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Deformation is one important failure mode of turbine blades. ,e quality of a model seriously influences the reliability opti-
mization of turbine blades in turbo machines. To improve the reliability optimization of turbine blades, this paper proposes a
novel machine learning-based reliability optimization approach, named improved support vector regression (SR) model (ISRM)
method, by fusing artificial bee colony (ABC), traditional SR model, and multipopulation genetic algorithm (MPGA). In this
proposed method, the ABC algorithm was applied to find the optimal parameters in the SR model to establish accurate ISRM,
following the thought of the surrogate model method and the randomness of constraints. ,en the reliability optimization model
and procedure with the ISRM method were resolved by the MPGA. Regarding many design parameters (i.e., rotor speed,
temperature, and aerodynamic pressure), design objective (i.e., blade deformation), and the randomness constraints of reliability
degree and boundary conditions, we performed the reliability optimization of a turbine blade deformation. From the optimization
results, we find that the turbine blade deformation is reduced by 0.09329mm, and the ISRM learning method can improve the
reliability optimization design of complex structures with the emphasis on modeling precision and optimization efficiency. ,e
works of this paper provide a machine learning-based reliability optimization approach for the reliability optimization of complex
structures and enrich and develop mechanical reliability theory and methods.

1. Introduction

,e reliability optimization design of mechanical structures
is to find the optimal design parameters by establishing the
reliability optimization model, subject to the related pa-
rameters (i.e., material properties and complex loads), re-
liability index, and the technical and economic requirements
[1]. ,e reliability optimization of complex structures
generally involves failure mode, such as stress, strain, and
deformation, and has the properties of nonlinearity and
randomness [2]. Herein, structural deformation is a typical
failure mode for turbine blade, and the failure mode of
turbine blade is induced by the randomness of workloads
and material parameters (such as temperature, rotor speed,
aerodynamic pressure, density, elastic modulus, and thermal
conductivity) and constraints as well [3]. ,us, structural

reliability optimization has large-scale computational load
and complexity and is harshly performed with an acceptable
efficiency and accuracy by finite element (FE) simulation
and stochastic optimization methods. To let the optimiza-
tion design results cater for the engineering requirements, it
is necessary to explore an effective approach for the reli-
ability optimization of mechanical structure.

With the requirement of design analysis for advanced
mechanical systems, many reliability optimization methods
have emerged in engineering practice [4–9]. Surrogate
model method (also called response surface method) is a
promising way to ensure efficiency and accuracy in
structural reliability optimization, instead of the direct
simulation method with the FE model [4]. Fei et al. de-
veloped extremum surrogate model methods with qua-
dratic polynomials and support vector regression, for
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dynamic reliability optimization design of turbine blade-tip
clearance [10] and its components [11, 12]. Song et al. [13]
studied multisurrogate models with a backpropagation-
artificial neural network (BP-ANN), for the multiobjective
reliability optimization of turbine blisk, considering fluid-
thermal-structure interaction. Song et al. [14] discussed the
constraint-feasible moving-least-squares method for the
reliability optimization of floating production storage and
offloading river support structures, regarding running
status, damage, and loadings. Youn and Choi [15] gave an
improved RSM with the moving-least-squares method and
the hybrid mean-value method, to investigate the reli-
ability optimization of vehicle side and improve its
crashworthiness. Meng et al. [16] introduced a saddle point
approximation reliability analysis method, combined with
collaborative optimization method, to solve turbine blade
unsafe design problem. Although the above works inves-
tigated structural reliability optimization using different
surrogate modeling strategies, the analytical results cannot
reach the engineering requirements owing to the limitation
of optimization models. Hence, it is unworkable for these
methods to handle the reliability optimization problems
of complex structures with acceptable accuracy and
efficiency.

At present, the machine learning method has got a rapid
development in data-derived modeling and image pro-
cessing [17–19].,e heuristic method prompts the author to
expand this idea to engineering optimization. As one of the
typical machine learning methods developed from statistical
learning theory, support vector machine (SVM) of regres-
sion (denoted by SR) has an excellent learning ability of
small samples and highly efficient simulation ability and has
been validated in the reliability optimization design [20–25].
Recently, Brabanter et al. [20] developed the least-squares
SVM (LSSVM) by transforming the optimization problem of
SR into a quadratic programming problem with a single
equation constraint to accelerate support vector regression
solution. However, the SR is susceptible to noise and outliers
when training samples containmultiple input parameters. In
addition, it is unable to find the optimal values of the SR
model for multivariable and high-nonlinearity problems.
,erefore, we need to search effective way to derive struc-
tural reliability optimization designs.

