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In order to more accurately analyze the fatigue reliability of motor hanger for high-speed train and reduce the influence of
uncertain factors, a Bayesian statistical method is introduced to propose a novel fatigue reliability analysis method based on
Bayesian updating and subset simulation. First, considering the influence of various uncertain parameters on the first principal
stress (FPS) of motor hanger, the ANSYS parametric design language (APDL) is used to establish the parametric model. ,e
D-optimal design of experiment is carried out to calculate the FPS of the motor hanger. Second, the experimental data is fitted
by the least square method to establish a polynomial response surface function which characterizes the FPS of the motor
hanger, and analysis of variance (ANOVA) is carried out. On this basis, the variation trend of the FPS under parameter
fluctuation is calculated, and its probability distribution characteristics are obtained. Based on the MATLAB platform, the
Bayesian updating method is adopted to correct the probability and statistical characteristics of the FPS to improve the
accuracy of prediction. Finally, the subset simulation (SS) method is used to calculate the fatigue failure probability of the
motor hanger. ,e research results show that the proposed method helps to improve the accuracy and efficiency of fatigue
reliability analysis.

1. Introduction

In the design process of mechanical products, the analysis of
structural static strength and fatigue strength is the key to
ensure that the product meets the standard requirements.
However, with the continuous improvement of the opera-
tion speed of high-speed trains, in order to ensure the safety
and reliability of operation, the design of its key components
must meet the requirements of antifatigue design and re-
liability [1]. Currently, the evaluation of the fatigue per-
formance of key components for high-speed trains is mainly
based on fatigue strength and cumulative fatigue damage.
,e evaluation index can be used to perform fatigue strength
analysis and fatigue life prediction on the structure quickly
and easily and is easy to compare with the experimental
results. But, the disadvantages of this method are that the
results of evaluation and analysis are too ideal to consider the

design tolerance and manufacturing error, and the com-
parison with the experimental results is too single and not
universal, which is not enough to reflect the fatigue reli-
ability of all products. In response to the above problems,
some scholars have combined the reliability theory and
fatigue analysis theory to study the fatigue reliability of
mechanical products and proposed some fatigue reliability
analysis methods [2–12]. Chen et al. [13] proposed a fatigue
reliability analysis method that considers the uncertainty of
parameters, draws a fatigue limit diagram without safety
factor, and gives a more reasonable fatigue reliability analysis
result, which is helpful for lightweight design of products. Li
et al. [14] established a robust optimization model based on
Six Sigma to analyze the fatigue reliability of the pantograph
collector head support. ,is method not only considers the
influence of uncertain factors, but also improves the ro-
bustness of fatigue life prediction. Bayraktar et al. [15]
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considering the number of kilometers and load cycles,
statistically evaluated the actual life value. And the theo-
retical and practical Wohler diagrams S-N is plotted to
evaluate the fatigue reliability of the axle. Zhu et al. [16]
presented a framework for fatigue reliability assessments
and service life prediction based on the estimation of the
evolution and probabilistic distribution of fatigue damage
over time, and the effectiveness of the method is verified by
taking the axle of train as an example. An accelerated life
test (ALT) method is proposed by Lu et al. which is first
employed to predict the fatigue life of a full-scale bogie
frame [17]. ,is method provides a reference for reliability
evaluation of large structures. Zuo et al. [18] studied the
fatigue damage of the bogie frame and used the Bayesian
updating method to analyze the fatigue reliability of the
welded bogie frame. Hu et al. [19] combined finite element
method with experiment to evaluate the fatigue reliability
of bolster under the application of the design passenger
number spectra based on stress-life interference model.,e
above studies have played an important role in fostering
applications of reliability theory for fatigue problems in the
structural safety field. For the design process, how to ac-
curately evaluate the fatigue reliability of the structure
without experimentation is the premise of predicting
whether the design meets the requirements of the standard.
Generally, reliability methods based on simulation or ap-
proximation have three types: (1) sampling-based methods,
(2) moment matching methods, and (3) MPP-based
methods. Sampling-based methods are easy to apply and
can provide accurate probability estimations with sufficient
simulations [20]. ,us, a Bayesian updating combined with
subset simulation method is proposed in this article to
address the problem.

