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Heterogeneous materials are widely applied in many fields. Owing to the spatial variation of its constitutive parameters, the
mechanical characterization of heterogeneous materials is very important. +e virtual fields method has been used to identify the
constitutive parameters of materials. However, there is a limitation: constitutive parameters of one material have to be a priori;
then, constitutive parameters of the other one can be identified. Aiming at this limitation, this article presents a method to identify
the constitutive parameters of heterogeneous orthotropic bimaterials under the condition that constitutive parameters of both
materials are all unknown from a single test. A constitutive parameter identification method of orthotropic bimaterials based on
optimized virtual field and digital image correlation is proposed. +e feasibility of this method is verified by simulating the
deformation fields of a two-layer material under three-point bending load. +e results of numerical experiments with FEM
simulations show that the weighted relative error of the constitutive parameter is less than 1%. +e results suggest that the
variation coefficient-to-noise ratio can perform a priori evaluation of a confidence interval on the identified stiffness components.
+e results of numerical experiments with DIC simulations show that the weighted relative error is 1.44%, which is due to the
noise in the strain data calculated by DIC method.

1. Introduction

Heterogeneous materials, such as functionally gradient
materials, wood [1, 2], polymeric foams [3], biological
materials [4], and composites [5], have been widely applied
in engineering. Constitutive parameters identification of
heterogeneous materials is not only the important subject
in experimental mechanics but also has attracted extensive
notice in the fields of solid mechanics, structure health
monitoring, and medical diagnosis. +e traditional method
of identifying constitutive parameters can directly deter-
mine all constitutive parameters of constitutive models
through standard experiments (e.g., uniaxial tensile test).
However, the investing of experimental involved in such
standard test methods may increase when using anisotropic
models and inhomogeneous materials, as well as bimaterial
[6].

With the development of the photomechanics, full-field
measurement methods (e.g., digital image correlation and
moiré interferometry) combined with inverse methods
have been developed so that the multiple constitutive
parameters can be identified by a heterogeneous strain field
[7]. +e inverse methods belong to the updating methods
(e.g., finite element updating method) and nonupdating
methods (e.g., virtual fields method). +e finite element
updating method (FEUM) extract constitutive parameters
through minimizing the cost function between the re-
sponse of the finite element model and the real behavior
iteratively; its simulation must be close to experimental
conditions and its initial guess choice will affect the
identification result [8]. +e virtual fields method (VFM),
which was put forward by Perrion and Grédiac [9, 10], is a
typical nonupdating method used in a linear material
model. Compared with the updating methods, the
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advantage of VFM is that it requires less specimen
boundary conditions and geometric configurations
[11, 12].

A volume of research has focused on full-field mea-
surement and VFM to identify the constitutive parameters of
materials. +e VFM within peridynamic framework was
proposed to identify material properties in linear elasticity
[13]. +e special virtual fields method was adopted to resolve
the difficulty in identifying constitutive properties of in-
compressible and nonhomogeneous solids [14]. +e VFM
was combined with an elaborately designed test configu-
ration in order to realize the identification of the anisotropic
yield constitutive parameters [15]. Several inverse methods
based on the VFM have been developed, including the
Fourier series-based VFM [16, 17], the sensitivity-based
VFM [18], the eigenfunction VFM [19, 20], and several
optimizations to improve the accuracy of identification
results [21, 22].

+e heterogeneity of strain field caused by multiple
constitutive parameters of the complex constitutive model
has been solved by the traditional VFM. For heterogeneous
materials, the heterogeneity of strain field caused by the
spatial variation of constitutive parameters requires further
improvement of the virtual field method. According to the
available literature studies, several methods and applications
have been studied to identify constitutive parameters
identification of heterogeneous material using VFM
[6, 23, 24]. For instance, a bimaterial constitutive parameter
identification method based on the combination of VFM
andMoiré interference was proposed [25], and the VFMwas
also extended to identify the parameters [26]. In addition,
several methods have been researched to lower the effects of
noise in strain fields [26–29]. +e optimized fields method,
such as polynomial optimized virtual field [30] and piece-
wise optimized virtual field [31], was developed to improve
convenience and accuracy. Although the above researches
make identification of constitutive parameters more rapid
and convenient, there is still a limitation for bimaterials: the
constitutive parameters of one material must be a priori in
order to determine the constitutive parameters of the other
material. +e purpose of this work is to propose an opti-
mized virtual field that can not only extract the constitutive
parameters of the heterogeneous orthotropic bimaterials
without knowing any material constitutive parameters but
also require only one single test.

In this study, to extract constitutive parameters of the
bimaterials under the condition that constitutive pa-
rameters of the both materials are unknown, special
optimized polynomial virtual fields combined with three-
point bending test was proposed. In Section 2, the basic
principle of optimized polynomial VFM and its im-
provement applied in bimaterials without knowing any
material constitutive parameters are introduced. In Sec-
tion 3, the FEM simulated experiments and the simulated
DIC experiments are conducted to verify the feasibility of
the abovementioned method. Finally, Section 4 is the
conclusions.

2. Methodology

2.1. Basic Principle of Optimized Polynomial Virtual Fields
Method. +e integral form of the mechanical equilibrium
equation of the VFM based on virtual work for a continuous
solid can be expressed as [31]

− 
S
σ: ε∗dS + 

S
T · u∗dS + 

V
b · u∗dV

� 
V
ρa · u∗dV ∀u∗KA,

(1)

where σ is the Cauchy stress tensor, u∗ is the virtual dis-
placement vector, ε∗ denotes the strain tensor corre-
sponding to u∗, T represents the external force associated
with the stress tensor σ by the boundary, S is a vector which
is the volume force applied over the volume V of the
specimen, and a denotes the distribution of acceleration.
Such a distribution will cause an additional volumetric
force distribution equal to −ρawith D’Alembert’s principle,
the virtual displacement field being kinematically admis-
sible (KA).

For an orthotropic material in a plane-stress state, the
principle of virtual work is suitable for every KA virtual
field. +is equation (see equation 2) uses four indepen-
dent KA virtual fields ε∗(1), ε∗(2), ε∗(3), and ε∗(4) instead of
u∗(1), u∗(2), u∗(3), and u∗(4), respectively (see Appendix A1
for the detailed equation derivations):

AQ � B, (2)

where
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(3)

where Q11, Q22, Q12, and Q66 are the in-plane stiffness
components.

+e constraints of KA virtual fields u∗(1), u∗(2), u∗(3), and
u∗(4) are as follows:
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(4)

+e exact values and white noise constitute the measured
strain component. Assume that the noise components are
uncorrelated to each other, and presume that the noise

between points is also uncorrelated. +erefore, the principle
of virtual work is as equation (5) (see Appendix A2 for the
detailed equation derivations).
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S
ε∗6 N6dS  � 

Lf

Tiu
∗
i( dl,

(5)

whereN1,N2, andN6 denote the processes of scalar zero-
mean stationary Gaussian generalized by the corre-
sponding strain components ε1, ε2, and ε6, respectively,
and c denotes the measured amplitude of the random
variable strain.

If the noise is ignored, approximate parameters
expressed as Qapp, these components are defined by equation
(6). So, directly identify Q11, Q22, Q12, and Q66 using these
four special virtual displacement fields as equation (7) (see
Appendix A3 for the detailed equation derivations).
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Similar results are obtained for Q22, Q12, and Q66.
Denoting V(Q),the vector containing the variances of
Q11,Q22,Q12, and Q66, one can write as equation (8) (see
Appendix A4 for the detailed equation derivations).
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and (η(i))2 have two kinds of unknowns: the constitutive
parameters and the unknown coefficients of the virtual
fields. So, (η(i))2 can be expressed as

η(i)
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�
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2

QappG(i)Qapp
, (9)

where Y∗ is the vector related to the coefficients of virtual
strain fields, H is the Hessian matrix of all monomials in ε∗,
and G(j), j � 1, 2, 3, 4, is the following square matrix:
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, (10)

and the (η(i))2 coefficients i � 1, 2, 3, 4 depend on the
selected virtual fields. Also, the virtual fields are selected
for the Qij parameters extraction. +us, select the ap-
propriate virtual field that can reduce the influence of

strain. In this article, the virtual fields were expanded
by the polynomials. +e displacement fields and the
virtual strain are as shown in equations (11) and (12),
respectively.
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(12)

where Aij and Bij are the coefficients of the monomials, m

and n are the polynomial degrees that define that the
maximum number of monomials has used, and L and w are
the typical dimensions of the x1 and x2 directions,
respectively.

