -e DNN method has a remarkable ad-
vantage of providing an accurate prediction model.

-is study aims to employ the DNN method for
detecting the SBS content in modified asphalt accurately. We
prepare SBS-modified asphalt samples uniformly with dif-
ferent SBS modifier contents and scan these samples by an
FTIR spectrometer to generate spectra, which contained
information about the SBS content. A feature matrix
composed of absorbance data, which are extracted from

different spectra, was utilized to obtain information about
SBS content by DNN. -erefore, herein, we designed an
architecture based on DNN, which comprised an input layer,
output layer, and 11 hidden layers. Furthermore, feature
matrix data are preprocessed to improve the learning speed
and accuracy of the DNN-based prediction model. -en, the
483× 512 matrix of feature data derived from 483 samples
was used to train the DNN. Also, we used another 126× 512
matrix of feature data as testing samples for this DNN. Using
various efficient learning techniques, we trained and tested
the DNN to confirm its accuracy and performance. Finally,
we conducted a comparative study and observed that the
proposed DNN-based architecture outperforms its
counterparts.

2. Materials and Methods

2.1. Raw Materials. Herein, we used four types of neat as-
phalt binders (70#/90# in terms of penetration), whose
properties are listed in Table 1. For producing SBS-modified
asphalt, we adopted three types of SBS modifiers, namely,
LG501 and LG411 produced in Korea and LCY3501 pro-
duced in Taiwan, and mixed them with neat asphalt. Table 2
lists the properties of those SBS modifiers. As a cross-linking
agent, we utilized industrial sulfur (0.2 wt% of neat asphalt)
to improve the storage stability of modified asphalt.

2.2. Preparation of SBS-Modified Asphalt. We employ the
following procedure to prepare SBS-modified asphalt via
melt blending [26]. First, the neat asphalt was heated to
135°C and then mixed with the SBS modifier in various
proportions (by weight of neat asphalt binder). Second, the
mixture was sheared for 15min at 180°C using a shear mixer
at a rate of 3000 r/min and was further sheared continuously
for 45min at the rate of 6000 r/min. -ird, a cross-linking
agent was added into the blend and sheared for 45min at
180°C at the rate of 7000 r/min. Furthermore, the SBS-
modified asphalt was moved into an oven and kept therein
for 15min, while considering a better swelling development
of the SBS-modified asphalt. For comparison, we also
processed unmodified asphalt by the same procedure.

2.3. Validation of SBS Modifier Dispersion Uniformity.
When the FTIR spectrometer scanned a small quantity of the
modified asphalt, i.e., approximately 1 g, the dispersion
uniformity of the SBSmodifier was found to have a significant
influence on the FTIR spectra [27]. -erefore, the dispersion
uniformity of the SBS modifier in modified asphalt should be
validated before the FTIR test. -e SBS modifier and neat
asphalt naturally have different excitation responses under the
irradiation of high-energy beams. Yellow light is reemitted
when the SBS modifier is irradiated using blue light for ex-
citation.-e SBS modifier exhibits much lighter than the neat
asphalt under the fluorescence microscope [5, 10]. -ese
responses can be observed using a fluorescence microscope
equipped with a digital camera, as shown in Figure 1. Asphalt
samples with different SBS content were prepared to observe
and analyze the SBS modifier dispersion uniformity. We
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chose blue light for the excitation. Herein, the amplification of
an objective lens in the microscope is ×40. Figure 2 shows the
morphology of the SBS modifier (LG501) with different
content in modified asphalt.

From Figure 2, it can be seen that SBS modifiers are
homogeneously dispersed in asphalt in a filamentous structural
form. Using the fluorescence microscope, a dense structure but
no agglomeration was observed as the SBS content increased,
which indicates that the asphalt samples are produced uni-
formly to be used for scanning by the FTIR spectrometer.