,e contributions of this study are as follows: (1) a
response surface function is presented to characterize the
functional relationship between random variables and the
FPS of the structure; (2) the probabilistic and statistical
parameters of the FPS are updated by using Bayesian
theory; (3) the limit state equation of fatigue reliability
analysis is established; (4) the fatigue failure probability of
the motor hanger is calculated by the subset simulation
method.

,e reminder of the paper is organized as follows.
Section 2 reviews Bayesian updating and subset simulation
method; we used both methods in fatigue reliability analysis.
Section 3 provides details on the proposed approach. Section
4 uses the fatigue reliability analysis of the motor hanger as
an example to illustrate its effectiveness and practicality.
Finally, Section 5 summarizes and concludes.

2. Bayesian Updating Theory and Subset
Simulation Method

2.1. Bayesian Updating&eory. In engineering practice, it is
often necessary to make decisions and processes on the data
that has already been obtained. ,ese data may include
observational data, experimental data, and simulation data.

When acquiring new data, it is necessary to update the
acquired data to ensure the reliability of the data. In view of
the above problems, this paper uses Bayesian method to
update and process the uncertainty and difference of sim-
ulation data [21, 22].

,e basic principle of Bayesian theory can be roughly
expressed as using prior distribution and sample informa-
tion to solve its posterior distribution; that is, the posterior
distribution is obtained based on prior information and
experimental data [23]. ,e specific steps for solving it are as
follows:

(1) Determine the parameters that need to be solved and
set them as random variables

(2) According to the sample data, the corresponding
likelihood function and prior distribution function
are constructed

(3) ,e posterior distribution function is obtained by
Bayes equation, and the posterior distribution
function is used to solve various reliability indexes

Because Bayes method makes full use of prior infor-
mation and experimental data, the posterior distribution
function is more consistent with the probability and sta-
tistical characteristics of random variables. ,e traditional
Bayesian equation is given by

π(θ | x) �
f(x | θ)π(θ)

p(x)
, (1)

where π(θ | x) is the posterior distribution function; π(θ) is
the prior distribution function; and p(x) is the edge dis-
tribution function, and the two types are
p(x) � θ∈Θf(x | θ)π(θ) and p(x) � θ∈Θf(x | θ)π(θ)dθ,
respectively.

,e distribution types of design parameters of key
components for high-speed railway are mainly lognormal
distribution and normal distribution, and the two proba-
bility distributions can be converted to each other. However,
the FPS used for fatigue reliability analysis mainly obeys
logarithmic distribution. ,erefore, the prior distribution of
lognormal distribution should be transformed into the prior
distribution of normal distribution. ,e transformation
equation can be expressed as

μ1 � ln μ0 −
σ1( 

2

2
, (2)

σ1 �

������������

ln 1 +
σ0
μ0

 

2
⎡⎣ ⎤⎦




, (3)

where μ0 and σ0 represent the mean and standard deviation
of prior lognormal distribution, respectively, and μ1 and σ1
represent the mean and standard deviation of prior normal
distribution, respectively.

According to Bayesian theory [24], the posterior dis-
tribution function of normal distribution can be obtained
from equations (2) and (3), which is written as
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, (5)

where μ2 and σ2 represent the mean and standard deviation
of posterior normal distribution, respectively; μ′ and σ′
represent the mean and standard deviation of the normal
distribution actually obtained from the evaluated parameter,
respectively; n′ represents the number of statistical samples;
and σθ represents the standard deviation caused by
uncertainties.

Combining equations (2)–(5), the statistical character-
istic parameters expression of the evaluated parameters is
obtained by Bayesian updating, which is given by

μ3 � exp μ2 +
σ2( 

2

2
 , (6)

σ3 � μ3
�����������

exp σ2( 
2

− 1


, (7)

where μ3 and σ3 represent the mean and standard deviation
of lognormal distribution after Bayesian updating,
respectively.