Using the Lagrange multiplier approach, the Lagrangian
function L(i) can be constructed for each constitutive pa-
rameter sought, and its constraint is equation (13), and the
objective function is (η(i))2. +erefore, the expression of the
Lagrange function is

L
(i)

�
1
2
Y∗(i)HY∗(i)

+ λ(i) AY∗(i)
− Z(i)

 , (13)

where λ(i) is the vector containing Lagrange multipliers.
+e KA condition can produce several linear equations,

and the number of this equations is depending on the
number of supports. +e special virtual field condition also
leads to several linear equations, the number of which de-
pends on the type of constitutive model of specimen ma-
terial. +e two types of conditions can produce the following
linear system as equation (14) (see Appendix A5 for the
detailed equation derivations).

H A

A 0
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⎛⎝ ⎞⎠ �

0
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 . (14)

Attention that (η(i))2 coefficients also correspond on the
unknown Qij parameters. +us, the optimization problem is
solved for a given set of Qij parameters, and the process is

iterative: the first guess of theQij parameters is used to find the
first group of four special virtual fields.+en, these four special
virtual fields are used to find a new set of Qij parameters, and
repeat abovementioned steps until the optimal Qij parameter
is found. In practice, no matter what the parameter Qij is
initially selected, this iterative process will converge quickly.
Usually, only two loops are sufficient to converge.

2.2. Optimized Polynomial Virtual Fields Applied to the
Bimaterials without Knowing Any Material Constitutive
Parameters. As shown in Figure 1, for the plane-stress
specimen with two different materials Part A and Part B, and
both of them are set with the elastic orthotropic material. But
the constitutive parameters of A and B are unknown. As
mentioned above, the sum of exact values and white noise is
the measured strain. Assume that the noise components are
uncorrelated to each other, and presume that the noise
between points is also uncorrelated. +erefore, the gov-
erning equation of the virtual fields method for the total
specimen is as equation (15) (see Appendix B1 for the de-
tailed equation derivations).
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+e constraints of the eight special virtual fields denoted
that u∗(1), u∗(2), u∗(3), u∗(4), u∗(5), u∗(6), u∗(7), and u∗(8) must
satisfy the following equation:
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∗ (2)
2 + ε2ε

∗ (2)
1 dS � 1 

Sa

ε6ε
∗ (2)
6 dS � 0,


Sb

ε1ε
∗ (2)
1 dS � 0 

Sb

ε2ε
∗ (2)
2 dS � 0 

Sb

ε1ε
∗ (2)
2 + ε2ε

∗ (2)
1 dS � 0 

Sb

ε6ε
∗ (2)
6 dS � 0,


Sa

ε1ε
∗ (3)
1 dS � 0 

Sa

ε2ε
∗ (3)
2 dS � 0 

Sa

ε1ε
∗ (3)
2 + ε2ε

∗ (3)
1 dS � 1 

Sa

ε6ε
∗ (3)
6 dS � 0,


Sb

ε1ε
∗ (3)
1 dS � 0 

Sb

ε2ε
∗ (3)
2 dS � 0 

Sb

ε1ε
∗ (3)
2 + ε2ε

∗ (3)
1 dS � 0 

Sb

ε6ε
∗ (3)
6 dS � 0,


Sa

ε1ε
∗ (4)
1 dS � 0 

Sa

ε2ε
∗ (4)
2 dS � 0 

Sa

ε1ε
∗ (4)
2 + ε2ε

∗ (4)
1 dS � 1 

Sa

ε6ε
∗ (4)
6 dS � 0,


Sb

ε1ε
∗ (4)
1 dS � 0 

Sb

ε2ε
∗ (4)
2 dS � 0 

Sb

ε1ε
∗ (4)
2 + ε2ε

∗ (4)
1 dS � 0 

Sb

ε6ε
∗ (4)
6 dS � 0,


Sa

ε1ε
∗ (5)
1 dS � 0 

Sa

ε2ε
∗ (5)
2 dS � 0 

Sa

ε1ε
∗ (5)
2 + ε2ε

∗ (5)
1 dS � 1 

Sa

ε6ε
∗ (5)
6 dS � 0,


Sb

ε1ε
∗ (5)
1 dS � 0 

Sb

ε2ε
∗ (5)
2 dS � 0 

Sb

ε1ε
∗ (5)
2 + ε2ε

∗ (5)
1 dS � 0 

Sb

ε6ε
∗ (5)
6 dS � 0,


Sa

ε1ε
∗ (6)
1 dS � 0 

Sa

ε2ε
∗ (6)
2 dS � 0 

Sa

ε1ε
∗ (6)
2 + ε2ε

∗ (6)
1 dS � 1 

Sa

ε6ε
∗ (6)
6 dS � 0,


Sb

ε1ε
∗ (6)
1 dS � 0 

Sb

ε2ε
∗ (6)
2 dS � 0 

Sb

ε1ε
∗ (6)
2 + ε2ε

∗ (6)
1 dS � 0 

Sb

ε6ε
∗ (6)
6 dS � 0,


Sa

ε1ε
∗ (7)
1 dS � 0 

Sa

ε2ε
∗ (7)
2 dS � 0 

Sa

ε1ε
∗ (7)
2 + ε2ε

∗ (7)
1 dS � 1 

Sa

ε6ε
∗ (7)
6 dS � 0,


Sb

ε1ε
∗ (7)
1 dS � 0 

Sb

ε2ε
∗ (7)
2 dS � 0 

Sb

ε1ε
∗ (7)
2 + ε2ε

∗ (7)
1 dS � 0 

Sb

ε6ε
∗ (7)
6 dS � 0,


Sa

ε1ε
∗ (8)
1 dS � 0 

Sa

ε2ε
∗ (8)
2 dS � 0 

Sa

ε1ε
∗ (8)
2 + ε2ε

∗ (8)
1 dS � 1 

Sa

ε6ε
∗ (8)
6 dS � 0,


Sb

ε1ε
∗ (8)
1 dS � 0 

Sb

ε2ε
∗ (8)
2 dS � 0 

Sb

ε1ε
∗ (8)
2 + ε2ε

∗ (8)
1 dS � 0 

Sb

ε6ε
∗ (8)
6 dS � 0.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(16)

So, directly identify Q11a, Q11b, Q12a,

Q12b, Q22a, Q22b, Q66a, and Q66b using the abovementioned
four special virtual displacement fields. If the noise is

ignored, approximate parameters expressed as Qapp are
identified. +e components of which are defined as equation
(17) (see Appendix B2 for the detailed equation derivations).
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Q
app
11a � 