2.4. FTIRTest. FTIR spectrum data for asphalt samples were
obtained using the Controls Cary 630 FTIR spectrometer
with a sampling accessory and zinc selenide attenuated total
reflectance (ZnSe ATR), as shown in Figure 3(a). Figure 3(b)
shows a self-developed sampling mold that matches with the
ATR. As illustrated in Figure 3(c), this self-developed mold
can form seven replicates for each sample, which can
simplify the sampling process, improve the sampling effi-
ciency, and also guarantee the testing accuracy. -e tem-
perature was set at 24.4°C for the FTIR test with a resolution

of 3.726 cm− 1. -e wavenumber accuracy is greater than
0.005, whereas the signal-to-noise ratio is higher than 5000.
-irty-two scans within the wavenumber range of
4000–650 cm− 1 were obtained and averaged.

One spectrum of SBS modified asphalt can be achieved
based on 900 absorbance data in this study. With a consistent
abscissa, the ordinate is different for each sample with dif-
ferent content of the SBS modifier. As illustrated in Figure 4,
there are eight obvious spectral bands in the FTIR spectra of
neat and modified asphalt. Furthermore, as summarized in
Table 3, the spectral bands at different wavenumbers reflect the
absorbance of various molecular structures. From Figure 4, it
can be seen that there are peaks at 966 and 699 cm− 1 bands for
the SBS-modified asphalt, which correspond to the C�C bond
in butadiene and styrene that are attributed by the SBSmodifier.
-ese two peaks could not be found based on the spectrum at
966 and 699 cm− 1 bands for neat asphalt. -erefore, the
properties of these peaks can be used to predict the SBS content.
It is worth noting that the spectrum comprised absorbance
peaks corresponding to the asphalt sample with certain SBS
content. -us, the modified asphalts with different SBS content
represent these different spectra, which have information about
SBS contents to be revealed accurately by DNN.

3. Research Approaches

-e spectrum comprised 900 absorbance values, which were
used to analyze the structure information of an asphalt
sample using the deep learning method. Figure 4 shows that
there is a remarkable difference among asphalt samples with
different SBS content, which indicates that there are some
regular differences among those absorbance values for each
spectrum that is connected to the SBS content. -e data
extracted from different spectra represent SBS content and
could be utilized to train the DNN. -e DNN comprised an
input layer, several hidden layers, and output layer. Fur-
thermore, there are abundant neurons in the input layer and
each hidden layer.-e relation between the output and input
values for each neuron was determined by weights and
biases, which are continuously corrected during the training
process. -en, the DNN with parameters could be obtained
and tested to confirm its prediction accuracy. If the accuracy
is not as expected, the DNN is structured and trained all over
again. Figure 5 shows the developmental process of DNN.

3.1. Generation Database for DNN

3.1.1. Noise Reduction. As mentioned in Section 2.2, eight
kinds of asphalt samples were scanned by the FTIR spec-
trometer, whereas 30 duplicate samples were taken for each

Table 1: Properties of asphalt binders.

Properties Shell 70# Esso 70# Donghai 70# Shell 90# Methods
Penetration (25°C, 5 s, 100 g), 0.1mm 62 65 73 75 ASTM D5
Ductility (5 cm/min, 10°C), cm 42 37 45 35 ASTM D113
Softening point (R&B), °C 48.5 48.0 46.3 47.3 ASTM D36
Viscosity (60°C), Pa·s 225 215 157 194 ASTM D4402
Density (15°C), g/cm3 1.16 1.04 1.07 1.04 ASTM D70

Table 2: Properties of SBS modifiers.

