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In this paper, the effect of the fiber/matrix interface properties on the tensile and fatigue behavior of 2D woven SiC/SiC ceramic-
matrix composites (CMCs) is investigated. 'e relationships between the interface parameters of the fiber/matrix interface
debonding energy and interface frictional shear stress in the interface debonding region and the composite tensile and fatigue
damage parameters of first matrix cracking stress, matrix cracking density, and fatigue hysteresis-based damage parameters are
established. 'e effects of the fiber/matrix interface properties on the first matrix cracking stress, matrix cracking evolution, first
and complete interface debonding stress, fatigue hysteresis dissipated energy, hysteresis modulus, and hysteresis width are
analyzed. 'e experimental first matrix cracking stress, matrix cracking evolution, and fatigue hysteresis loops of SiC/SiC
composites are predicted using different interface properties.

1. Introduction

Ceramic matrix composites (CMCs) are widely used in the
high-temperature field as a light and high-performance
structural composite material. High-quality and high-tem-
perature properties make it possible to replace superalloy
materials as one of the candidate materials for aero-engines,
especially for aero-engine core engines. In the research and
application of CMCs, the existing mature aero-engines are
fully utilized for assessment and verification from low
temperature to high temperature, stator components to
rotor components [1–6]. Firstly, the stator parts with me-
dium temperature (700°C–1000°C) and medium load (less
than 120MPa) were developed, i.e., exhaust nozzle flaps and
sealings; then the medium stator parts with high tempera-
ture (1000°C∼1300°C) were developed, such as combustion
chamber flame tube, flame stabilizer, turbine guide vane, and
turbine outer ring; and the stator or rotor parts with higher
load (more than 120MPa), such as high-pressure turbine
rotor and stator, have been developed [7–9].'e commercial
aero-engines require low fuel consumption, low noise, and
low NOx emissions, so new requirements are put forward for
pressure ratio and turbine front temperature. CMC has the

characteristics of light weight, high-temperature resistance,
corrosion resistance, and impact resistance, so it is expected
to be used in combustion chambers, turbines, exhaust
nozzles, and other components of the next generation of
commercial aero-engines [10–12].

For fiber-reinforced CMCs, the mechanical properties
depend tremendously on the load transfer at the fiber/matrix
interface [13, 14]. 'e interface properties of the fiber/matrix
interface shear stress and the interface debonding energy affect
the tensile and fatigue behavior of fiber-reinforced CMCs
[15–20]. Vagaggini et al. [21] developed an approach to es-
tablish the relationship between the interface properties and
the hysteresis loops of fiber-reinforced CMCs and divided the
interface debonding energy into small and large, which affects
the shape of the hysteresis loops upon unloading and
reloading. Domergue et al. [22] measured the interface
properties of unidirectional SiC/CAS and SiC/SiC composites
using the hysteresis loops, and the interface shear stress of SiC/
SiC composite is much higher than that of SiC/CAS com-
posite, leading to unsaturation of matrix cracking of SiC/SiC
composite till tensile fracture. Curtin et al. [23] predicted the
tensile stress-strain behavior of mini-SiC/SiC composite
considering matrix cracking evolution, fiber damage, and
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ultimate failure. It was found that the matrix cracking stress
affects the brittle and tough behavior of fiber-reinforced
CMCs. Carrere et al. [24] investigated the influence of the
interphase on the matrix cracking deflection in mini-SiC/C/
SiC composite with a pyrocarbon interphase.'e deflection of
the matrix cracking depends on the interface bond strength
between the fiber and the matrix. Xia and Curtin [25] in-
vestigated the high interface shear stress on the tensile strength
of fiber-reinforced CMCs considering the stress concentration
at the interface debonding tip.When the bond strength is high
and the fiber/matrix interface frictional shear stress in the
debonding region is low, the stress concentration occurs near
the interface debonding tip. Sauder et al. [26] investigated the
influence of the interface characteristics on the tensile and
loading/unloading behavior of two different mini-SiC/SiC

composites. 'e interphase thickness and the fiber surface
roughness affect the fiber/matrix interface shear stress at the
debonding region, and then the tensile behavior of fiber-
reinforced CMCs. Under cyclic loading, the fiber/matrix in-
terface shear stress decreases with applied cycles, which de-
pends on the peak stress, stress ratio, loading frequency,
temperature, and environment [27–35].