Lf

Tiu
∗ (1)
i dl − Q22a

Sa
ε2ε
∗ (1)
2 dS − Q12a

Sa
ε1ε
∗ (1)
2 + ε2ε

∗ (1)
1 dS − Q66a

Sa
ε6ε
∗ (1)
6 dS

− Q11b
Sb
ε1ε
∗ (1)
1 dS − Q22b

Sb
ε2ε
∗ (1)
2 dS − Q12b

Sb
ε1ε
∗ (1)
2 + ε2ε

∗ (1)
1 dS − Q66b

Sb
ε6ε
∗ (1)
6 dS,

Q
app
22a � 

Lf

Tiu
∗ (2)
i dl − Q11a

Sa
ε1ε
∗ (2)
1 dS − Q12a

Sa
ε1ε
∗ (2)
2 + ε2ε

∗ (2)
1 dS − Q66a

Sa
ε6ε
∗ (2)
6 dS

− Q11b
Sb
ε1ε
∗ (2)
1 dS − Q22b

Sb
ε2ε
∗ (2)
2 dS − Q12b

Sb
ε1ε
∗ (2)
2 + ε2ε

∗ (2)
1 dS − Q66b

Sb
ε6ε
∗ (2)
6 dS,

Q
app
12a � 

Lf

Tiu
∗ (3)
i dl − Q11a

Sa
ε1ε
∗ (3)
1 dS − Q22a

Sa
ε2ε
∗ (3)
2 dS − Q66a

Sa
ε6ε
∗ (3)
6 dS

− Q11b
Sb
ε1ε
∗ (3)
1 dS − Q22b

Sb
ε2ε
∗ (3)
2 dS − Q12b

Sb
ε1ε
∗ (3)
2 + ε2ε

∗ (3)
1 dS − Q66b

Sb
ε6ε
∗ (3)
6 dS,

Q
app
66a � 

Lf

Tiu
∗ (4)
i dl − Q11a

Sa
ε1ε
∗ (4)
1 dS − Q22a

Sa
ε2ε
∗ (4)
2 dS − Q12a

Sb
ε1ε
∗ (4)
2 + ε2ε

∗ (4)
1 dS

− Q11b
Sb
ε1ε
∗ (4)
1 dS − Q22b

Sb
ε2ε
∗ (4)
2 dS − Q12b

Sb
ε1ε
∗ (4)
2 + ε2ε

∗ (4)
1 dS − Q66b

Sb
ε6ε
∗ (4)
6 dS,

Q
app
11b � 

Lf

Tiu
∗ (5)
i dl − Q22b

Sb
ε2ε
∗ (5)
2 dS − Q12b

Sb
ε1ε
∗ (5)
2 + ε2ε

∗ (5)
1 dS − Q66b

Sb
ε6ε
∗ (5)
6 dS

− Q11a
Sa
ε1ε
∗ (5)
1 dS − Q22a

Sa
ε2ε
∗ (5)
2 dS − Q12a

Sa
ε1ε
∗ (5)
2 + ε2ε

∗ (5)
1 dS − Q66a

Sa
ε6ε
∗ (5)
6 dS,

Q
app
22b � 

Lf

Tiu
∗ (6)
i dl − Q11b

Sb
ε1ε
∗ (6)
1 dS − Q12b

Sb
ε1ε
∗ (6)
2 + ε2ε

∗ (6)
1 dS − Q66b

Sb
ε6ε
∗ (6)
6 dS

− Q11a
Sa
ε1ε
∗ (6)
1 dS − Q22a

Sa
ε2ε
∗ (6)
2 dS − Q12a

Sa
ε1ε
∗ (6)
2 + ε2ε

∗ (6)
1 dS − Q66a

Sa
ε6ε
∗ (6)
6 dS,

Q
app
12b � 

Lf

Tiu
∗ (7)
i dl − Q11b

Sb
ε1ε
∗ (7)
1 dS − Q22b

Sb
ε2ε
∗ (7)
2 dS − Q66b

Sb
ε6ε
∗ (7)
6 dS − Q11a

Sa
ε1ε
∗ (7)
1 dS

− Q22a
Sa
ε2ε
∗ (7)
2 dS − Q12a

Sa
ε1ε
∗ (7)
2 + ε2ε

∗ (7)
1 dS − Q66a

Sa
ε6ε
∗ (7)
6 dS,

Q
app
66b � 

Lf

Tiu
∗ (8)
i dl − Q11b

Sb
ε1ε
∗ (8)
1 dS − Q22b

Sb
ε2ε
∗ (8)
2 dS − Q12b

Sb
ε1ε
∗ (8)
2 + ε2ε

∗ (8)
1 dS

− Q11a
Sa
ε1ε
∗ (8)
1 dS − Q22a

Sa
ε2ε
∗ (8)
2 dS − Q12a

Sa
ε1ε
∗ (8)
2 + ε2ε

∗ (8)
1 dS − Q66a

Sa
ε6ε
∗ (8)
6 dS,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(17)

To minimize the effect of noise, taking Q11a as an ex-
ample, the variance of Q11a is as follows:

V Q11a(  � c
2
E Q

app
11a

Sa
ε∗ (1)
1 N1dS + Q

app
22a

Sa
ε∗ (1)
2 N2dS + Q

app
12a 

Sa
ε∗ (1)
2 N1 + ε∗ (1)

1 N2 dS + Q
app
66a 

Sa
ε∗ (1)
6 N6dS 

2


+ Q
app
11b

Sb
∗ (1)N1dS + Q

app
22b

Sb
ε∗ (1)
2 N2dS + Q

app
12b

Sb
ε∗ (1)
2 N1 + ε∗ (1)

1 N2 dS + Q
app
66b

Sb
ε∗ (1)
6 N6dS 

2


+ c
2
E Q

app
11b

Sb
ε∗ (1)
1 N1dS + Q

app
22b

Sb
ε∗ (1)
2 N2dS + Q

app
22b

Sb
ε∗ (1)
2 N1 + ε∗ (1)

1 N2 dS + Q
app
66b

Sb
ε∗ (1)
6 N6dS 

2
 

� VA Q11a(  + VB Q11a( .

(18)
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As described above, the virtual fields are expanded by
polynomial basis functions based on equation (11). +e
unknown coefficients Aij and Bij are included in vector Y as
follows:

Y �

A00

⋮
A30

⋮

A03

⋮

A33

B00

⋮

B30

⋮

B03

⋮

B33

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (19)

+e integrals of equation (15) are calculated using
vectors B11,B22,B12, and B66 through discrete sum ap-
proximation so that


Sa

ε1ε
∗
1( dS ≈ Lwaε1aε

∗
ia � B11a · Y,


Sa

ε2ε
∗
2( dS ≈ Lwaε2aε

∗
2a � B22a · Y,


Sa

ε1ε
∗
2 + ε2ε

∗
1( dS ≈ Lwa ε1aε

∗
2a + ε2aε

∗
1a  � B12a · Y,


Sa

ε6ε
∗
6( dS ≈ Lwaε6aε

∗
6a � B66a · Y,


Sb

ε1ε
∗
1( dS ≈ Lwaε1bε

∗
1b � B11b · Y,


Sb

ε2ε
∗
2( dS ≈ Lwbε2bε

∗
2b � B22b · Y,


Sb

ε1ε
∗
2 + ε2ε

∗
1( dS ≈ Lwb ε1bε

∗
2b + ε2bε

∗
1b  � B12b · Y,


Sb

ε6ε
∗
6( dS ≈ Lwbε6bε

∗
6b � B66b · Y.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(20)

+e others that the definition from the virtual fields
(vectorsH11,H22,H12, andH66) are related to the terms of
equation (18).


Sa

ε∗1( 
2
dS ≈

Lwa

npointsa
 

2

Y · H11a · Y


Sa

ε∗1( 
2dS ≈

Lwa

npointsa
 

2

Y · H11a · Y,


Sa

ε1ε
∗
2( dS ≈

Lwa

npointsa
 

2

Y · H11a · Y,


Sa

ε∗6( 
2dS ≈

Lwa

npointsa
 

2

Y · H11a · Y,


Sb

ε∗1( 
2dS ≈

Lwb

npointsa
 

2

Y · H11b · Y,


Sb

ε∗1( 
2dS ≈

Lwb

npointsa
 

2

Y · H11b · Y,


Sb

ε1ε
∗
2( dS ≈

Lwb

npointsa
 

2

Y · H11b · Y,


Sb

ε∗6( 
2dS ≈

Lwb

npointsa
 

2

Y · H11b · Y.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(21)

+e first KA virtual field conditions of three-point
bending are u∗2 � 0, when x1 � 0, and x2 � 0, which implies

B00 � 0. (22)

+e second KA virtual field conditions of three-point
bending re u∗1 � 0, when x1 � L, which means that



m

i�0
Aij � 0, j � 0, · · · , n. (23)

+e optimized virtual fields are totally defined. +e
following equations can identify the constitutive parameters:
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Q11a �
F

t
u
∗ (a)
2 x1 � L, x2 � w( ,

Q22a �
F

t
u
∗ (a)
2 x1 � L, x2 � w( ,

Q12a �
F

t
u
∗ (a)
2 x1 � L, x2 � w( ,

Q66a �
F

t
u
∗ (a)
2 x1 � L, x2 � w( ,

Q11b �
F

t
u
∗ (a)
2 x1 � L, x2 � w( ,

Q22b �
F

t
u
∗ (a)
2 x1 � L, x2 � w( ,

Q12b �
F

t
u
∗ (a)
2 x1 � L, x2 � w( ,

Q66b �
F

t
u
∗ (a)
2 x1 � L, x2 � w( .