Properties LG501 LG411 LCY3501
SBS type Linear Radial Linear
Ash content (%) 0.28 0.26 0.25
Tensile strength (MPa) 16 13.5 15.4
Breaking elongation (%) 700 520 640
Shore hardness (A) 80 66 75
Melt flow rate (g/10min) 0.2 0.18 0.22

Figure 1: Fluorescence microscope.
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Figure 2: Fluorescent images of SBS modified asphalt with different SBS content.
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Figure 3: FTIR test.
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Figure 4: FTIR spectra of neat and SBS modified asphalt.
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asphalt.-en, the data of 630 spectra were used as input data
for the DNN. However, the systematic and artificial errors
resulting from signal noise should be taken into account. In
the smoothing pretreatment for spectral analysis of SBS
content by FTIR, the Savitzky–Golay filter is frequently used
to reduce the noise interference [31]. Herein, the moving
window method based on least squares theory is employed
to filter out the noise and reduce the effect of smoothing
preprocessing on the information. A filter window contains
2m+ 1 wavenumbers, where m is a random number greater
than one, which is symmetrically ranged in the window.
Absorbance values corresponding to these wavenumbers
were fitted by the following equation:

z � a0 + a1x + a2x
2

+ · · · + ak− 1x
k− 1

, (1)

where z is the fitted value, x is the absorbance value, ai is the
fitting parameters, and i� 0, 1, . . ., k − 1. -ere are 2m+ 1
equations for a filter window, and the linear system of
equations is obtained as shown by equation (2), which is
further expressed in matrix form by equation (3). -e
column vector,A, comprised the fitting parameters obtained

using equation (4) based on least squares theory. -us, 􏽥Z is
given by equation (5), after filtering, as follows:
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,

(2)

Z(2m+1)×1 � X(2m+1)×k · Ak×1 + E(2m+1)×1, (3)

A � XT
· X− 1

􏼐 􏼑 · XT
· Z, (4)

􏽥Z � X · A � X · XT
· X− 1

􏼐 􏼑 · XT
· Z, (5)

where Z and 􏽥Z are the matrix of eigenvalues of the spectrum
data before and after filtering, respectively; furthermore, X is
the matrix of absorbance in the filter window and E is a
column vector comprising 2m+ 1 sums of squared errors
between fitted and real values. A smooth spectrum is ob-
tained using filter windows. Finally, after noise reduction,

Table 3: Characteristics of molecular structures at different wavenumbers [28–30].

Wavenumber (cm− 1) Absorbance of molecular structures
2922 Asymmetric stretching vibration of C-H in methylene (-CH2-)
2852 Symmetric stretching vibration of C-H in methylene (-CH2-)
1580 Scissoring vibration of methylene (-CH2-)
1461 Scissoring vibration of methylene (-CH2-)
1377 Umbrella vibration methyl (-CH3)
966 Bending vibration of C-H trans disubstituted -CH�CH- (butadiene block)
864 Stretching vibration of benzene
699 Bending vibration of C-H in monoalkylated aromatics

Noise reduction

Principal component analysis

Data classification

Train samples Test samples

Architecture of DNN

Training of DNN

Testing of DNN

No

Accuracy

Save the DNN

Data of absorbance values from spectra

Yes

Figure 5: Process of developing a DNN.
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609 spectra were obtained and used to generate 609× 900
matrix of feature data.

3.1.2. Principal Component Analysis. As the input data, the
609× 900 matrix of feature data was considerably hard to
train the DNN. To improve the training speed, principal
component analysis (PCA) was conducted as a dimension
reduction method herein. However, in the dimension re-
duction, the reduced level was not arbitrarily selected but
was to confirm that the minimal dimension of data can
represent more than 95% information of the original data.
By PCA computation, the principal component was gained
to maintain the most essential information of primary
characteristics for input data. Singular value decomposition
(SVD) was used to transform input data into a set of ei-
genvalues and corresponding eigenvectors, which are line-
arly independent. -e eigenvectors refer to the
characteristics of input data, while the eigenvalues refer to
the degree of the characteristic [19]. -e feature matrix, A,
represents the input data and can be considered as a scalar
product of three different matrices, as follows:

A � UΣVT
, (6)

whereU is anm ×mmatrix of, Σ is anm × nmatrix, and VT

is an n× n matrix. All the elements of Σ are zero except the
elements on its diagonal, which are known as singular value
σi. Furthermore, ui and vi are eigenvectors ofAATandATA,
respectively, which are applicable to the following
formulas:

AAT
􏼐 􏼑ui � λiui, (7)

where λi is an eigenvalue, i� 1, 2, . . . , m; then, U� (u1, u2,
. . . , um);

ATA􏼐 􏼑vi � λivi, (8)

where λi is an eigenvalue, i� 1, 2, . . . , n; then,VT� (v1, v2, . . . ,
vn). -e following formula gives the relation between σi and λi:

σi �

��

λi

􏽱

, (9)

where i � 1, 2, . . . , m + n and σ1 > σ2 > · · · > σr > · · · > σm+n.
Generally, the singular values decrease rapidly in a de-
creasing sequence, and 99% of the summation of all sin-
gular values results from the 10% (even 1%) of singular
values in the sequence. -en, Σ is obtained and represented
as follows:

􏽘 �

σ1
σ2
⋱

σr

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (10)

Herein, the summation of the singular values ranging
from σ1 to σr is 99% of the summation of all the total values.
-us, the feature matrix A can be expressed as follows:

Am×n � Um×rΣr×rV
T
r×n. (11)

-us, dimension reduction can be realized by SVD, as
expressed by the following equation:

Am×r � Am×nVn×r � Um×rΣr×r, (12)

where r is the dimension after the SVD calculation. -is
indicates that the major features of matrix A can be
expressed by the principal component that comprised ei-
genvectors corresponding to the first r nonzero singular
values. Furthermore, the n-dimensional data can be reduced
to r-dimensional data after PCA calculation. To speed up the
DNN process and ensure that the data of low dimension
represent more than 95% characteristics of the original data,
and 512-dimensional data were gained finally after repeated
PCA calculation.

3.1.3. Data Classification. After data preprocessing, the
609× 512 matrix of feature data obtained was used as a da-
tabase for the DNN. It contained all the characteristics of
spectra reflecting the SBS contents. Each spectrum comprised
absorbance data of dimension 512. For training and testing
the DNN, 80% and 20% of the total spectra data were utilized,
respectively. As listed in Table 4, 80% and 20% of total spectra
data for each SBS content were randomly selected as training
and testing data, respectively. We observed that the DNN
needs a specific label of data from each spectrum. -erefore,
the features of the spectrum, as expressed by the eigenvector
X, are the input data to be fed into the DNN. -e corre-
sponding vector, labeled as Y, represents the SBS content and
is regarded as an output value.

3.2. Architecture of DNN. -e purpose of designing a DNN
is to build a complete architecture that can connect all
neurons in a regular and reasonable mode in such a way that
the information can be transmitted correctly between the
input and output data. Figure 6 shows the architecture of
DNN, which comprised an input layer, output layer, and 11
hidden layers arranged from layers 2–12. It dramatically
enhances the depth of learning and improves the accuracy of
model expression. Regarding the hidden layers, as shown in
Figure 7, numbers of neuron nodes for layers 2–12 are 512,
256, 256, 128, 128, 64, 64, 32, 32, 16, and 16, respectively.
Although this setting enables the improvement of computer
processing and accelerates its speed of optimization, there is
no connection between the neurons in the same layer.
Nevertheless, they are fully connected with every neuron in
the next adjacent layer. -e eigenvector X, as expressed by
equation (13), is imported into the input layer that contains
512 neurons. Equation (14) describes an element in X. -e
output value is obtained by equation (15) based on its
corresponding input value. It should be noted that neurons
have different weights and biases in the DNN; moreover,
these weights and biases are given by equations (16) and (17)
and were continuously updated during the DNN training.
-us, we have

X � X(1),X(2), . . . ,X(i), . . . ,X(m)􏼐 􏼑
T
, (13)
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X(i) �

x1

x2

⋮
xn

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (14)

Y � f W(l)
ij . . . f W(2)

ij􏼐 􏼑f W(1)
ij X + b(1)

ij􏼐 􏼑 + b(2)
ij + · · · b(l)

ij􏼐 􏼑,

(15)

W(l)
ij �

W(l)
11 · · · W(l)

1j
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W(l)

i1 · · · W(l)
ij

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, (16)

b(l)
ij �

b(l)
11 · · · b(l)

1j

⋮ ⋱ ⋮
b(l)

i1 · · · b(l)
ij

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, (17)

Table 4: Sample information for database.