2.2. Subset Simulation Method. ,e subset simulation
method was first proposed by Au and Beck [25], and it is a
method that can efficiently deal with high-dimensional and
small probability problems. ,e method can represent the
failure probability with a small value as the product of a
series of large condition failure probabilities; that is, the
simulation process of the small failure probability event is
transformed into a series of large event simulation processes.
If the intermediate failure event satisfies the nested rela-
tionship (F1IF2I · · · IFm � F), the target failure proba-
bility can be rewritten as

PF � P(F) � P Fm(  � P Fm Fm−1
 P Fm−1(  � · · ·

� P F1(  

m

i�2
P Fi Fi−1

 ,
(8)

where F is the target failure event, F � g(X)≤ b , and b is
the critical value of the structural response.

In the reliability analysis, subset simulation starts with
direct Monte Carlo in the first step. ,e probability P1 is
estimated as

P F1(  � P1 �
1
N



N′

k�1
IF1

xk( , (9)

IF1
�

1, xk ∈ F1,

0, xk ∉ F1,
 (10)

where xk | k � 1, 2, . . . , N′  is an independent and identi-
cally distributed sample generated by simulation of joint
probability density function q(x) with input random vec-
tors; N is the number of sample points per layer; and IF1

is
indicator function.

Similarly, the other conditional probabilities are calcu-
lated by the idea of equation (9). In the modified Metropolis
algorithm, a group of one-dimensional proposal PDFs are
used, instead of an n-dimensional proposal PDF which is
used in Metropolis algorithm. ,us, the acceptance ratio of
individual sample can remain nonvanishing in spite of the
increasing of dimension [26, 27]. ,us, in order to efficiently
generate conditional samples, this paper implements
MCMC simulation based on improvedMetropolis–Hastings
algorithm.

3. The Analysis Method of Fatigue Reliability

3.1. Fatigue Life Prediction. Fatigue, as the main reason for
failure of engineering structures and components, is the
main factor affecting the safety of high-speed train opera-
tion. ,erefore, more and more attention has been paid to
antifatigue design in the design process. At present, the
prediction of structural fatigue life is mainly based on the S-
N curve or the P-S-N curve. ,e S-N curve represents the
stress-life curve, and the P-S-N curve is the stress-life curve
of the material under different survival conditions. ,e most
commonly used form of S-N curve describing materials is
the power function form, as follows:

S
−m

× N � C. (11)

Equation (11) can be rewritten as

logC − m log S � logN, (12)

where m and C are parameters related to material, stress
ratio, and loading mode; S represents stress; and N repre-
sents lifetime.

According to the design requirements, the material
suitable for the motor hanger of high-speed railway trains is
S355J2G. However, the mechanical properties of S355J2G
are difficult to obtain. For this reason, the material pa-
rameters of Q345 similar to its mechanical properties are
selected for fatigue reliability analysis [28]. Table 1 gives the
main parameters of the material P-S-N curve, and the P-S-N
curve of the material is plotted according to its parameters,
as detailed in Figure 1.

3.2. Limit State Equation for Fatigue Reliability Analysis.
In this paper, the fatigue lifetimemodel is selected for fatigue
reliability analysis. ,e model uses fatigue lifetime as the
parameter for reliability calculation. ,e limit state equation
can be expressed as

Z � N − N0 �

> 0,

� 0,

< 0,

⎧⎪⎪⎨

⎪⎪⎩
(13)
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whereN is the calculated fatigue lifetime andN0 is the design
lifetime; when Z> 0, the structure is in a safe state; when
Z� 0, the structure is in a limit state; when Z< 0, the
structure is in a failure state.