,e goal of this paper is to open a new research direction,
that is, machine learning-based reliability optimization, for
mechanical structures, with respect to the randomness of
design parameters and constraints. Namely, an improved
model (ISRM) method is developed. In this method, an
artificial bee colony (ABC) algorithm [26] is used to find the
optimal parameters of SR models. ,e reliability optimi-
zation of a turbine blade deformation is completed by the
proposed ISRM method with a multipopulation genetic
algorithm (MPGA) [27]. Besides, the proposed approach is
validated by the comparison of methods.

,e remains of this paper are organized as follows. In
Section 2, the ISRM method is investigated, comprising the
thought of the ISRM method for turbine blade reliability
optimization, the mathematical modeling of the ISRM
method, and the reliability optimization model. In Section 3,

the reliability optimization of turbine blade deformation is
finished with the proposed ISRM method. Section 4 sum-
marizes the main conclusions of this study.

2. Methods and Models

Support vector machine (SVM) is one of the typical ma-
chine learning methods. ,e SVM was first proposed in
data mining by regression and classification which are
called SVM of regression (SR) and SVM of classification
(SC) [28, 29]. ,e basis of an SVM model is statistical
learning algorithm so that the SVM is suitable for small
samples of structural design analysis, which are gained
from a few FE simulations. ,e SR model is good at the
solution of high nonlinear problems between input vari-
ables and output response, by introducing a maximum
classification margin subject to inequality constraints [30].
Hence, the SR can improve the computational efficiency
and accuracy of structural reliability optimization [9]. As
for large-scale parameters and high-nonlinearity problems,
the traditional SR is easy to fall into local optimization in
the process of searching hyperparameter, which affects the
precision of structural reliability optimization. In most of
the structural probabilistic designs, the number of influ-
ential parameters and constraint conditions largely impacts
the precision of design. ,erefore, this paper considers the
effect of design parameters and constraint conditions and
develops a machine learning-based reliability optimization
approach, that is, improved SR model (ISRM) method,
based on the artificial bee colony (ABC) algorithm, tra-
ditional SR model, and multipopulation genetic algorithm
(MPGA), to accomplish the reliability optimization of
turbine blade deformation.

2.1. Improved SupportVectorRegressionModel. When X and
y(X) indicate input sample set of a component in structure
system and the corresponding output response, respectively,
the response curve was constructed by the sample set{y(X)}.
,e relationship between X and y is written as

y � f(X) � y(X)􏼈 􏼉. (1)

,e SR method with failure mode is modeled as

y � f(x) � 􏽘
l

i�1
aiK x, xi( 􏼁 + b, (2)

where l is the number of support vectors in the sample set; y,
ai, and b indicate the output response, weight vector, and a
bias term; and K(x, xi) is the kernel function of the failure
mode. Kernel function includes linear kernel function,
polynomials kernel function, radial basis function (RBF)
kernel function, sigmoid kernel function, and Gauss kernel
function. In this study, the Gauss function is selected as the
kernel function of SR model.,us, the kernel function of the
SR model for the failure mode is expressed as

K x, xi( 􏼁 � exp −
xi − x′

����
����
2

2(σ)2
⎛⎝ ⎞⎠, (3)
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in which xi is ith sample in SR model; x’ is the center point of
sample set; σ is the width of kernel function K(x, xi).

Assume that θ � [ai, bi, σ] denotes the parameters of SR
model. Because θ seriously influences the precision of SR
model, it is reasonable to find the optimal parameters θ to
guarantee the precision of SR modeling in equation (2). ,e
traditional search method for the parameters θ possesses
some blindness because the effect of search seriously de-
pends on the experience. ,us, it is urgent to develop an
efficient algorithm to find the parameters θ in SR modeling.