SBS content (%) SBS type Asphalt binder Number of training samples Number of testing samples
0 None Shell 70# 23 6
2.0 LG411 Shell 70# 23 6
2.3 LG501 Esso 70# 23 6
2.5 LCY3501 Esso 70# 23 6
2.7 LG411 Donghai 70# 23 6
3.0 LG501 Shell 70# 23 6
3.3 LG411 : LG501� 1 :1 Donghai 70# 23 6
3.5 LG501 Shell 70# 23 6
3.7 LG411 Shell 90# 23 6
4.0 LG501 Shell 70# 23 6
4.3 LG411 : LG501� 2 :1 Shell 90# 23 6
4.5 LG501 Shell 70# 23 6
4.7 LG501 Shell 90# 23 6
5.0 LG501 Shell 70# 23 6
5.3 LG411 : LG501� 1 :1 Donghai 70# 23 6
5.5 LG501 Shell 70# 23 6
5.7 LG411 Donghai 70# 23 6
6.0 LG501 Shell 70# 23 6
6.3 LCY3501 Esso 70# 23 6
6.5 LG501 Esso 70# 23 6
7.0 LG411 Shell 70# 23 6

Number of
neurons

Layer 1 Layer 2 Layer 3 Layer 4 Layer 5 Layer 6 Layer 7 Layer 8 Layer 9 Layer 10 Layer 11 Layer 12 Layer 13
512 512 256 256 128 128 64 64 32 32 16 16

X

Input layer Hidden layer Output layer

Y

Figure 6: Architecture of DNN.
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Figure 7: Nonlinear activation function.
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where n is data dimension and m is the number of samples;
Xi is an eigenvector of spectrum data for SBS-modified
asphalt and Y is the output eigenvector of SBS content;
furthermore, l is the number of the hidden layer, which
ranges from 1 to 12, whereasW(l)

ij represents the eigenvector
of weight from layer l to l+ 1; moreover, b(l)

ij represents the
eigenvector of bias from layer l to l + 1, whereas i and j refer
to the ith and jth neuron in layer l and l+ 1, respectively.

We applied nonlinear activation function in all deep
learning processes, which increased the speed of conver-
gence. Moreover, when the sigmoid function was used as a
nonlinear activation function, the gradient disappeared
easily by backpropagation for deep networks. Gradual
transformation and information loss have always been
recognized as the causes of interruption during the training
of deep networks. Additionally, there are several compu-
tations to be performed for the sigmoid activation function.
However, a rectified linear unit (ReLU) can make the output
values 0 for a part of the neurons, which reduces the de-
pendence of parameters in the DNN and also reduces the
probability of overfitting [32, 33], reducing the computa-
tional cost. -erefore, we utilized the ReLU as an activation
function herein. Furthermore, those data were passed in the
DNN using this nonlinear activation function, which is
expressed by equation (18). Figure 7 depicts the schema of
the ReLU activation function. -e gradients of the ReLU are
always zeros and ones, which facilitate faster computations
and achieve better accuracies [18]. -us, we have

f(x) � ReLU(x) � max(0, x), (18)

where x and f (x) are the input and output values,
respectively.

3.3. DNN Training

3.3.1. Cost Function. -e cost function is defined to measure
the similarity between the predicted and target values.
Weights and biases are confirmed to gain a minimum error
of the cost function by DNN training. Furthermore, the
cross entropy is often applied in logistic regression, whereas
the mean square error (MSE) is used in logistic regression.
Herein, we employed the MSE as a cost function, as
expressed by the following formula:

MSE � J(W, b) �
1
n

􏽘

n

1
Y(i) − y(i)􏼐 􏼑

2
, (19)

where Y(i) is the predicted value, y(i) is target value, and n is
the number of samples.