From the definition of reliability, the fatigue reliability of
the structure is the probability of the function Z> 0, and the
expression of the reliability is

R � PN(Z> 0). (14)

,e failure probability of a structure can be expressed as

Pf � 1 − R � 1 − PN(Z< 0). (15)

4. Fatigue Reliability Analysis of Motor
Hanger for High-Speed Train

Fatigue reliability analysis is an analytical method to im-
prove product quality by combining fatigue lifetime analysis
and reliability design. It is essential to ensure that the
structural design meets the standard requirements. As the
load-bearing structure between the motor and the bogie
frame, whether the performance and service time of the
structure can meet the requirements is directly related to the
normal operation of the train. To this end, this paper takes
the motor hanger as the research object and uses Bayesian
updating and subset simulation to explore its fatigue reli-
ability, which provides a new idea andmethod for the fatigue
life prediction in the design stage. ,e specific process of
fatigue reliability analysis is provided in Figure 2.

4.1. Finite Element Analysis ofMotorHanger. ,e premise of
fatigue reliability analysis for motor hanger is to calculate its
FPS under fatigue conditions. ,e research object of this
paper is the motor hanger of high-speed train, which is
bolted to the bogie frame to fix the motor. ,e motor hanger
is mainly plate welded, and the partial opening is used to
reduce the quality. Figure 3 shows the specific installation
position and structure type. ,e numerical analysis by the
finite element method is performed to obtain the FPS of the
motor hanger. It is modeled by shell and solidmode, given in
Figure 4. ,e motor hanger is modeled using beam188,
shell181, solid 185, rigid, and rbe3 elements. It is meshed to
have 50,879 elements, including 21,766 triangular and
quadrilateral shell elements and 28,973 tetrahedral and
hexahedral solid elements.

In the finite element model, the reasonable application of
load cases is the key to ensure the accuracy of the analysis
results. Generally, the boundary conditions of the test
components under normal operating conditions should be
consistent with those under test assembly conditions. ,e
elastic connector on the bogie can be replaced by a rigid
member, but the direction and magnitude of the load acting
on the test piece cannot be changed. Figure 5 displays the
load direction of motor hanger, which is positive upward.
,e loads are calculated according to EN13749 standard and
analyzed by finite element method. Figure 6 plots the result
of the finite element analysis. It can be clearly seen from the
figure that the maximum FPS is 119.23MPa, which occurs
on the motor boom.

4.2. EstablishmentofResponseSurfaceFunction. ,e purpose
of establishing the response surface function is to obtain the
functional relationship between the random variables and
the FPS and then to observe the influence of the uncer-
tainties on it. As one of the surrogate models, the response
surface can more accurately represent the functional rela-
tionship between input and output. Compared to other
surrogate models, the response surface belongs to the display
function that can be more easily used for reliability calcu-
lations [29]. Due to the poor approximation ability of the
linear response surface, the quadratic response surface with
cross terms is adopted. ,e basic equation is given by

y � 
n

i�1
ciix

2
i + 

n

i> j

cijxixj + 

n

i�1
cixi + c0, (16)

where n is the number of uncertain variables, c0 is the
constant, and ci, cii, and cij are the polynomial coefficients,
respectively.

According to the stress plot in Figure 6, the random
variables which have great influence on the stress plot are
selected as random variables. Considering the uncertainty of
design parameters, the upper and lower limits of size pa-
rameters are set according to tolerance, and the upper and
lower limits of load are obtained according to test condi-
tions. Table 2 displays the specific parameters for random
variables.

Table 1: P-S-N parameter estimation results of Q345 steel.

Survival rate P 0.50 0.90 0.95 0.99
C 1.84655 × 1033 1030.008 1029.202 1027.650

m 11.481 10.357 10.078 9.543

P = 0.5
P = 0.9

P = 0.95
P = 0.99

140
160
180
200
220
240
260
280
300
320
340
360

S a
 (M

Pa
)

0.0 4.0 × 106 6.0 × 106 8.0 × 106 1.0 × 1072.0 × 106

N (n)

Figure 1: P-S-N curve of Q345 steel.
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,e premise of establishing response surface function
is to do the design of experiment for random variables.
According to the design of experiment scheme, the
finite element model is invoked to solve the problem,
and the corresponding response of each scheme is ob-
tained. In this paper, the D-optimal design of experiment

method is used to carry out the experimental design; see
Table 3.