In this paper, the effect of the fiber/matrix interface
properties on the tensile and fatigue behavior of 2D woven
SiC/SiC composites is investigated. 'e relationships between
the interface properties and the composite tensile and fatigue
damage parameters are established. 'e effects of the interface
properties on the first matrix cracking stress, matrix cracking
evolution, first and complete interface debonding stress, fa-
tigue hysteresis dissipated energy, fatigue hysteresis modulus,
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Figure 1: (a) 'e first matrix cracking stress versus the interface shear stress curves; (b) the interface debonding length versus the interface
shear stress curves; (c) the broken fibers fraction versus the interface shear stress curves for different fiber volume.
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and fatigue hysteresis width are analyzed. 'e experimental
tensile and fatigue behavior of SiC/SiC composites is predicted
for different interface properties.

2. Theoretical Analysis

In the present analysis, the fiber failure is considered in the
analysis of the first matrix cracking stress, matrix cracking
density, interface debonding stress, and the fatigue hyster-
esis-based damage parameters.

2.1. First Matrix Cracking Stress. For the first matrix cracking
of fiber-reinforced CMCs, the energy balance relationship can
be determined as

ασ2 + βσ + c � 0, (1)

where
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Figure 2: (a) 'e first matrix cracking stress versus the interface debonding energy curves; (b) the interface debonding length versus the
interface debonding energy curves; (c) the broken fibers fraction versus the interface debonding energy curves for different fiber volume.
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where ld denotes the fiber/matrix interface debonding
length; Ef, Em, and Ec denote the fiber, matrix, and composite
elastic modulus, respectively; Vf and Vm denote the fiber and
the matrix volume, respectively; rf denotes the fiber radius;
ζm and ζd denote the matrix fracture energy and the in-
terface debonding energy, respectively; τi denotes the fiber/
matrix interface shear stress in the debonding region; and T
denotes the fiber intact stress:

σ
Vf

� T
σc

T
􏼒 􏼓

m+1
1 − exp −

T

σc

􏼠 􏼡

m+1
⎡⎣ ⎤⎦

⎧⎨

⎩

⎫⎬

⎭, (3)

where σc denotes the fiber characteristic strength and m
denotes the fiber Weibull modulus.

2.2. Matrix Cracking Density. 'e energy balance relation-
ship to evaluate the matrix cracking evolution is given by

Um σ > σmc, lc, ld( 􏼁 � Ucrm σmc, l0( 􏼁, (4)

where
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Figure 3: (a)'ematrix cracking density versus the applied stress curves; (b) the interface debonding length versus the applied stress curves;
(c) the broken fibers fraction versus the applied stress curves for different interface shear stress.
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whereAm is the cross-sectional area of matrix in the unit cell;
k denotes the critical matrix strain energy parameter; l0 is the
initial matrix crack spacing; and σmocr denotes the matrix
axial stress in the interface bonded region at the first matrix
cracking stress.

2.3. FatigueHysteresis-BasedDamageParameters. 'e initial
fiber/matrix interface debonding stress σd and the interface
complete debonding stress σb can be obtained as
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'e fatigue hysteresis dissipated energy Ue can be given
by
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where TU and TR denote the intact fiber stress upon
unloading and reloading, respectively.

'e fatigue hysteresis width ∆ε can be given by

Δε � εunloading
σmin + σmax

2
􏼒 􏼓 − εreloading

σmin + σmax

2
􏼒 􏼓.

(9)
'e fatigue hysteresis modulus E can be obtained as
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E �
σmax − σmin

εmax σmax( 􏼁 − εmin σmin( 􏼁
. (10)

3. Results and Discussion

'e effects of fiber/matrix interface properties on the tensile
and fatigue damage are analyzed. 'e SiC/SiC composite is
used to the case analysis, and the material properties are
given by Vf � 15%, Ef � 400GPa, Em � 350GPa, rf � 6 μm,
αf � 4.5×10− 6/°C, αm � 4.6×10− 6/°C, ∆T� − 1000°C, ζm � 6 J/
m2, ζd � 1.2 J/m2, τi � 30MPa, σc � 3.0GPa, and m� 5.