3.3.2. Learning Method. Learning method played a funda-
mental role in DNN training. Precisely, it confirmed the
weights and biases of the DNN. -e preprocessed data were
fed into the DNN accompanying the vector X. Moreover,
they were trained by unsupervised learning, which is a
feature learning in forward propagation. We used initial
values of weights and biases to train the first layer and
generate feature data that were used to train the second layer.

-en, the produced feature data with the weights and biases
were utilized to train the next layer. Features with the
corresponding weights and biases for each layer were ob-
tained after the last layer was trained completely. Next, we
conducted learning with the output labels to tune the pa-
rameters, including weights and biases, of the whole layers
for the DNN. Minibatch stochastic gradient descent was
implemented to update parameters for each iteration based
on the errors of the cost function.We set the batch size to 16.
In comparison with adaptive learning rate algorithms, such
as adaptive gradient (AdaGrad) or RMSProp algorithm, the
Adam algorithm was found to have a faster convergence rate
[34]. It was more efficient to learn and solve the problems,
such as low learning rate, slow convergence, and large
variance of updated parameters.-e following equations can
express the learning method for each iteration herein:

W(l+1)
� W(l)

− η
m

(l)
W

1 − β1( 􏼁

����������������

v
(l)
W􏼐 􏼑/ 1 − β2( 􏼁􏼐 􏼑 + ε

􏽱 ,

b(l+1)
� b(l)

− η
m

(l)
b

1 − β1( 􏼁

���������������

v
(l)
b􏼐 􏼑/ 1 − β2( 􏼁 + ε

􏽱

􏼒 􏼓

,

(20)

where m
(l)
W and v

(l)
W are the exponential decay mean value and

noncentral variance of zJ(W, b)/zW, respectively, m
(l)
b and

m
(l)
b are the exponential decay mean value and noncentral

variance of zJ(W, b)/zb, respectively, β1 is 0.9, β2 is 0.9999, ε
is 10− 8, and η is 0.001.

3.3.3. Initialization, Regularization, and Normalization.
In the training of DNN, several challenges, including the
divergence, overfitting, and vanishing gradient problems,
abound. To train the DNN successfully, careful initialization,
effective regularization, and well-designed normalization
should be taken into account.

Error gradients are backpropagated across the layers in
the DNN with gradient descent and are used to modify the
parameters. In the propagation, the gradients are frequently
reduced significantly, which leads to the vanishing of the
gradient problem. Under this situation, parameters are hard
to move in the backpropagation. To prevent the vanishing
gradient for ReLU activation, we utilized the Xavier ini-
tialization to initialize the weights of DNN.W can be derived
from the uniform distribution U(− r, r), where r is expressed
by the following equation:

r �

������������
12

ninput + noutput

􏽳

, (21)

where ninput and noutput denote the number of connected
neurons in the input and output layers, respectively.

To reduce the risk of overfitting during DNN training,
the dropout technique is often used to regularize the DNN.
-is technique randomly omits a hidden neuron with a
probability of 0.5, which indicates that 50% of the neurons in
hidden layers are randomly omitted at each iteration. Both in
forward and backward propagation, the omitted neurons
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will not be activated. Furthermore, by the dropout tech-
nique, different overfitting can be generated in different
networks because different neurons are omitted at each
iteration. -us, overfitting can be reduced entirely by off-
setting each other in those binary opposition fitting. -e
dropout technique forces the updates of weights to be more
independent instead of relying on the interaction of hidden
nodes with a fixed relation. Consequently, weights will
change effectively in the direction of approaching the target.

Batch normalization is a widely used method to normalize
the inputs of hidden layers. -e solution domain of the op-
timization is smooth, resulting from the fixed distribution of
inputs for each layer by the batch normalization. -is method
ensures that the gradients are more predictable and stable.
-erefore, the learning rate can be employed on a large scale
and a faster convergence rate will be achieved due to the batch
normalization. Although the responses or gradients are in-
appropriate for deeper networks, batch normalization could
change them into a reasonable range, which prevents the
vanishing gradient. -e following equations expresses the
relation between the feature X(i) and matrix eigenvalue Z(i):

Z(i)
� c

X(i) − μ(i)

�������

σ(i)2 + ζ
􏽱 + β, (22)

where μ(i) and σ(i) are the mean and standard deviation of
batch data, respectively, c and β are the scale factor and shift
factor derived from the DNN training, respectively, and ζ is a
smooth factor, which is an infinitesimal number to prevent
divisions from being zero.