According to (16), the experimental data in Table 3 is
fitted by least squares method to obtain a response surface
function, which characterizes the function relationship be-
tween the random variable and the FPS.

S1 � +426.60 + 43.658 × TH1 − 73.68 × TH2 + 3.457 × 10−3
× F1 − 4.444 × 10−3

× F2 − 2.50 × TH1 × TH2 + 1.6 × 10− 4

× TH1 × F1 + 3.99 × 10−4
× TH1 × F2 + 4.929 × 10−5

× TH2 × F1 − 4.103 × 10−4
× TH2 × F2 − 2.909 × 10−9

× F1 × F2

− 3.265 × TH12 + 5.156 × TH22 − 10−7
× F

2
1 + 1.036 × 10−7

× F
2
2.

(17)

Motor hanger

Bogie frame
Motor

Gearbox

X
Y

Z

Figure 3: Geometric model of motor hanger.
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Figure 2: ,e analysis process of fatigue reliability.

Advances in Materials Science and Engineering 5



,e fitting accuracy of the response surface function is
the basis and premise to ensure the accuracy of the sub-
sequent reliability analysis. According to the fitting result

R2 � 0.9964, indicating that the fitting accuracy is high. To
further verify the accuracy of the response surface function,
the ANOVA is adopted to analyze the function in this paper.
Some results are provided in Table 4.

In Table 4, the F and P values are the main indicators
used to evaluate the significance of the response surface
function and its random variables.,e larger the F value, the
more significant it is; on the contrary, the smaller the P value,
the more significant it is. As can be seen from Table 4, the
function generally presents a very significant level,
P< 0.0001, indicating that the fitting accuracy of response
surface is high. Among the four random variables, random
variable TH1 is the most significant, which indicates that the
small fluctuation of the random variable TH1 has a greater
impact on the FPS.,e other three random variables did not
exhibit a very significant level, only that their small fluc-
tuations had little effect on the FPS. Because of space, the
interaction among random variables cannot be given.
,rough analysis, it is found that the interaction among
random variables in response surface function is relatively
low, which indicates that the interaction between random
variables has less influence on response. By comparing the
results of the first and second significance of random var-
iables, it can be seen that the second significance of TH1
decreases and the second significance of TH2, F1, and F2
increases, indicating that the selection of random variables is
reasonable. In summary, the response surface function can
be used for fatigue reliability analysis of subsequent motor
hanger.

4.3. Determination of the FPS Distribution Type and Bayesian
Updating. For equation (13), the uncertainty of the calcu-
lated lifetime N results in three different states of the
structure. As the main factor affecting the calculated lifetime
N, accurate probability distribution of the FPS is the key to
improve the accuracy of reliability analysis. For this reason,
the FPS under random parameter fluctuation is obtained by
using Monte Carlo method for 10000 calculations based on
equation (17). ,e FPS is fitted by MATLAB 2015b to de-
termine its probability distribution characteristics, as shown
in Figure 7. From Figure 7, it can be seen that the FPS obeys
lognormal distribution, and the fitting curve has high ac-
curacy, R2 � 0.99349. In order to accurately estimate the
fatigue reliability of the structure, simulation data are used as
real measurement data for Bayesian updating because there
is no experimental data in the design process. ,e prior
distribution data of the FPS are obtained from the experi-
mental data of similar products. ,e data of prior distri-
bution obey the lognormal distribution of N(4.945, 0.041),
and the real measured data obey the lognormal distribution
of N(4.962, 0.0425). Two kinds of distribution data are
substituted into equations (2)–(7) to obtain the probability
and statistical parameters of the FPS after Bayesian updating.
Figure 8 plots the probability distribution of the FPS before
and after Bayesian updating. It can be seen from Figure 8
that the mean of FPS value after the Bayesian updating is
slightly smaller than that of the FPS obtained by the actual
engineering, and the corresponding variance is also reduced.

a01
a03

n
r03

r01

r02

a02 a04

n

Figure 5: Load direction of motor hanger.