To effectively determine the optimal values of the pa-
rameters θ in the ISRM, the ABC algorithm is applied to derive
the solution of objective function in this paper. ,e ABC al-
gorithm is a global optimization algorithm based on group
intelligence proposed to by Karaboga in 2005, which is used to
accomplish the solution of nonlinear problems [26]. Its feature
is that this algorithm obtains the global optimal value of
population via comparison of the merits and demerits of the
problem and the local optimization behavior of each individual
artificial bee, and this method has a faster convergence speed
[31–33]. ,e basic principle of the ABC algorithm is shown as
below.,e honey collecting system is composed of food source,
employed bees, and unemployed bees, and unemployed bees
include on-looker bees and scout bees. Herein, the employed
bees are associated with the specific food source and tell the
information of food source to the companion in a certain
probability form; and the unemployed bees are applied to
search food source. In the process of finding the parameters θ, a
part of the colony is treated as scout bees to search for the food
source. If the quantity of a food source exceeding a certain
threshold is found, the scout bees become employed bees and
start to collect food. After collecting food, the employed bees
transmit the information for food source to the on-looker bees,
and the on-looker bees can accurately evaluate the quality of
food source. ,e optimal values of the parameters θ in the
ISRM are determined via multiple iterations.

2.2. Reliability Optimization Model with Improved Support
Vector Regression Model. In this reliability optimization, the
sensitivity analysis of random variables on output response is
performed to select highly sensitive input random variables as
design variables. ,e output responses, that is, overall stress
and deformation of structure, are regarded as design objec-
tives, and the reliability R of the turbine blade and perfor-
mance constraints allowable value [σ0] are taken as
constraints. ,erefore, the reliability optimization model of
mechanical structures with the ISRM method is expressed as

Find x � x1, x2, . . . , xn( 􏼁
T
,

min f(x),

s.t.

R≥ R0􏼂 􏼃,

f(x) ≤ σ0􏼂 􏼃,

xi ≤ xi ≤xi,

xi � xl
i + λ∗ xu

i − xl
i( 􏼁,

xi � xu
i − λ∗ xu

i − xl
i( 􏼁,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(4)

where R and [R0] stand for the reliability degree and al-
lowable reliability, respectively; xi, xi denote upper and
lower boundary of ith fuzzy variables. ,e upper and lower
bounds of the transitional interval are determined by in-
troducing amplification coefficient; that is, xn � x,
xl � β× x; xu � β × x, xl � x; σ{ } � [σx, σy, σz, τxy, τyz, τzx];
β � 1.1 ∼ 1.3; λ∗ expresses the optimal level cut set.

,e MPGA [27] is adopted to derive the solution of
objective function equation (4). Comparing with the GA,
the MPGA holds more flexible and adaptive design space
exploration, which has the potential to avoid the effect of
plateau-like function [34]. Besides, the MPGA breaks the
limitation of a single population evolution of GA and
uses many populations with different control parameters
for optimization iterations [29, 30]. Besides, the MPGA
derived from GA inherits natural selection and genetic
properties, and the optimal solution of the objective
function can be gained via enough iterations with se-
lection, crossover, and mutation. ,e basic principle of
the MPGA is summarized below. Firstly, after generating
N initial populations (i.e., blade density, rotor speed,
temperature, aerodynamic pressure, and gravity) with
binary encoding, we gain the N new populations by
selection operator, crossover operator, and mutation.
,en, the optimal individuals of each excellent pop-
ulation are selected via artificial selection operator and
then are regarded as structure elite population to search
for the optimal value of objective function. In this case,
the MPGA is essentially a combination of multiple GAs
in line with a specific relationship. However, in the
MPGA, the control parameters, such as crossover
probability and mutation probability, are applied to
complete the collaborative evaluation of multiple pop-
ulations. ,erefore, the MPGA has both global and local
search abilities by introducing immigrant operator to
exchange information among populations and avoid the
destruction and loss of optimal individual information.
In this process, the elite population does not participate
as selection, crossover, and mutation operators. ,e
minimum reserved generation is usually regarded as the
terminal condition of optimization iterations. ,rough
the above steps, the reliability optimization of me-
chanical structures can be finished based on the ISRM
method and MPGA.