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(24)

3. Numerical Verification and Discussion

To evaluate the accuracy of the abovementioned optimized
polynomial VFM, numerical experiments with FEM simu-
lations and DIC simulations are employed in this section.

3.1. Numerical Verification of Optimized Polynomial Virtual
FieldswithFEMSimulations. In FEM simulation, in order to

facilitate the simulation of bimaterials configuration, a two-
dimensional rectangular beam specimen was adopted, and
applied a three-point bending load to get inhomogeneous
in-plane deformation fields. Based on the principle of the
symmetry of three-point bending, only the left of the
specimen was modelled, as shown in Figure 1.

+e length, width, and thickness of the bimaterial beam
specimen were set as L � 30mm, w � 20mm, and
t � 2.3mm, respectively, and the width of the two material
regions was the same: wa � wb � 10mm.+e force was set as
F � 2544N. +e four-node plane-stress element with
thickness (Solid-Quad 4 nodes 182/Plane strs w/thk) was
employed. +e displacement constraint uy � 0 is added in
the lower left corner of the model, and the line constraint
ux � 0 is added on the right side of the model.

+e beam specimen was set as orthotropic materials. +e
engineering elastic constants in the FEM simulation are
shown in Table 1, and the converted constitutive parameters
in the elastic matrix are shown in Table 2.

+e displacement fields and the strain fields of the three-
point bending test of the orthotropic bimaterial obtained
through FEM simulations using the commercial software
ANSYS are shown in Figures 2 and 3.

Table 3 shows the identification results of the hetero-
geneous orthotropic bimaterials by using the optimized
polynomial VFM, as shown in Section 2.2. To study the
identification accuracy of the optimized polynomial VFM,
the relative error of every constitutive parameter component
and the weighted relative error Wre were calculated. Owing
to there were 8 unknown constitutive parameters, the
weighted relative error employed here can be expressed as
follows:

Wre �

Q
i de
11a − Q

rfe
11a



 + Q
i de
22a − Q

re
22a



 + Q
i de
12a − Q

re
12a



 + Q
i de
66a − Q

rfe
66a





+ Q
i de
11b − Q

rfe

11b



 + Q
i de
22b − Q

rfe

22b



 + Q
i de
12b − Q

rfe

12b



 + Q
i de
66b − Q

rfe

66b





Q
rfe
11a + Q

rfe
22a + Q

rfe
12a + Q

rfe
66a + Q

rfe

11b + Q
rfe

22b + Q
rfe

12b + Q
rfe

66b

.

(25)

It can be seen from Table 3 that the weighted relative
error is lower than 1%. +e relative error of Q66 of the two
materials is the smallest. Although the relative errors of Q11
andQ22 of the twomaterials are slightly larger than Q66, both
of them are less than 2%. +e relative error of Q12a and Q12b

is significantly higher than others, because σ2 must be in-
cluded in the virtual fields to identify Q12, while the stress
data density of σ2 is low in the three-point bending test. +e
stress data density can be expressed by the following
equation:
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ρ σi(  �


bpoints
j�1 σi Mj 





npoints
, i � 1, 2, 6. (26)

According to equation (7), the standard deviations of Qij

are equal to η(i)c. If c is the standard deviation of the strain
noise, the coefficients of variations (CV(Qij)) of each
stiffness component are given by

CV Q11(  �
η11
Q11

c,

CV Q22(  �
η22
Q22

c,

CV Q12(  �
η12
Q12

c,

CV Q66(  �
η66
Q66

c.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(27)

+e ratio of coefficient of variation to the standard
deviation of the strain noise can show the sensitivity to the
noise. It indicates the rate at which the coefficient of vari-
ation increases with the increase of noise, which can be
called the variation coefficient-to-noise ratio, and can be
expressed as ηij/Qij. +e lower variation coefficient-to-noise
ratio indicates that the corresponding identification con-
stitutive parameters are less susceptible to noise. +e vari-
ation coefficient-to-noise ratios ηij/Qij of eight identification
results are shown in Table 3. Significant differences on the
variation coefficient-to-noise ratio and the coefficient-to-
noise ratio of Q66 is the smallest, the next is Q11, and then is
the Q22, and the biggest is Q12. +e quantitative results show
that if Q11, Q22, and Q66 are stable, Q12 is less robustly
identified. +is result shows that this configuration is un-
suitable for the transverse stiffness.

3.2. Comparison with Results of Piecewise Virtual Fields and
Polynomial Virtual Fields. +is section will implement the
same numerical experiment as Section 3.1 to compare the
identified constitutive parameters of the piecewise virtual

L

w

wa

wb

F

Part A

Part B

Figure 1: Two-dimensional bimaterial model of three-point bending established in FEM simulation.

Table 1: Engineering elastic constants of orthotropic bimaterial.
Exa (Mpa) Eya (Mpa) Eza (Mpa) PRxya (Mpa) PRyza (Mpa) PRxza (Mpa) Gxya (Mpa) Gyza (Mpa) Gxza (Mpa)
180000 30000 8300 0.17 0.25 0.31 5700 12000 12000
Exb (Mpa) Eyb (Mpa) Ezb (Mpa) PRxyb (Mpa) PRyzb (Mpa) PRxzb (Mpa) Gxyb (Mpa) Gyzb (Mpa) Gxzb (Mpa)
175000 32000 8300 0.25 0.25 0.31 5700 12000 12000

Table 2: Reference constitutive parameters of orthotropic bimaterial.

Q11a (Mpa) Q22a (Mpa) Q12a (Mpa) Q66a (Mpa) Q11b (Mpa) Q22b (Mpa) Q12b (Mpa) Q66b (Mpa)

181937.10 30719.68 5907.20 5700 178229.16 32976.51 8947.80 5700

10 Advances in Materials Science and Engineering



field and polynomial virtual field. At this situation, the bi-
linear shape function is used to interpolate the four-node
element to represent the virtual field instead of the poly-
nomial virtual field.

+e piecewise function expansion of the virtual dis-
placement field is similar to the interpolation of the real

displacement in the FEM. Derived from the relationship
between strain and displacement,

ε � Su∗, (28)

where

–.133477

–.113034

–.092591
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–.031263
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.030065

.050507

(a)
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–.212465

–.106233

0

(b)

Figure 2: Displacement distributions of heterogeneous orthotropic bimaterials: (a) u1; (b) u2 (unit: mm).
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Figure 3: Strain distributions of heterogeneous orthotropic bimaterials: (a) ε1; (b) ε2; (c) ε3.
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(29)

For the quadrilateral element, the virtual displacement
can be expressed by the following formula:

u∗ ξ1, ξ2( ≃u∗ ξ1, ξ2(  � 
4

a�1
N(a) ξ1, ξ2( u∗(a)

, (30)

where u∗ is the vector containing the virtual displacement of
any point (ξ1, ξ2) in the element, and u∗(a) is the vector
containing the virtual displacement of the nodes in the el-
ement. +e expression of N(a) is defined as

N(a) ξ1, ξ2(  � N
(a) ξ1, ξ2( I, (31)

where I is the identity matrix. +e shape function expression
of N(a) can be defined as follows:

N
(1)

�
1
4

1 − ξ1(  1 − ξ2( ,

N
(2)

�
1
4

1 + ξ1(  1 − ξ2( ,

N
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�
1
4

1 + ξ1(  1 + ξ2( ,
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(2)

�
1
4

1 − ξ1(  1 + ξ2( .
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(32)

So, the virtual displacement can be expressed by the
following formula:

u
∗
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(33)

+erefore, the unknown coefficient vector Y (equation
(17)) in the polynomial virtual fields can be denoted on each
node:

Y �

u
∗(1)
1

u
∗(1)
2

⋮

u
∗(n)
1

u
∗(n)
2
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, (34)

where n is the total number of nodes.
Use the piecewise virtual field instead of the polynomial

virtual field to perform the same experiment (Section 3.1).
Table 4 shows the values of relative and weighted relative
error of A and B. It can be seen from Table 4 that the
identification results of piecewise virtual fields are similar to
that of polynomial virtual fields. +e weighted relative error
is 0.97%, which is slightly larger than that of polynomial
virtual fields. +e relative error of Q66 of the two materials is
the smallest. Although the relative errors of Q11 and Q22of
the two materials are slightly larger than Q66, both of them
are less than 2%. Similar to the results of polynomial virtual
fields, the relative error of Q12a and Q12b is significantly
higher than others, because σ2 must be included in the
virtual fields to identify Q12, while the data density of σ2 is
low in the three-point bending test.