X

Y

Z 300

Figure 4: Finite element model of motor hanger.

–4
.7

1

9.
06

22
.8

3

36
.6

50
.3

7

64
.1

4

77
.9

1

91
.6

9

10
5.

46

11
9.

23

Figure 6: FPS plot of motor hanger.
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,is proves that the Bayesian updating method not only
reduces the uncertainty of FPS, but also reduces the dis-
tortion and uncertainty of the detected data. In the design
sense, Bayesian updating reduces the uncertainty of the
simulation results.

4.4. Fatigue Reliability Analysis Based on Subset Simulation.
,e FPS of the motor hanger after Bayesian updating obeys
the lognormal distribution of N(4.9451, 0.0409). ,e

symmetrical cyclic load spectrum specified in the EN13749
standard is selected, and the stress ratio is R� -1. ,e P-S-N
curves with survival rates of 95% and 99% are selected,
respectively, and the design lifetime is 10 million cycles.
According to equations (11)–(13), the fatigue failure prob-
ability of the motor hanger is calculated by SS. Figures 9 and
10 display the CDF curves for fatigue failure probabilities at
different survival rates, respectively. ,e estimated fatigue
failure probabilities and the number of required samples are
listed in Table 5.

Table 4: ANOVA for response surface S1 quadratic model.

Source model Sum of squares Df Mean square F value P-value
Model 567.09 14 40.51 199.31 <0.0001 Significant
TH1 391.63 1 391.63 1927.02 <0.0001
TH2 0.065 1 0.065 0.32 0.5833
F1 0.10 1 0.10 0.50 0.4948
F2 1.36 1 1.36 6.69 0.0271
. . . . . . . . . . . . . . . . . .

TH12 0.26 1 0.26 1.30 0.2805
TH22 0.76 1 0.76 3.74 0.0820
F2
1 1.28 1 1.28 6.31 0.0308

F2
2 1.29 1 1.29 6.34 0.0305

Residual 2.03 10 0.20
Lack of fit 2.03 5 0.41
Pure error 0.000 5 0.000
Cor total 569.12 25

Table 2: Statistical characteristic of random variables.

Design parameters Sign Unit Lower limit Mean value Upper limit
Steel plate thickness 1 TH1 mm 7.7 8.0 8.3
Steel plate thickness 2 TH2 mm 9.7 10.0 10.3
Vertical load 1 F1 N 23040.0 25600.0 28160.0
Vertical load 2 F2 N 23040.0 25600.0 28160.0

Table 3: Statistical characteristic of random variables.

Experiment number
Factors Response

TH1 (mm) TH2 (mm) F1 (N) F2 (N) S1 (MPa)
1 7.967 10.300 25625.600 26880.000 143.48
2 7.916 9.700 23040.000 25472.000 144.88
3 7.700 9.700 28160.000 23040.000 149.18
4 7.925 10.300 25676.800 23040.000 147.27
5 8.300 9.700 23961.600 23040.000 137.75
6 7.979 9.967 23756.800 28160.000 143.39
7 7.700 10.300 23040.000 28160.000 148.68
8 8.300 10.300 23040.000 23040.000 137.42
9 8.060 9.700 26368.000 24925.400 142.13
10 8.300 10.300 28160.000 28160.000 137.42
. . . . . . . . . . . . . . . . . .