2.3. Flowchart of Reliability Optimization with Improved
Support Vector Regression Model. In line with the ISRM
method, the procedure of turbine blade deformation reli-
ability optimization is shown as follows. Firstly, the FE
model of turbine blades is built and blade density, rotor
speed, temperature, aerodynamic pressure, and gravity are
selected as input variables, and the deformation of turbine
blades is considered as failure mode, subject to the ran-
domness of rotor speed, gas temperature, and boundary
conditions. Secondly, in respect of FE model, thermal-
structural interaction, and the means of random variables,
the static deterministic analysis of turbine blade is conducted
to find the maximum points of blade deformation as the
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object of turbine blade optimization. ,irdly, regarding the
randomness of design parameters, handful samples of
random variables are extracted by Latin hypercube sampling
(LHS) technique [35], and by FE simulations with the
extracted samples, the output response of stress and de-
formation are calculated as output samples. Next, normal-
izing input samples and output samples as the training
samples is to find the optimal parameters of the SR model by
using an artificial bee colony (ABC) algorithm [29] and then
to build ISRM for the deformation of turbine blades. ,en,
by acquiring enough samples by the linkage LHS technique
[35], the probabilistic simulations of mechanical structure
are completed based on the developed ISRM method.
Following that, the reliability optimization model with the
developed ISRM method is established by adopting the
MPGA to seek for the optimal parameters in the reliability
optimization. Lastly, the reliability optimization of turbine
blade deformation with the ISRMmethod is implemented to
find the optimal parameters subject to design objectives and
constraints.

,e above analysis flowchart is summarized in Figure 1.

3. Reliability Optimization of Turbine
Blade Deformation

In this section, the developed ISRM method will be adopted
to investigate the reliability optimization of an aeroengine
turbine blade deformation. Blade material is GH4133B alloy
[36]. Based on the random variable selection method [9],
blade density, rotor rotational speed, gas temperature, gas
pressure, and gravity acceleration are termed input random
variables (parameters). ,e distribution features of the pa-
rameters are listed in 1, in which all the variables follow
normal distributions of mutual independence.

,e FE model of the turbine blade is established, which
include 98569 elements and 163312 nodes as displayed in
Figure 2. In respect of the mean values of parameters in
Table 1, the steady deterministic analyses of blade radial
deformation were performed. ,e distributions of turbine
blade deformation are drawn in Figure 3 as the analysis was
stable.

In Figure 3, it is illustrated that the maximum defor-
mation is 1.021mm at the blade top. ,erefore, the defor-
mation is considered to investigate the blade reliability
optimization with deformation failures in coming part.

3.1. Turbine Blade Optimization with Improved Support
Vector Regression Model

3.1.1. Improved Support Vector Regression Modeling. By the
LHS technique [35], the input variables in Table 1 were
collected at the critical point when turbine blade defor-
mation reached the maximum. Namely, the key points were
the maximum deformation obtained based on the above
static deterministic analyses, and the maximum deformation
was acquired based on the static analyses with the extracted
samples. ,e normalized samples were termed the training
samples for SRmodeling. To improve SRmodeling accuracy,

the ABC technique [29] was employed to optimize the
parameters θ� (c, σ, ε) in SR modeling. ,e coefficients of
ISRM for turbine blade deformation are shown in equation
(5). In the next section, we will employ the established ISRM
to complete the reliability optimization of turbine blade
deformation.

a �

13.4221 −2.5412 16.4211

3.2121 3.5723 −10.5421

−8.4422 9.4542 17.5224

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠,

[c, σ, ε] � [125.4555, 107.5244, 2.7789],

b � 0.7478.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(5)

3.1.2. Turbine Blade Deformation Optimization. For
accomplishing the reliability optimization of turbine
blade deformation, the maximum deformation δmax of the
turbine blade is minimized by adopting the structured
ISRM. ,e input variables (ω, T) are respected as design

Start 

FE modeling, design parameters selection, 
boundary conditions setting

Extract handful samples by using the Latin
hypercube sampling method

Find the optimal parameters θ by ABC to
build fuzzy multi-SR learning model

Structure an initial population and set the
parameters in the reliability optimization model

with MPGA

Compute the fitting values of each individual

Satisfy requirement? 