3.1. Effect of the Interface Properties on the First Matrix
Cracking Stress. 'e first matrix cracking stress, the fiber/
matrix interface debonding length, and broken fibers frac-
tion versus the fiber/matrix interface shear stress and in-
terface debonding energy curves for different fiber volume
are shown in Figures 1 and 2. When the fiber/matrix in-
terface shear stress and interface debonding energy increase,
the first matrix cracking stress increases, the fiber/matrix
interface debonding length decreases, and the broken fibers
fraction increases.

When the fiber volume is Vf � 15%, the first matrix
cracking stress increases from σmc � 132MPa at τi � 10MPa
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Figure 4: (a)'ematrix cracking density versus the applied stress curves; (b) the interface debonding length versus the applied stress curves;
(c) the broken fibers fraction versus the applied stress curves for different interface deboned energy.
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to σmc � 180MPa at τi � 50MPa and from σmc � 143MPa at
ζd/ζm � 0.1 to σmc � 242MPa at ζd/ζm � 0.9; the fiber/matrix
interface debonding length decreases from ld/rf � 10.8 at
τi � 10MPa to ld/rf � 4.9 at τi � 50MPa and from ld/rf � 7.2 at
ζd/ζm � 0.1 to ld/rf � 4.7 at ζd/ζm � 0.9; and the broken fibers
fraction increases from q� 0.06% at τi � 10MPa to q� 0.42%
at τi � 50MPa and from q� 0.1% at ζd/ζm � 0.1 to q� 2.6% at
ζd/ζm � 0.9.

When the fiber volume is Vf � 25%, the first matrix
cracking stress increases from σmc � 217MPa at τi � 10MPa
to σmc � 286MPa at τi � 50MPa and from σmc � 224MPa at
ζd/ζm � 0.1 to σmc � 410MPa at ζd/ζm � 0.9; the fiber/matrix
interface debonding length decreases from ld/rf � 7.5 at
τi � 10MPa to ld/rf � 3.5 at τi � 50MPa and from ld/rf � 5.1 at

ζd/ζm � 0.1 to ld/rf � 3.2 at ζd/ζm � 0.9; and the broken fibers
fraction increases from q� 0.06% at τi � 10MPa to q� 0.31%
at τi � 50MPa and from q� 0.07% at ζd/ζm � 0.1 to q� 2.9%
at ζd/ζm � 0.9.

3.2. Effect of the Interface Properties on the Matrix Cracking
Density. 'e matrix cracking density, fiber/matrix interface
debonding length, and broken fibers fraction versus the
applied stress curves for different fiber/matrix interface
shear stress and interface debonding energy are shown in
Figures 3 and 4. When the fiber/matrix interface shear stress
increases, the matrix cracking density, saturation matrix
cracking stress, and the interface debonding length increase;
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Figure 5: (a) 'e initial interface debonding stress and complete interface debonding stress versus the interface shear stress curves; (b) the
fatigue hysteresis dissipated energy versus the interface shear stress curves; (c) the fatigue hysteresis modulus versus the interface shear stress
curves; (d) the fatigue hysteresis width versus the interface shear stress curves for different fiber volume.
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and when the interface debonding energy increases, the
matrix cracking density decreases, and the saturation matrix
cracking stress increases.

When the fiber/matrix interface shear stress is
τi � 20MPa, the matrix cracking density increases from
λ� 0.09/mm at σmc � 155MPa to λ� 2.5/mm at
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Figure 6: (a) 'e initial interface debonding stress and complete interface debonding stress versus the interface debonding energy curves;
(b) the fatigue hysteresis dissipated energy versus the interface debonding energy curves; (c) the fatigue hysteresis modulus versus the
interface debonding energy curves; (d) the fatigue hysteresis width versus the interface debonding energy curves for different fiber volume.

Table 1: Material properties of 2D SiC/SiC composites.