+e variation coefficient-to-noise ratios of eight iden-
tification results are also shown in Table 4. Significant dif-
ferences can be seen on the variation coefficient-to-noise
ratios and the quantitative results show that if Q11, Q22, and
Q66 are stable, Q12 is less robustly identified. Compared with
the polynomial virtual field, the variation coefficient-to-
noise ratio of the eight identification parameters calculated
by the optimized piecewise virtual field is larger.

3.3. Influence of Noise on Identification Results. +e noise is
inevitable in the experiments. To investigate the influence of
noise on identification results, zero-mean Gaussian white

Table 3: Identification results of constitutive parameters of orthotropic bimaterial using the optimized polynomial virtual fields.

Reference (MPa) Identification (MPa) ηij/Qij Relative error (%) Weighted relative error (%)

Q11a 181937.10 181597.13 28.0642 −0.19

0.83

Q22a 30719.68 30350.43 10.6390 −1.20
Q12a 5907.20 4791.27 208.0530 −18.89
Q66a 5700 5701.02 5.3999 0.02
Q11b 178229.16 177353.94 23.4711 −0.49
Q22b 32976.51 32595.46 9.1601 −1.16
Q12b 8947.80 8275.81 101.8827 −7.51
Q66b 5700 5698.79 5.9903 −0.02

Advances in Materials Science and Engineering 13



noise with different amplitudes is added in the strain data of
the orthotropic bimaterial specimen, and the above-
mentioned experiments are repeated to obtain the coeffi-
cients of variation corresponding to the eight identification
results with the increasing noise amplitudes. In order to
assess the influence of noise on the identified parameters, it
is necessary to discuss the standard deviation of strain noise.
It can be seen from equation (27) that the coefficients of
variation (CV(Qij)a) are proportional to the uncertainty (c)
of strain measurement. Since the coefficient of variation can
be directly compared between different constitutive com-
ponents, this article chose to discuss the coefficient of
variation rather than standard deviation. +us, coefficients
of variation were used to discuss the sensitivity to noise.

+e coefficients of variation of the identified stiffness
components of the two materials were calculated for a range of
strain noise standard deviation values.+e strain noise standard
deviation c varies from 5×10−5 to 1× 10−3 by steps of 5×10−5.
For each value of c, the identification is repeated 30 times using
the optimized polynomial virtual fields. +e coefficients of
variation (CV(Qij)) were calculated by equation (34). Figure 4
indicates the graph plotting, the coefficients of variations for the

eight stiffness components of the two materials, as a function of
c.+e points are fitted by linear regression to calculate the slope,
and the slope was compared to the theoretical value of the
variation coefficient-to-noise ratio ηij/Qij.

CV Qij  �

�����������������


Qij − Qij)

2/n − 1

 Qij /n.
⎛⎝




(35)

Table 4: Identification results of constitutive parameters of orthotropic bimaterial using the optimized piecewise virtual fields.

Reference (MPa) Identification (MPa) ηij/Qij Relative error (%) Weighted relative error (%)

Q11a 181937.10 181236.94 29.7551 −0.38

0.97

Q22a 30719.68 30226.44 11.6049 −1.61
Q12a 5907.20 4979.48 245.8494 −58.71
Q66a 5700 5700.70 6.1965 0.01
Q11b 178229.16 177249.89 25.0937 −0.55
Q22b 32976.51 32456.53 9.7825 −1.58
Q12b 8947.80 8184.67 125.9329 −8.53
Q66b 5700 5699.21 6.8896 −0.01

Table 5: +e fitted and the theoretical values of the variation
coefficient-to-noise ratios.

Fitted value +eoretical value
η11a/Q11a 27.13 26.6534
η22a/Q22a 10.34 9.6984
η12a/Q12a 165.75 172.1564
η66a/Q66a 5.29 5.0576
η11b/Q11b 23.94 22.0878
η22b/Q22b 8.50 8.4713
η12b/Q12b 88.04 84.7326
η66b/Q66b 5.94 5.6006
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Figure 4: +e coefficients of variation of the identified stiffness components. (a) Part A; (b) Part B.
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Figure 5: Continued.
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For both materials A and B, Figure 4 shows that the
smallest coefficient of variation value is CV(Q66). +e
results of Figure 4 are consistent with the variation
coefficient-to-noise ratio studies in Section 3.1. Q66 was
the most stable of the identified stiffness components.
CV(Q22) was the second and CV(Q11) was the third, and
finally CV(Q12), which is also consistent with the results
in Section 3.1. +e slope of the fitted curve is the fitted
variation coefficient-to-noise ratio. +e comparisons of
the fitted and theoretical value of the variation coeffi-
cient-to-noise ratio are listed in Table 5. Figure 4 and
Table 5 not only show the linear relationship but also
show that the theoretical ηij/Qij values are consistent
with the fitted ones. It suggests that the procedure can
perform a priori evaluation of a confidence interval
on the identified stiffness components. In addition,
due to the hypothesis of equation (16), the straight
line is unsuitable for the highest values of noise. Equa-
tion (16) shows the noise should be smaller than the
signal.

3.4. Influence of the Polynomial Degrees. According to
equation (10), when the basic functions to expand the virtual
field is selected, the only parameters, the degrees of the x1
and x2 monomials, denoted as m and n, need to be selected.
m and nare the polynomial degrees that represent the
maximum number of monomials. +e total number of
polynomial degrees is 2(m + 1)(n + 1); for the case of op-
timized polynomial virtual fields applied to the bimaterial
without knowing any material constitutive parameters, the
condition of equation (35) needs to be satisfied.

2(m + 1)(n + 1)> n + 10. (36)

For the optimized polynomial virtual fields, on the one
hand, m and n cannot be selected too small, which will lead
to too few polynomial degrees and thus cannot satisfy
equation (35). On the other hand, m and n should not be
selected too large, which will result in ill-conditioned matrix.
Figure 5 shows the evolution of the variation coefficient-to-
noise ratio ηij/Qij as a function of m and n. It can be seen
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Figure 5: Values of ηij/Qij. (a) η11a/Q11a, (b) η22a/Q22a, (c) η12a/Q12a, (d) η66a/Q66a, (e) η11b/Q11b, (f ) η22b/Q22b, (g) η12b/Q12b, and (h)
η66b/Q66b.

(a) (b)

Figure 6: +e reference and the deformation speckle pattern images. (a) Reference speckle pattern. (b) Deformed speckle pattern.

16 Advances in Materials Science and Engineering



from Figure 5 that there are slight variations in the ηij/Qij

with higher gradients for the values related to Q12a and Q12a.
Due to the three-point bending test configuration, these
parameters are relatively less good identifiability. It can also
show that the dependance on n is higher than that on m. +is
is because all the constraints affect the x2 monomials.

3.5. Numerical Verification of Optimized Polynomial Virtual
Fields with DIC Simulations. In practice, to provide a more
reliable strain input for the virtual fields method, digital
image correlation (DIC) was applied to obtain deformation

fields. DIC is an effective optical technique for noncontact
full-field deformation measurement for various materials
and structures. +e DIC computes the displacement of each
image point by comparing the gray intensity of images of the
test specimen surface in different loading states. +e cor-
responding strain fields are calculated using a numerical
differentiation method. In addition to the systematic error of
DIC algorithm, aberration, distortion, and out-of-plane
displacement will affect the accuracy of displacement
measurement.