Output optimal values and results 

End 

No 

Yes 

Extract
samples with

the LHS method 

Deterministic analysis of the FE model

Figure 1: Reliability optimization procedure with the ISRM
method.

Table 1: Distribution features of input parameters.

Parameters Mean St. dev. Distribution
Rotational speed ω, rad/s 1160 58 Normal
Gas temperature T, K 1200 60 Normal
Blade density ρ, kg/m3 8200 246 Normal
Gas pressure P, MPa 0.5 0.025 Normal
Acceleration of gravity g, m/s2 9.81 0.2943 Normal

4 Advances in Materials Science and Engineering



variables, and turbine blade deformation δ is regarded as
design objective function, and the reliability index and
boundary loads are considered as constraint conditions.
,e reliability optimization model of turbine blade de-
formation is shown in equation (6). Herein, the upper and
lower limits of constraints are revealed in Table 2, where
the values of upper and lower limits are determined by the
3 sigma levels [3, 5].

Find x � x1, x2( 􏼁
T

� (w, T)
T
,

min f(x),

subject to

R≥ R0􏼂 􏼃 � [0.98],

w ≤w≤w,

T ≤T≤T,

f(δ)≤ [δ],

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(6)

In MPGA algorithm, the coefficients of the optimal
front-end individual, population size, evolutional genera-
tion, stop algebra, and deviation of fitness function are 0.3,
100, 200, 200, and 0.01, respectively. ,rough the solution of
the reliability optimization model in equation (6), the dis-
tributions of turbine blade deformation are drawn in Fig-
ure 4, and the results are listed in Table 3. It should be noted
that we conducted 10000 simulations in each probabilistic
analysis involved in the turbine blade deformation reliability
optimization with the developed ISRM approach.

As demonstrated in Figure 4 and Table 3, when the
allowable deformation of turbine blade meet the distribution
features, relative to before optimization, the means of tur-
bine blade deformation are reduced by 0.077mm, and the
standard deviations (StDev) of deformation are decreased by
∼0.0026mm after optimization. ,e optimal values of ro-
tational speed and temperature are 1198.62 rad/s and
1112.93 K as shown in Table 3. ,erefore, it is demonstrated
that the developed reliability optimization model, that is, the
ISRM method, is effective for the reliability optimization of
turbine blade deformation failure.

3.2. Method Validation. To verify the proposed ISRM
method in simulation accuracy and efficiency, the overall
reliability optimization of the blade is also done with MC
simulation and traditional SVM method [10], based on the
same parameters and computation environment. ,rough
the comparison of methods, Tables 4 and 5 recorded the
reliability degrees and optimized objective functions, re-
spectively, in light of different number of simulations. In
Table 4, the reliability degree is defined by the ratio of the
number of simulations in the safety domain to the total
number of simulations (1000 simulations).

From Table 4 obtained from the probabilistic failure
analyses of the disk, we can acquire the following results. (i)
,e MC method cannot carry out the calculation which is
larger than 10000 simulations, due to too-large computa-
tional burden for the FE-based probabilistic analysis, so that
the MC method does not have computing time under the
simulations. ,us, it is unworkable for the MC method to
analyze complex structure with large-scale simulations; (ii)

1.021 Max

0.472

δ (mm)

0.875

0.803

0.730

0.657

0.585

0.511

0.438

0.365

0.219

0.146

0.0729

0 min

Figure 3: Blade deformation distribution.

Table 2: Constraints of design parameters.

Upper and lower limit [δ], mm ω, rad/s T, K

Upper bound Upper limit 2.02 1349 1355
Lower limit 0.002 1285 1291

Lower bound Upper limit — 1051 1056
Lower limit — 736 739

Figure 2: FE model of turbine blade.
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the time consumption of blade probabilistic analysis rises
with the increasing MC simulations for the three methods;
(iii) the time cost of the ISRMmethod is far less than the MC
method and SVM method for the same number of simu-
lations. Furthermore, the strength of the ISRM method in
computational efficiency is more obvious with the increase
of simulations. ,us, it is illustrated that the calculation
efficiency of the ISRM method is far higher than the MC
method and SVM method, so the developed approach is
efficient in the probabilistic analysis of complex structures,
instead of FE and SVM models. (iv) Under the same sim-
ulations, the reliability degrees with the ISRM method

almost agree with these with the MC method. Moreover, the
rise of simulations can enlarge turbine blade deformation
reliability degree. It is explained that increasing the number
of MC simulations can improve the precision of reliability
degree, for structural probabilistic design.