Items Hi-Nicalon™ SiC/SiC Sylramic™ SiC/SiC Tyranno™ SiC/SiC
rf (μm) 7 5 5.5
Vf (%) 14–18 12–21 29
Ef (GPa) 270 310 170
Em (GPa) 350 350 350
αf (10− 6/°C) 3.5 5.4 4
αm (10− 6/°C) 4.6 4.6 4.6
σc (GPa) 3 2.6 1.9
m 5 5 5
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σsat � 230MPa; the fiber/matrix interface debonding length
increases from 2ld/lc � 0.9% at σmc � 155MPa to 2ld/
lc � 60.8% at σsat � 230MPa; and the broken fibers fraction
increases from q� 0.169% at σmc � 155MPa to q� 2% at
σsat � 230MPa. When the fiber/matrix interface shear stress
is τi � 40MPa, the matrix cracking density increases from
λ� 0.13/mm at σmc � 178MPa to λ� 3.9/mm at
σsat � 267MPa; the fiber/matrix interface debonding length
increases from 2ld/lc � 0.96% at σmc � 178MPa to 2ld/
lc � 63.4% at σsat � 267MPa; and the broken fibers fraction
increases from q� 0.38% at σmc � 178MPa to q� 4.9% at
σsat � 267MPa.

When the fiber/matrix interface debonding energy is ζd/
ζm � 0.1, the matrix cracking density increases from λ� 0.1/
mm at σmc � 149MPa to λ� 3.5/mm at σsat � 240MPa; the
fiber/matrix interface debonding length increases from 2ld/
lc � 1% at σmc � 149MPa to 2ld/lc � 72% at σsat � 240MPa;
and the broken fibers fraction increases from q� 0.1% at
σmc � 149MPa to q� 2.4% at σsat � 240MPa. When the fiber/
matrix interface debonding energy is ζd/ζm � 0.5, the matrix
cracking density increases from λ� 0.13/mm at
σmc � 208MPa to λ� 2.7/mm at σsat � 280MPa; the fiber/
matrix interface debonding length increases from 2ld/
lc � 0.8% at σmc � 208MPa to 2ld/lc � 47% at σsat � 280MPa;
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Figure 7: (a) 'e experimental and predicted first matrix cracking stress versus the fiber volume curves; (b) the interface debonding length
versus the fiber volume curves; (c) the broken fibers fraction versus the fiber volume curves of 2D Hi-Nicalon™ SiC/SiC composite.
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and the broken fibers fraction increases from q� 1% at
σmc � 208MPa to q� 7% at σsat � 280MPa.

3.3. Effect of the Interface Properties on the Fatigue Hysteresis-
Based Damage Parameters. 'e initial fiber/matrix inter-
face debonding stress and the complete interface
debonding stress, fatigue hysteresis dissipated energy,
fatigue hysteresis modulus, and fatigue hysteresis width
versus the fiber/matrix interface shear stress and interface
debonding energy curves for different fiber volume are
shown in Figures 5 and 6. When the fiber/matrix interface
shear stress and the interface debonding energy increase,
the initial interface debonding stress and the complete
interface debonding stress increase, the fatigue hysteresis

dissipated energy decreases, the fatigue hysteresis mod-
ulus increases, and the fatigue hysteresis width decreases.

When the fiber volume is Vf � 15%, the initial fiber/
matrix interface debonding stress increases from
σd � 95MPa at τi � 20MPa to σd � 98MPa at τi � 40MPa and
from σd � 69MPa at ζd/ζm � 0.1 to σd � 201MPa at ζd/
ζm � 0.9; the complete fiber/matrix interface debonding
stress increases from σb � 215MPa at τi � 20MPa to
σb � 338MPa at τi � 40MPa and from σb � 250MPa at ζd/
ζm � 0.1 to σb � 381MPa at ζd/ζm � 0.9; when the fatigue peak
stress is σmax � 150MPa, the fatigue hysteresis dissipated
energy decreases from Ue � 29.1 kJ/m3 at τi � 20MPa to
Ue � 15.4 kJ/m3 at τi � 40MPa; the fatigue hysteresis mod-
ulus increases from E� 143GPa at τi � 20MPa to
E� 202GPa at τi � 40MPa; and the fatigue hysteresis width

50

100

150

200

250

St
re

ss
 (M

Pa
)

0.10 0.12 0.14 0.16 0.18 0.20 0.22 0.24 0.260.08
Fiber volume

Experimental data
τi = 5MPa
τi = 10MPa

τi = 20MPa
τi = 25MPa

(a)