3.3.4. Network Speed. -e process mentioned above was
realized based on the same software and hardware platform
that the processor is Inter (R) Core (TM) i7-8700 CPU
@3.20GHz, and the video card type is NVIDIA GeForce GTX
1070 8G GPU. DNN was trained and accelerated using CPU
and GPU, respectively. Due to the acceleration, the forward
time and backward time are 10.25 and 28.56 s, respectively.

3.4. DNN Test. -e purpose of this test is to analyze the
practicability and accuracy of a prediction model. We uti-
lized the untrained test samples listed in Table 4 to test the
DNN. -e MSEs of the test are less than the prediction
accuracy of the trained samples, which indicates that the
DNN predicts the SBS content in the modified asphalt ef-
ficiently. Otherwise, the network structure and its param-
eters would be readjusted until the requirements are met.

4. Results and Discussion

4.1. Effect of Data Preprocessing on Precision. Herein, pre-
cision refers to theMSE between predicted and target values,
as given by equation (18). To analyze the effect of data
preprocessing on the precisions of DNN models, we con-
ducted different preprocessing methods, including no pre-
processing, only dimension reduction, only noise reduction,
and both noise and dimension reduction. Table 5 lists the
results.

From Table 5, it can be seen that the MSE values are
reduced for DNN models with data preprocessing. For
dimension and noise reduction, the MSE value is de-
creased by 8% and 65%, respectively. -is indicates that
using noise reduction is highly significant in improving
the precision and reducing the error of the prediction
model. Although the error is not reduced, obviously, the
training speed is improved efficiently for deep learning
by using dimension reduction. Furthermore, the MSE
value is decreased by 68% by utilizing both noise and
dimension reduction, which enables the implementation
of a DNN model with remarkable accuracy and
robustness.

4.2. Iteration Times. -e number of iterations influences the
accuracy of the prediction model. Figure 8 shows that the
MSE value decreases with an increase in the number of
iterations. A small MSE value is achieved after 1850 itera-
tions, which is attributed to a lot of fine-tuning weights and
biases. When the number of iterations is up to 2160, the MSE
value is gradually kept at 0.047. If the number of iterations is
more than 2160, there is a slight fluctuation in the MSE
value. Since a considerably high number of iterations could
slow the learning rate, the optimum number of iterations is
confirmed as 2160.

4.3. Performance of the DNN. After data preprocessing, we
utilized the 483× 512matrix of feature data derived from 483
spectra as training data of DNN, whereas 126 samples,
forming the 126× 512 matrix of feature data, were used as
testing samples of this DNN. Furthermore, herein, 2100
iterations were conducted. Figures 9 and 10 show the
training and testing results, respectively. -e abscissa stands
for sample ID of different asphalt samples, and the ordinate
represents the SBS content.

From Figure 9, it can be seen that the training values
output by DNN are close to the target values of the training
samples. -e MSE value of 0.047 was achieved after 483
samples were used to train completely. Figure 10 also shows
an outstanding performance of the DNN. -e testing values
are very close to the target values. -e MSE value of 0.032
was obtained from testing results.

To confirm the precision of the DNN model, the mean
predicted value was calculated and compared with the
target value for each SBS content. Figure 11 shows the
correlation between the target value and the mean pre-
dicted value calculated by the proposed DNN model. It
was found that the mean predicted value has a significant
relation with the target value for each SBS content, which
comprised some parallel samples that are listed in Table 4.

Table 5: Precisions of different preprocessing methods.