As revealed in Table 5, the deformation of turbine blade
is reduced by 0.09329mm, respectively, after the optimi-
zations with the ISRM method. Correspondingly, the MC
method lessens turbine blade deformation by 0.03532mm,
and the SVM method declines to 0.021mm. ,e reliability
index of the blade was improved from 95.53% to 96.87%,
97.82%, and 98.86% for the MC method, SVM method, and

0.8

700

600

500

400

300

Re
la

tiv
e f

re
qu

en
cy

200

100

0
0.85 0.9 0.95

Deformation, δ (mm)
1 1.05 1.1 1.15

Mean: 0.94628mm
StDev: 0.028762mm

Mean: 1.0233mm

Before
optimization

A�er
optimization

StDev: 0.031324mm

Figure 4: Distributions of blade deformation before and after optimization.

Table 3: Optimization results of overall blade failure.

Design variables Original data Optimal values
ω, rad/s 1168 1198.62
T, K 1173.2 1112.93

Table 4: Computing time and reliability degrees of blade probabilistic analysis with different methods.

Number of samples
Computing time (s) Reliability degree (%)

MC method SVM ISRM method MC method SVM ISRM method
100 54 859 0.0111 0.005 9 99 97 98
1 000 340 094 0.335 0.151 99.5 98.5 99.3
10 000 — 0.775 0.412 99.34 98.71 99.28
100 000 — 2.103 1.241 — 98.817 99.779

Table 5: Optimization results of turbine blade deformation with different methods.

Objective function Before optimization
MC method SVM ISRM method

After optimization Reduction After optimization Reduction After optimization Reduction
δ, mm 1.0233 0.98798 0.03532 1.0023 0.021 0.93001 0.09329
R 95.53 96.87 — 97.82 — 98.86 —
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ISRM method. Obviously, the ISRM method is more ef-
fective in the reliability optimization of complex structures
like turbine blade deformation.

In short, the developed ISRMmethod has high modeling
precision and high simulation efficiency for the reliability
optimization of mechanical structures. In addition, with the
assist of the proposed IRSM method, we can acquire more
satisfactory design results for the reliability optimization of
complex structures. ,erefore, it is supported that machine
learning methods are promising to offer satisfying accuracy
and efficiency in modeling and reliability design of structural
systems.

4. Conclusions

,e purpose of this paper is to propose a precise and efficient
machine learning method, that is, ISRM method, for the
reliability optimization design of complex structure. We
discuss the theory and modeling of the ISRM method and
the procedure of structural probabilistic optimization. In
line with the ISRM method, the reliability optimization of a
turbine blade is performed by considering design objective
(i.e., turbine blade deformation), design variables (including
material parameters and load parameters), and constraint
boundary of design objective functions. ,e main conclu-
sions are summarized as follows:

(1) As revealed in the reliability optimization of a tur-
bine blade deformation failure using the ISRM
method, the turbine blade deformation under op-
eration reduced by 0.09329mm, which improves the
reliability of turbine blade.

(2) It is illustrated in the failure probabilistic analysis of
bladed disk that not only does the developed ISRM
method cost limited time and high efficiency relative
to the MC method and SVM method, but also its
precision is acceptable in reliability degree as its
optimization results are almost the same as that of
the FE method with MC simulations. ,e high
modeling precision and simulation efficiency of the
ISRMmethod are more remarkable with the increase
of simulations.

(3) ,e developed ISRMmethod is more workable in the
reliability optimization of turbine blade deformation
than the MC method and SVM method because the
optimal design parameters and design object are
preferable for larger reductions and reliability
degree.

,is investigation attempts to use a novel machine
learning approach (i.e., ISRM method) for the reliability
optimization of mechanical structures with highly precise
modeling and highly efficient simulation and enrich me-
chanical reliability design theory.
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