18 7.916 9.988 28160.000 28160.000 144.68
19 7.937 10.021 28160.000 24003.000 144.25
20 8.300 9.700 23040.000 28160.000 137.75
21 8.300 10.186 28160.000 23040.000 137.49
22 8.300 10.063 25011.200 26137.600 137.56
23 7.700 10.300 28160.000 25651.200 148.68
24 7.700 10.300 23040.000 28160.000 148.68
25 8.300 10.300 28160.000 28160.000 137.42
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It can be seen from Figures 9 and 10 that the overall
fatigue failure probability with survival rate of 99% is higher
than the survival rate of 95%, indicating that the selection of
the material P-S-N curve has a direct impact on the fatigue
reliability analysis results of the structure, and should be paid
attention to during the design process. ,en, Figures 9 and
10 plot the CDF for P0 � 0.15, 0.20, 0.25, and 0.30. ,e
purpose of this comparison is to see how SS behaves dif-
ferently by adopting different values of P0 for the fatigue
reliability analysis of motor hanger; P0 is the conditional
failure probability of subset simulation. In Figure 9, the CDF
plot with P0 � 0.3 significantly deviates from the rest.
However, the CDF plot with P0 � 0.1 significantly deviates

from the rest. It can be seen that the selection of P0 is very
important for estimating the fatigue failure probability.
Although Zuev et al. [30] proposed the values of P0 selected
from the interval [0.1, 0.3] would produce similar efficiency
with similar accuracy, the accuracy is still different for
different subjects. For the fatigue reliability analysis of the
motor hanger, when the survival rate is 95%, the failure
probability obtained by Monte Carlo simulation is 0.0015;
P0 � 0.10, 0.15, 0.20, and 0.25 are suitable for reliability
analysis, while P0 � 0.30 is not proper. Similarly, when the
survival rate is 99%, the failure probability obtained by
Monte Carlo simulation is 0.1880; P0 � 0.15, 0.20, and 0.25
are suitable for reliability analysis, while P0 � 0.1 and 0.30 are

f(x
)

Before bayesian updating
After bayesian updating

130 140 150 160 170120
S1 (MPa)

0

0.01

0.02

0.03

0.04
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Figure 8: Comparison of probability and statistics characteristics
of FPS.
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not proper. For the calculation of Monte Carlo failure
probability, 10 000 sample points are used, while the SS
method is only 4%–7% of Monte Carlo, which greatly im-
proves the calculation efficiency.

5. Conclusions

,is study presents a novel fatigue reliability analysis method
based on Bayesian updating and subset simulation to improve
the accuracy of structural fatigue performance evaluation at
the design stage. In order to reduce the uncertainty of fatigue
lifetime calculated by simulation analysis, the Bayesian
method is used to update the probability and statistical pa-
rameters of the FPS for the motor hanger. Compared with the
original data, the mean and variance of the FPS after the
update are reduced, which improves the robustness of the
data. Meanwhile, the SS method is adopted to calculate the
fatigue failure probability under different survival rates and
different conditions failure probabilities, and the CDF curve
of fatigue failure probability is given. ,e fatigue failure
probability of motor hanger under P-S-N curve with 95%
survival rate is P0 � 0.1 Pf � 0.005, P0 � 0.15 Pf � 0.0055,
P0 � 0.20 Pf � 0.005, P0 � 0.25 Pf � 0.005. ,e fatigue failure
probability of motor hanger under P-S-N curve with 99%
survival rate is P0 � 0.15 Pf � 0.15, P0 � 0.20, Pf � 0.1950,
P0 � 0.25 Pf � 0.1950. ,is not only proves the influence of
the P-S-N curve with different survival rates on the fatigue

failure probability, but also verifies that the reasonable se-
lection of conditional failure probability is helpful to improve
the accuracy of the SS. In a word, the proposed method helps
the design stage to more accurately assess whether the fatigue
lifetime of the structure meets the standard requirements. At
the same time, it is also applicable to the fatigue reliability
analysis of other large complex structures.
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Table 5: Estimated failure probabilities and the number of samples with different p0.

Survival rate P (%) Conditional failure probability p0 0.10 0.15 0.20 0.25 0.30

95 Failure probability Pf 0.005 0.0055 0.005 0.005 0.0086
Number of samples 560 540 680 650 620

99 Failure probability Pf 0.1 0.15 0.1950 0.1950 0.2340
Number of samples 380 370 360 350 340
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