For the purpose of evaluating the simulated results of
constitutive parameters for bimaterials and the influence of
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Figure 7: Displacement fields of speckle images using DIC: (a) u1; (b) u2(unit: mm).
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Figure 8: Continued.
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strain input calculated by DIC on the identification of
constitutive parameters, the simulated DIC results were used
as the input of the VFM to exclude the influence of lens
distortion and out-of-plane displacements. +e displace-
ment fields of the bimaterial beam specimen obtained
through abovementioned FEM simulations were exported
and converted to reference and deformed speckle patterns by
Gaussian speckle [32], as shown in Figure 6. +e dis-
placement fields and strain fields obtained from DIC are
shown in Figures 7 and 8, respectively.

Table 6 shows the identification results and the cor-
responding variation coefficient-to-noise ratio and rela-
tive error and weighted relative error for both materials.
Similar to the results in Table 3, it shows significant
differences on the variation coefficient-to-noise ratio and
the coefficient-to-noise ratio of Q66, which is the smallest,
the next is Q11, and then is the Q22, and the biggest is Q12.
+e lowest value is Q66. +is result is consistent with
studies in Section 3.3. Q66was the most stable of the four
identified stiffness components in Section 3.3. Q11 is the
second, Q22 is the third, and Q12 is the last. +is result is also
consistent with the studies in Section 3.3. As shown in Table 6,
the relative errors of Q12a and Q12b are more than 10%, while

others are notmore than 4%, and the weighted relative error is
1.14%, which is slightly larger than the results in Table 3. +is
indicates that the strain data calculated by DIC contains noise,
resulting in an increase in the error of the identification
results. +is comparison result reveals the feasibility of the
optimized polynomial virtual fields combined with DIC for
extracting the constitutive parameters of the unknown
bimaterial. It should be pointed out that in the actual DIC
calculation, the displacement measurement errors caused by
aberration and out-of-plane displacements will lead to ad-
ditional strain noise, so the relative errors and weighted
relative error of the identification results will be larger than
the results in Table 6.

4. Conclusions

In this article, optimized polynomial virtual fields are
proposed to extract the constitutive parameters of the
heterogeneous orthotropic bimaterials without knowing any
material constitutive parameters. Numerical experiments
with FEM simulations are employed to investigate the ac-
curacy of the optimized polynomial virtual fields method.
+e main conclusions are as follows:
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Figure 8: Strain fields of simulated speckle images using DIC: (a) ε1; (b) ε2; (c) ε6.

Table 6: Identification results of constitutive parameters of orthotropic bimaterials with speckle images.

Reference (MPa) Identification (MPa) ηij/Qij Relative error (%) Weighted relative error (%)

Q11a 181937.10 180555.58 28.0682 −0.76

1.14

Q22a 30719.68 30448.46 10.5995 −0.88
Q12a 5907.20 4799.89 207.1620 −18.75
Q66a 5700 5678.47 5.4031 −0.38
Q11b 178229.16 178258.47 23.4412 0.02
Q22b 32976.51 31730.88 8.9408 −3.78
Q12b 8947.80 7884.06 103.7439 −11.89
Q66b 5700 5725.27 5.9455 0.44

Advances in Materials Science and Engineering 19



(1) +e optimized polynomial virtual fields were pro-
posed to identify the constitutive parameters of
heterogeneous orthotropic bimaterials under the
condition that constitutive parameters of both ma-
terials are all unknown from a single test. +e results
show that the weighted relative error of the con-
stitutive parameter is less than 1%. +e stress data
density was used to explain the difference in the
relative error of the constitutive parameter. For
heterogeneous orthotropic bimaterials without
knowing any material constitutive parameters, this
method is suitable for extracting the constitutive
parameters.

(2) To investigate the effect of the noise, a series of
numerical experiments with different strain noise
amplitudes were used in FEM simulations. +e
variation coefficient-to-noise ratio and coeffi-
cients of variation are applied to quantify the
influence of noise on the identification results, and
the results suggest that the variation coefficient-
to-noise ratio can perform a priori evaluation of a
confidence interval on the identified stiffness
components.

(3) For comparison, piecewise virtual fields were used to
extract the constitutive parameters of the hetero-
geneous orthotropic bimaterials. +e results denoted
that the optimized polynomial virtual fields have a
higher reliability than the optimized piecewise vir-
tual fields.

(4) To study the accuracy of the optimized polynomial
VFM combined with DIC method, the numerical
experiments with DIC simulations are employed.
+e comparison result shows the feasibility of the
optimized polynomial virtual fields combined with
DIC for extracting the constitutive parameters of the
unknown bimaterials. +e result also indicates that
the strain data calculated by DIC contains noise,
resulting in an increase in the error of the identifi-
cation results, and the weighted relative error is
1.14%.

Nomenclature

σ: Cauchy stress tensor
u∗: Virtual displacement

vector
ε∗: Strain tensor
T: External force
S: Area of the specimen
b: Vector of volume force
V: Specimen volume
a: Distribution of

acceleration
KA: Virtual displacement

field being kinematically
admissible

Q11, Q22, Q12, Q66: In-plane constitutive
parameters

u∗(1), u∗(2), u∗(3), u∗(4): Four independent KA
virtual fields

ε∗(1), ε∗(2), ε∗(3), ε∗(4): Four independent KA
virtual fields

N1,N2,N6: Processes of scalar zero-
mean stationary
Gaussian

ε1, ε2, ε6: Strain components
c: Measured amplitude of

the random variable
strain

Qapp: Approximate parameter
components

‖εi‖(i � 1, 2, 6): Norm of strain
component

V(Q11), V(Q22), V(Q12), V(Q66): Variances of
Q11, Q12, Q22, and Q66

Y∗: Vector concerning the
coefficients of virtual
strain fields

H: Hessian matrix
L(i): Lagrangian function
λ(i): Vector containing

Lagrange multipliers
Q11a, Q22a, Q12a, Q66a: Constitutive parameters

of material a
Q11b, Q22b, Q12b, Q66b: Constitutive parameters

of material b
L: Typical dimensions of

the x1
w: Typical dimensions of

the x2
F: External force of the

specimen
Wre: Weighted relative error

of Q

N(i)(i � 1, 2, 3, 4): Shape function.

Appendix

A. Equation Derivation of Section 2.1

A1.<e Principle of VirtualWork for an OrthotropicMaterial
in a Plane-Stress State. +e integral form of the mechanical
equilibrium equation of the VFM based on virtual work for a
continuous solid can be expressed as [31]

− 
S
σ: ε∗dS + 

S
T · u∗dS + 

V
b · u∗dV

� 
V
ρa · u∗dV ∀u∗KA,

(A.1)

where σ is the Cauchy stress tensor, u∗ is the virtual dis-
placement vector, ε∗denotes the strain tensor corresponding
to u∗, T represents the external force associated with the
stress tensor σ by the boundary, S is a vector which is the
volume force applied over the volume V of the specimen,
and a denotes the distribution of acceleration. Such a dis-
tribution will cause an additional volumetric force
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distribution equal to −ρa with D’Alembert’s principle, the
virtual displacement field being kinematically admissible
(KA).