Preprocessing method MSE
No preprocessing 0.148
Only dimension reduction 0.136
Only noise reduction 0.052
Both noise and dimension reduction 0.047
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-e correlation coefficient between the target value and
the mean predicted value is 0.9978 for training samples,
whereas the value is 0.9992 for testing samples. -is shows
that the DNN model has an outstanding accuracy and
applicability after training. -erefore, the SBS content of
unknown samples can be predicted correctly with enough
parallel samples by this DNN model.

4.4. Comparative Studies. To compare the accuracy of the
DNN with those of the existing methods, we selected three
different SBS contents, i.e., 3.6%, 4.6%, and 5.6%, and two
well-known methods, namely, standard curve method
(SCM) [12] and random forest method (RFM) [35]. For
SCM, a linear relation between SBS content and absorbance
areas ratio (699 cm− 1/1377 cm− 1 and 966 cm− 1/1377 cm− 1) is
achieved with modified asphalt samples composed of dif-
ferent SBS content. For RFM, the training samples are
classified into several subsets, which are used to established
prediction models by the bagging method. -en, the final
prediction model composed of those prediction models in a
specific way is used to predict the SBS content of an un-
known sample.

To maintain the same condition with the DNN training,
we used 23 samples for each SBS content to establish the
prediction model. Furthermore, we utilized the correlation
coefficient and MSE to evaluate the accuracy of the different
model. Moreover, to evaluate the predicted precision for
each SBS content, we introduced the Pvalue, which is defined
as follows:

Pvalue � 1 −
|mean predicted value − target value|

target value
􏼠 􏼡 × 100%.

(23)

Table 6 lists the results of different prediction models.
It can be seen that the MSE values are 0.231, 0.078, and
0.049 for SCM, RFM, and DNN, respectively. -e simple
linear prediction model shows poor accuracy, whereas the
DNN exhibits the best predicting performance. Pvalue
shows the precision of the mean predicted value derived
from parallel samples. It can be seen that precisions of
SCM are less than 94%, and its RFM values are less than
96%, whereas the precisions of DNN are all greater than
98% for the same test condition, which indicates that the
predicted value obtained by DNN is much close to the
actual SBS content in the modified asphalt. Moreover, it
displays the most outstanding predicting accuracy of SBS
content in unknown samples by DNN. In addition, it
shows better performance than the other two prediction
methods. A strong generalization ability of DNN can be
trained due to its excellent learning method for the feature
of samples. Besides, DNN has some significant advan-
tages, in that it can deal with multivariable and com-
prehensive prediction problems. -e DNN prediction
model can reduce the complexity of existing measurement
methods and improve their prediction accuracy stably and
efficiently.

5. Conclusions

In this study, SBS content in modified asphalt was detected
by the DNN prediction model based on the deep learning
method. According to the results and discussion, the fol-
lowing conclusions can be drawn:

(1) Absorbance data derived from spectra can be utilized
to train and test the DNN model, which can suc-
cessfully recognize the SBS and its content in
modified asphalt.

(2) Data preprocessing, including noise and dimension
reduction, can improve the accuracy and learning
speed of the DNN model. -e MSE value decreased
by 68% for the DNN with preprocessed data.

(3) Using various efficient learning techniques, including
minibatch gradient descent, cost function, initializa-
tion, normalization, and dropout, the MSE value
could be gradually kept at 0.047 and 0.032 after 2160
iterations for training and testing results. -e corre-
lation coefficient between the target and the mean
predicted value is 0.9978 for training samples, whereas
the value is 0.9992 for testing samples, which indicates
that the DNN model has excellent accuracy and
applicability after training with 23 duplicates.

(4) In comparison with SCM and RFM, DNN displayed
the most outstanding predicting capability. Preci-
sions of DNN are all greater than 98% for the same
test conditions.
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Table 6: Precisions of different preprocessing methods.

Method MSE
Pvalue (%)

3.6% 4.6% 5.6%

SCM 0.231 93.333 93.995 93.775
RFM 0.078 95.015 95.774 94.883
DNN 0.049 98.458 98.807 98.124
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