0.08 0.10 0.12 0.14 0.16 0.18 0.20 0.22 0.24 0.26
10

20

30

40

50

60

70

80

ld
/r
f

Fiber volume

τi = 5MPa
τi = 10MPa

τi = 20MPa
τi = 25MPa

(b)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Br
ok

en
 fi

be
rs

 fr
ac

tio
n 

(%
)

τi = 5MPa
τi = 10MPa

τi = 20MPa
τi = 25MPa

0.10 0.12 0.14 0.16 0.18 0.20 0.22 0.24 0.260.08
Fiber volume

(c)

Figure 8: (a) 'e experimental and predicted first matrix cracking stress versus the fiber volume curves; (b) the interface debonding length
versus the fiber volume curves; (c) the broken fibers fraction versus the fiber volume curves of 2D Sylramic™ SiC/SiC composite.
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decreases from Δε� 0.03% at τi � 20MPa to Δε� 0.015% at
τi � 40MPa; when the fatigue peak stress is σmax � 250MPa,
the fatigue hysteresis dissipated energy decreases from
Ue � 103.8 kJ/m3 at ζd/ζm � 0.3 to Ue � 49.3 kJ/m3 at ζd/
ζm � 0.9; the fatigue hysteresis modulus increases from
E� 130GPa at ζd/ζm � 0.3 to E� 155GPa at ζd/ζm � 0.9; and
the fatigue hysteresis width decreases from Δε� 0.06% at ζd/
ζm � 0.3 to Δε� 0.028% at ζd/ζm � 0.9.

When the fiber volume is Vf � 20%, the initial fiber/
matrix interface debonding stress increases from
σd � 131MPa at τi � 20MPa to σd � 135MPa at τi � 40MPa
and from σd � 95MPa at ζd/ζm � 0.1 to σd � 277MPa at ζd/
ζm � 0.9; the complete fiber/matrix interface debonding

stress increases from σb � 303MPa at τi � 20MPa to
σb � 477MPa at τi � 40MPa and from σb � 352MPa at ζd/
ζm � 0.1 to σb � 534MPa at ζd/ζm � 0.9; when the fatigue peak
stress is σmax � 150MPa, the fatigue hysteresis dissipated
energy decreases from Ue � 3.9 kJ/m3 at τi � 20MPa to
Ue � 2.1 kJ/m3 at τi � 40MPa; the fatigue hysteresis modulus
increases from E� 251GPa at τi � 20MPa to E� 289GPa at
τi � 40MPa; and the fatigue hysteresis width decreases from
Δε� 0.003% at τi � 20MPa to Δε� 0.0017% at τi � 40MPa;
when the fatigue peak stress is σmax � 300MPa, the fatigue
hysteresis dissipated energy decreases from Ue � 86.7 kJ/m3

at ζd/ζm � 0.3 to Ue � 11.5 kJ/m3 at ζd/ζm � 0.9; the fatigue
hysteresis modulus increases from E� 177GPa at ζd/ζm � 0.3
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Figure 9: (a) 'e experimental and predicted matrix cracking density versus the applied stress curves; (b) the interface debonding length
versus the applied stress curves; (c) the broken fibers fraction versus the applied stress curves of 2D Hi-Nicalon™ SiC/SiC composite.
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to E� 251GPa at ζd/ζm � 0.9; and the fatigue hysteresis width
decreases from Δε� 0.043% at ζd/ζm � 0.3 to Δε� 0.004% at
ζd/ζm � 0.9.

4. Experimental Comparisons

Morscher et al. [36–38] performed the experimental in-
vestigations on the first matrix cracking stress, matrix
cracking evolution, and fatigue hysteresis loops of 2D SiC/
SiC composites. 'e first matrix cracking stress, matrix
cracking density, and the fatigue hysteresis loops of 2D Hi-
Nicalon™, Sylramic™, and Tyranno™ SiC/SiC composites
are predicted.'e material properties of SiC/SiC composites
are listed in Table 1.

4.1. First Matrix Cracking Stress. 'e experimental and
predicted first matrix cracking stress versus the fiber
volume curves of 2D Hi-Nicalon™ SiC/SiC composite for
different fiber/matrix interface shear stress curves is shown
in Figure 7. 'e fiber/matrix interface shear stress is in the
range of τi � 10–40MPa at the interface debonding energy
of ζd/ζm � 0.2. 'e first matrix cracking stress increases
with the fiber volume and the interface shear stress; the
interface debonding length decreases with the fiber volume
and increases with the interface shear stress; and the
broken fibers fraction decreases with the fiber volume and
increases the interface shear stress.