In the case of a quasistatic load, acceleration acan be
omitted. +e volume force bcan usually also be omitted.
Under this circumstance, equation (A.1) can be written as
follows:

−
S
σ: ε∗dS � 

S
T · u∗dS ∀u∗KA. (A.2)

Equation (A.2) denotes the plane-stress problem. For an
orthotropic material in a plane-stress state, the principle of
virtual work becomes


S
Q11 ε1ε

∗
1( dS + 

S
Q22 ε2ε

∗
2( dS + 

S
Q12 ε1ε

∗
2 + ε2ε

∗
1( dS

+ 
S
Q66 ε6ε

∗
6( dS � 

Lf

Tiu
∗
i( dl,

(A.3)

where Q11, Q22, Q12, and Q66 are the in-plane stiffness
components and equation (A.3) is linear. It is suitable for
every KA virtual field. +is equation uses four independent
KA virtual fields ε∗(1), ε∗(2), ε∗(3), and ε∗(4) instead of
u∗(1), u∗(2), u∗(3), and u∗(4), respectively. So, the relationship
between A,Q, and B is as follows:

AQ � B. (A.4)

A2. <e Principle of Virtual Work with Uncorrelated Noise.
+e exact values and white noise constitute the measured
strain component. So, equation (A.3) in Appendix A1 can be
reexpressed as follows:

Q11
S
ε1 − cN1( ε∗1 dS + Q22

S
ε2 − cN2( ε∗2 dS

+ Q12
S

ε1 − cN1( ε∗2 + ε2 − cN2( ε∗1 dS

+ Q66
S
ε6 − cN6( ε∗6 dS � 

Lf

Tiu
∗
i( dl,

(A.5)

where N1,N2, and N6 denote the processes of scalar zero-
mean stationary Gaussian generalized by the corresponding
strain components ε1, ε2, and ε6, respectively, and c denotes
the measured amplitude of the random variable strain.
Assume that the noise components are uncorrelated to each
other, and presume that the noise between points is also
uncorrelated. Equation (A.5) can be rewritten as follows:

Q11 
S
ε1ε
∗
1( dS

√√√√√√√√√√
�1

+ Q22 
S
ε2ε
∗
2( dS

√√√√√√√√√√
�0

+ Q12 
S
ε1ε
∗
2 + ε2ε

∗
1( 

√√√√√√√√√√√√√√
�0

dS + Q66 
S
ε6ε
∗
6( dS

√√√√√√√√√√
�0

−

c Q11
S
ε∗1 N1dS + Q22

S
ε∗2 N2dS + Q12

S
ε∗2 N1 + ε∗1 N2( dS + Q66

S
ε∗6 N6dS  � 

Lf

Tiu
∗
i( dl.

(A.6)

A3. <e Principle of Virtual Work with Ignored Noise.
Directly identify Q11, Q22, Q12, and Q66 using these four
special virtual displacement fields ε∗(1), ε∗(2), ε∗(3), and ε∗(4).

Q11 � c Q11
S
εε
∗(1)

1 N1dS + Q22
S
ε∗ (1)
2 N2dS + Q12

S
ε∗ (1)
2 N1 + ε∗ (1)

1 N2 dS

+ Q66
S
ε∗ (1)
6 N6dS + 

Lf

Tiu
∗ (1)
i dl,

(A.7)

Q22 � c Q11
S
ε∗ (2)
1 N1dS + Q22

S
ε∗ (2)
2 N2dS + Q12

S
ε∗ (2)
2 N1 + ε∗ (2)

1 N2 dS

+ Q66
S
ε∗ (2)
6 N6dS + 

Lf

Tiu
∗ (2)
i dl,

(A.8)

Q12 � c Q11
S
ε∗ (3)
1 N1dS + Q22  ε∗ (3)

2 N2dS + Q12
S
ε∗ (3)
2 N1 + ε∗ (3)

1 N2 dS

+ Q66
S
ε∗ (3)
6 N6dS + 

Lf

Tiu
∗ (3)
i dl,

(A.9)
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Q66 � c Q11  ε∗ (4)
5 N1dS + Q22

S
ε∗ (4)
2 N2dS + Q12

S
ε∗ (4)
2 N1 + ε∗ (4)

1 N2 dS

+ Q66
S
ε∗ (4)
6 N6dS + 

Lf

Tiu
∗ (4)
i dl.

(A.10)

If the noise is ignored, approximate parameters
expressed as Qapp, these components are defined by

Q
app
11 � 

Lf

Tiu
∗ (1)
i dl,

Q
app
22 � 

Lf

Tiu
∗ (2)
i dl,

Q
app
12 � 

Lf

Tiu
∗ (3)
i dl,

Q
app
66 � 

Lf

Tiu
∗ (4)
i dl,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(A.11)

where c can be negligible compared to the ‖ε1‖, ‖ε2‖ and ‖ε6‖,
respectively, and the ‖εi‖(i � 1, 2, 6) is the norm of strain
component L2. +us,

c≪ min ε1
����

����, ε2
����

����, ε6
����

���� . (A.12)

Equations (A.7)–(A.10) mentioned above can be reex-
pressed by the actual values of the Qij instead of the ap-
proximate counterparts. +us,

Q11 � c Q
app
11 

S
ε∗ (1)
1 N1dS + Q

app
22 

S
ε∗ (1)
2 N2dS + Q

app
12 

S
ε∗ (1)
2 N1 + ε∗ (1)

1 N2 dS

+ Q
app
66 

S
ε∗ (1)
6 N6dS + Q

app
1 ,

Q22 � c Q
app
11 

S
ε∗ (2)
1 N1dS + Q

app
22 

S
ε∗ (2)
2 N2dS + Q

app
12 

S
ε∗ (2)
2 N1 + ε∗ (2)

1 N2 dS

+ Q
app
66 

S
ε∗ (2)
6 N6dS + Q

app
22 ,

Q12 � c Q
app
11 

S
ε∗ (3)
1 N1dS + Q

app
22 

S
ε∗ (3)
2 N2dS + Q

app
12 

S
ε∗ (3)
2 N1 + ε∗ (3)

1 N2 dS

+ Q
app
66 

S
ε∗ (3)
6 N6dS + Q

app
12 ,

Q66 � c Q
app
11 

S
ε∗ (4)
1 N1dS + Q

app
22 

S
ε∗ (4)
2 N2dS + Q

app
12 

S
ε∗ (4)
2 N1 + ε∗ (4)

1 N2 dS

+ Q
app
66 

S
ε∗ (4)
6 N6dS + Q

app
66 .

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(A.13)

A4. <e Variance of Identified Constitutive Parameters.
To lower the effect of noise, the objective function can be
denoted as the difference between the real parametersQ and

approximate parametersQapp. For instance, the variance for
Q11 can be written as follows:

V Q11(  � c
2
E Q

app
11 

S
ε∗ (1)
1 N1dS + Q

app
22 

S
ε∗ (1)
2 N2dS + Q

app
12 

S
ε∗ (1)
2 N1 + ε∗ (1)

1 N2 dS + Q
app
60 

S
ε∗ (1)
6 N6dS 

2
 .

(A.14)

Using the rectangle method to discretize the above-
mentioned integrals,
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V Q11(  � c
2 S

n
 

2
E Q

app
11 

n

i�1
ε(1)
1 Mi( N1 Mi(  + Q

app
22 

n

i�1
ε∗ (1)
2 Mi( N2 Mi( +⎡⎣⎛⎝

Q
app
12 

n

i�1
ε∗ (1)
2 Mi( N1 Mi(  + ε∗ (1)

1 Mi( N2 Mi(   + Q
app
66 

n

i�1
ε∗ (1)
6 Mi( N6 Mi( ⎤⎦

2
⎞⎠,

(A.15)

where S is the specimen area, and n is the number of
rectangular elements by discretizing the specimen geometry.

Derived from the abovementioned equations are the fol-
lowing total six different types of Si i � 1, 2, . . . , 6:

S1 � 
n

i�1


n

j�1
εk Mi( εk Mj E N1 Mi( Nl Mj   i≠ j&k, l � 1, 2, 6,

S2 � 
n

i�1
ε2k Mi( E N

2
k Mi(   k � 1, 2, 6,

S3 � 
n

i�1
εk Mi( εl Mi( E N

2
k Mi(   k, l � 1, 2&k≠ l,

S4 � 
n

i�1


n

j�1
εk Mi( εk Mj E Nk Mi( Nk Mj   i≠ j&k, l � 1, 2,

S5 � 
n

i�1


n

j�1
εk Mi( εl Mj E Np Mi( Nq Mj   k, l, p, q � 1, 2&p≠ q,

S6 � 
n

i�1


n

j�1
εk Mi( ε6 Mj E N1 Mi( N6 Mj   k, l � 1, 2.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(A.16)

Due to the autocorrelation of functions Ni, i � 1, 2, 6,
the mathematical expectation in the abovementioned
equation is equal to 0 or 1; then,

S1, S4, S5, S6 � 0,

S2 � 

n

i�1
ε2k Mi( , k � 1, 2, 6,

S3 � 
n

i�1
εk Mi( εl Mi( , k, l � 1, 2&k≠ l.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(A.17)

Hence, V(Q11) can be rewritten as follows:

V Q11(  � c
2 S

n
 

2
Q

app
11( 

2
+ Q

app
12( 

2
  

n

i�1
ε∗ (1)
1 Mi(  

2
+⎡⎣

Q
app
22( 

2
+ Q

app
12( 

2
  

n

i�1
ε∗ (1)
2 Mi(  

2
+ 2 Q

app
11 + Q

app
22( Q

app
12 

n

i�1
ε∗ (1)
1 Mi( ε∗ (1)

2 Mi( 

+ Q
app
66( 

2


n

i�1
ε∗ (1)
6 Mi(  

2
⎤⎦.