'e experimental and predicted first matrix cracking
stress versus the fiber volume curves of 2D Sylramic™ SiC/
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Figure 10: (a) 'e experimental and predicted matrix cracking density versus the applied stress curves; (b) the interface debonding length
versus the applied stress curves; (c) the broken fibers fraction versus the applied stress curves of 2D Sylramic™ SiC/SiC composite.
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Figure 11: 'e experimental and predicted hysteresis loops of 2D Sylramic™ SiC/SiC composite under (a) the fatigue peak stress of σmax� 200MPa
for different interface shear stress; (b) the fatigue peak stress of σmax� 200MPa for different interface debonding energy; (c) the fatigue peak stress of
σmax� 240MPa for different interface shear stress; (d) the fatigue peak stress of σmax� 240MPa for different interface debonding energy; (e) the fatigue
peak stress of σmax� 275MPa for different interface shear stress; (f) the fatigue peak stress of σmax� 275MPa for different interface debonding energy.
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SiC composite for different interface shear stress curves is
shown in Figure 8.'e interface shear stress is in the range of
τi � 5–25MPa at the interface debonding energy of ζd/
ζm � 0.1. 'e first matrix cracking stress increases with the
fiber volume and the interface shear stress; the interface
debonding length decreases with the fiber volume and the
interface shear stress; and the broken fibers fraction de-
creases the fiber volume and increases with the interface
shear stress.

4.2. Matrix Cracking Density. 'e experimental and pre-
dicted matrix cracking density versus the applied stress
curves for different interface shear stress of 2D Hi-Nicalon™
SiC/SiC composite is shown in Figure 9. When the interface

shear stress is low, the first matrix cracking stress, matrix
cracking saturation stress, and saturation matrix cracking
density are low. For the initial stage of matrix cracking
evolution, the predicted result using low interface shear
stress of τi � 20MPa agreed with experimental data; how-
ever, for the stage of matrix cracking evolution at high stress,
the predicted results using high interface shear stress of
τi � 50MPa agreed with experimental data. During matrix
cracking evolution, the fiber/matrix interface debonding
length and broken fibers fraction increase.

'e experimental and predicted matrix cracking density
versus the applied stress curves for different interface shear
stress of 2D Sylramic™ SiC/SiC composite is shown in
Figure 10. For the initial stage of matrix cracking evolution,
the predicted result using the low interface shear stress of
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Figure 12: 'e experimental and predicted fatigue hysteresis loops of 2D Tyranno™ SiC/SiC composite under (a) the fatigue peak stress of
σmax� 120MPa for different interface shear stress; (b) the fatigue peak stress of σmax � 120MPa for different interface debonding energy; (c) the
fatigue peak stress of σmax� 145MPa for different interface shear stress; (d) the fatigue peak stress of σmax� 145MPa for different interface
debonding energy.
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τi � 10 and 20MPa agreed with experimental data; however,
for the stage of matrix cracking evolution at high stress, the
predicted results using the high interface shear stress of
τi � 50MPa agreed with experimental data. Under tensile
loading, the interface debonding length increases after
saturation of matrix cracking, and the fiber failure occurs at
first matrix cracking stress.

4.3. Fatigue Hysteresis-Based Damage Parameters. 'e ex-
perimental and predicted hysteresis loops of 2D Sylramic™
SiC/SiC composite under the fatigue peak stresses of

σmax � 200, 240, and 275MPa for different interface
properties are shown in Figure 11. When the fatigue peak
stress is σmax � 200, 240, and 275MPa, the predicted fa-
tigue hysteresis loops for the interface shear stress of
τi � 30, 40, and 50MPa and the interface debonding energy
of ζd/ζm � 0.1, 0.2, and 0.3 are shown in Figure 11. 'e
predicted results using the interface shear stress of
τi � 50MPa and ζd/ζm � 0.3 agreed with the experimental
hysteresis loops.

'e experimental and predicted hysteresis loops of 2D
Tyranno™ SiC/SiC composite under the fatigue peak stress
of σmax � 120 and 145MPa for different interface properties
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Figure 13: 'e experimental and predicted fatigue hysteresis loops of 2D Hi-Nicalon™ SiC/SiC composite under (a) the fatigue peak stress
of σmax � 140MPa for N� 13000 cycles and (b) the fatigue peak stress of σmax � 150MPa for N� 27000 cycles.
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Figure 14: 'e experimental and predicted fatigue hysteresis loops of 2D Tyranno™ SiC/SiC composite under (a) the fatigue peak stress of
σmax � 230MPa for N� 16000 cycles and (b) the fatigue peak stress of σmax � 240MPa for N� 85 cycles.
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are shown in Figure 12. When the fatigue peak stress is
σmax � 120 and 145MPa, the predicted fatigue hysteresis
loops for the interface shear stress of τi � 20, 30, and 40MPa
and the interface debonding energy of ζd/ζm � 0.1, 0.2, and
0.3 is shown in Figure 12. 'e predicted results using the
interface shear stress of τi � 30MPa and ζd/ζm � 0.1 agreed
with the experimental hysteresis loops.

'e fatigue hysteresis loops of 2D Hi-Nicalon™ SiC/SiC
composite under the fatigue peak stress of σmax � 140 and
150MPa are shown in Figure 13. When the fatigue peak
stress is σmax � 140MPa, the experimental and predicted
fatigue hysteresis loops using the interface shear stress of
τi � 50, 60, 70, and 80MPa are shown in Figure 13(a), in
which the predicted fatigue hysteresis loops with τi � 50MPa
agreed with experimental data; when the fatigue peak stress
is σmax � 150MPa, the experimental and predicted fatigue
hysteresis loops using the interface shear stress of τi � 30, 40,
and 50MPa are shown in Figure 13(b), in which the pre-
dicted fatigue hysteresis loops with τi � 40MPa agreed with
experimental data. Under cyclic fatigue loading, the interface
wear leads to the degradation of the interface shear stress.

'e fatigue hysteresis loops of 2D Tyranno™ SiC/SiC
composite under the fatigue peak stress of σmax � 230 and
240MPa are shown in Figure 14. When the fatigue peak
stress is σmax � 230MPa, the experimental and predicted
fatigue hysteresis loops using the interface shear stress of
τi � 40, 50, and 60MPa are shown in Figure 14(a), in which
the predicted fatigue hysteresis loops with τi � 50MPa
agreed with experimental data; when the fatigue peak stress
is σmax � 240MPa, the experimental and predicted fatigue
hysteresis loops using the interface shear stress of τi � 20, 30,
and 40MPa are shown in Figure 14(b), in which the pre-
dicted hysteresis loops with τi � 30MPa agreed with ex-
perimental data. Under repeated loading/unloading, the
interface shear stress decreases due to the interface wear.

5. Conclusions

In this paper, the effect of the fiber/matrix interface prop-
erties on the tensile and fatigue behavior of 2D SiC/SiC
composites was investigated. 'e relationships between the
interface properties and the composite tensile and fatigue
damage were established. 'e effects of the fiber/matrix
interface properties on the first matrix cracking stress,
matrix cracking evolution, first and complete interface
debonding stress, fatigue hysteresis dissipated energy, fa-
tigue hysteresis modulus, and fatigue hysteresis width were
analyzed. 'e experimental first matrix cracking stress,
matrix cracking evolution, and fatigue hysteresis loops of 2D
SiC/SiC composites were predicted using different interface
properties:

(1) When the interface shear stress increases, the first
matrix cracking stress increases and the broken fibers
fraction increases; the matrix cracking density, the
saturation matrix cracking stress, and the interface
debonding length increase; the initial interface
debonding stress and the complete interface
debonding stress increase, the hysteresis dissipated

energy decreases, the hysteresis modulus increases,
and the hysteresis width decreases.

(2) When the interface debonding energy increases, the
first matrix cracking stress increases and the broken
fibers fraction increases; the matrix cracking density
decreases and the saturation matrix cracking stress
increases; and the initial interface debonding stress
and the complete interface debonding stress in-
crease, the hysteresis dissipated energy decreases, the
hysteresis modulus increases, and the hysteresis
width decreases.
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