(A.18)
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Similar results are obtained for Q22, Q12, and Q66.
Denoting V(Q), the vector containing the variances of
Q11,Q22,Q12, and Q66, one can write

V Q11(  � c
2 S

n
 

2
QappG(1)Qapp

,

V Q22(  � c
2 S

n
 

2
QappG(2)Qapp

,

V Q12(  � c
2 S

n
 

2
QappG(3)Qapp

,

V Q66(  � c
2 S

n
 

2
QappG(4)Qapp

,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(A.19)

where G(j), j � 1, 2, 3, 4 is the following square matrix:


n

i�1
ε∗ (j)
1 Mi(  

2
0 

n

i�1
ε∗ (j)
1 Mi( ε∗ (j)

2 Mi(  0

0 
n

i�1
ε∗ (j)
2 Mi(  

2

n

i�1
ε∗ (j)
1 Mi( ε∗ (j)

2 Mi(  0


n

i�1
ε∗ (j)
1 Mi( ε∗ (j)

2 Mi(  
n

i�1
ε∗ (j)
1 Mi( ε∗ (j)

2 Mi(  

n

i�1
ε∗ (j)
1 Mi(  

2
+ 

n

i�1
ε∗ (j)
2 Mi(  

2
0

0 0 0 
n

i�1
ε∗ (j)
6 Mi(  

2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
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. (A.20)

+ese variances are proportional to c2, expressing

η(i)
 

2
�

S

n
 

2
QappG(i)Qapp

. (A.21)

Equation (A.19) can be rewritten as

V Q11(  � η(1)
 

2
c
2
,

V Q22(  � η(2)
 

2
c
2
,

V Q12(  � η(3)
 

2
c
2
,

V Q66(  � η(4)
 

2
c
2
.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(A.22)

A5. <e Linear System of KA Virtual Fields. +e KA con-
dition can produce several linear equations, and the number
of these equations is depending on the number of supports.
+e special virtual field condition also leads to several linear
equations, the number of which depends on the type of
constitutive model of specimen material. +e two types of
conditions can produce the following linear system:

AY∗(i)
� Z(i)

. (A.23)

Using the Lagrange multiplier approach, the Lagrangian
function L(i) can be constructed for each constitutive pa-
rameter sought, and its constraint is equation (23), and the
objective function is (η(i))2. +erefore, the expression of the
Lagrange function is
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L
(i)

�
1
2
Y∗(i)HY∗(i)

+ λ(i) AY∗(i)
− Z(i)

 , (A.24)

where λ(i) is the vector containing Lagrange multipliers.
Equation (A.23) can be re-expressed as the following linear
relationship:

H A

A 0
 

Y(i)

λ(i)
⎛⎝ ⎞⎠ �

0

Ζ(i)
 . (A.25)

B. Equation Derivation of Section 2.2

B1. <e Governing Equation of the Virtual Fields Method for
the Total Specimen. For the plane-stress specimen with two
different materials A and B, and both of them are set with the
elastic orthotropic material. But the constitutive parameters
of A and B are unknown. +e governing equation of the
virtual fields method for the total specimen is as follows:

Q11a
Sa
ε1ε
∗
1 dS + Q22a

Sa
ε2ε
∗
2 dS + Q12a

Sa
ε1 _ε∗2 + ε2ε

∗
1( dS + Q66a

Sa
ε6ε
∗
6 dS+

Q11b
Sb
ε1ε
∗
1 dS + Q22b

Sb
ε2ε
∗
2 dS + Q12b

Sb
ε1ε
∗
2 + ε2ε

∗
1( dS + Q66b

Sb
ε6ε
∗
6 dS � 

Lf

Tiu
∗
i( dl.

(B.1)

As mentioned above, the sum of exact values and white
noise is the measured strain as equation (B.1) can be
reexpressed as follows:

Q11a
Sa

ε1 − cN1( ε∗1 dS + Q22a
Sa

ε2 − cN2( ε∗2 dS + Q12a
Sa

ε1 − cN1( ε∗2 + ε2 − cN2( ε∗1 dS

+Q66a
Sa

ε6 − cN6( ε∗6 dS + Q11b
Sb

ε1 − cN1( ε∗1 dS + Q22b
Sb

ε2 − cN2( dS+

Q12b
Sb

ε1 − cN1( ε∗2 + ε2 − cN2( ε∗1 dS + Q66b
Sb

ε6 − cN6( ε∗6 dS � 
Lf

Tiu
∗
i( dl.

(B.2)

Assume that the noise components are uncorrelated to
each other, and presume that the noise between points is also

uncorrelated. +erefore, equation (B.2) can be rewritten as
follows:

Q11a
Sa
ε1ε
∗
1 dS + Q22a

Sa
ε2ε
∗
2 dS + Q12a

Sa
ε1 _ε∗2 + ε2ε

∗
1( dS + Q66a

Sa
ε6ε
∗
6 dS +

Q11b
Sb
ε1ε
∗
1 dS + Q22b

Sb
ε2ε
∗
2 dS + Q12b

Sb
ε1ε
∗
2 + ε2ε

∗
1( dS + Q66b

Sb
ε6ε
∗
6 dS −

c Q11a
Sa
ε∗1 N1dS + Q22a

Sa
ε∗2 N2dS + Q12a

Sa
ε∗2 N1 + ε∗1 N2( dS + Q66a

Sa
ε∗6 N6dS

Q11b
Sb
ε∗1 N1dS + Q22b

Sb
ε∗2 N2dS + Q12b

Sb
ε∗2 N1 + ε∗1 N2( dS + Q66b

Sb
ε∗6 N6dS � 

Lf

Tiu
∗
i( dl.

(B.3)
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B2. <e Principle of Virtual Work with Ignored Noise.
Directly identify Q11a, Q11b, Q12a, Q12b, Q22a, Q22b, Q66a, and
Q66b using the abovementioned four special virtual

displacement fields ε∗(1), ε∗(2), ε∗(3), and ε∗(4). For instance,
u∗(1) is a special virtual field that identifies Q11a, which can
be written as follows:

Q11a � − Q22a
Sa
ε2ε
∗ (1)
2 dS − Q12a

Sa
ε1ε
∗ (1)
2 + ε2ε

∗ (1)
1 dS − Q66a
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ε6ε
∗ (1)
6 dS −

Q11b
Sb
ε1ε
∗ (1)
1 dS − Q22b

Sb
ε2ε
∗ (1)
2 dS − Q12b

Sb
ε1ε
∗ (1)
2 + ε2ε

∗ (1)
1 dS − Q66b

Sb
ε6ε
∗ (1)
6 dS +

c Q11a
Sa
ε∗ (1)
1 N1dS + Q22a
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ε∗ (1)
2 N2dS + Q12a
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ε∗ (1)
2 N1 + ε∗ (1)

1 N2 dS + Q66a
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ε∗ (1)
6 N6dS

Q11b
Sb
ε∗ (1)
1 N1dS + Q22b

Sb
ε∗ (1)
2 N2dS + Q12b

Sb
ε∗ (1)
2 N1 + ε∗ (1)
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6 N6dS + 

Lf

Tiu
∗
i( dl.

(B.4)
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