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&e anodization of the Ti-Cu (2%) alloy was carried out in a 5M H3PO4 solution for 2 minutes. &e obtained layers are
characterized by XPS, X-ray diffraction, and Raman spectroscopy. &e results showed that the obtained films are composed of
poorly crystallized TiO2 oxide. Electrochemical Impedance spectroscopy studies revealed that the thickness of the formed film
increases with increasing anodization potential. Additionally, the resistance of charge transfer becomes higher when the an-
odization potential increases. &us, the Mott Schottky model revealed that the formed film is an n-type semiconductor. &e
density of charge carriers is in good agreement with those found in the literature. Also, it is found that the flat-band potential
increases with increasing treatment potential.

1. Introduction

Titanium and its alloy are highly solicited in many fields of
use, especially in the area of medical implants [1–4]. Tita-
nium is also used in submarines and aeronautical installa-
tions due to its physical properties and its lightness [5]. &e
resistance of titanium and its alloys in many acidic media
makes them very useful in chemical industries [6–9]. &is
resistance against corrosion of titanium and its alloys is due
to the formation of an oxide protective film. &e nature and
physical properties of the formed film depend on the mode
of its formation. So, it is reported in the literature that the
titanium oxide films exhibit either p- or n-type conductivity
depending on their stoichiometry and the nature of the
resulting defects [10, 11]. Titanium oxide, especially TiO2, is
widely used in photocatalyst application [12].

Further, it was found that, inmost acidic media, titanium
oxide exhibits high resistance to corrosion, and almost no
anodic activity is observed in a wide range of applied voltage.
However, it can act as catalytic support for the reduction
reaction with a preferential affinity to the reduction of
oxygen [13, 14]. Titanium oxide was also investigated for its

electrochromic properties [15] and is widely used in pho-
tovoltaic cells [15–18] and sensors [19–21].

Titanium oxide can be obtained by several techniques
such as gel sol [22], thermal oxidation [23], radiofrequency
sputtering [24], electrodeposition [25], and, in particular,
anodic anodization of titanium and its alloys in different
acidic or basic solutions. &is technique seems promising
since it is inexpensive and guarantees the reproducibility of
the stoichiometry of the prepared films. &e electro-
chemical study of titanium oxides obtained by different
techniques presents different and very complex electrical
circuits depending on the preparation technique of the
oxide films.

&e objective of the present work is to prepare titanium
oxide layers by anodizing Ti-Cu alloy (2%) in phosphoric
acid at different potentials. &ese layers will be characterized
by X-ray diffraction, Raman spectroscopy, and energy dis-
persive X-ray spectroscopy (EDS). &e oxidation state of the
elements was studied by X-ray photoelectron spectroscopy.
&e surfacemorphology of the samples prepared was studied
by scanning electron microscopy.&e semiconductor nature
of the formed films is revealed by Mott Schottky analysis,
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and an equivalent circuit was proposed by electrochemical
impedance spectroscopy.

2. Materials and Methods

Anodization of Ti-Cu (2%) alloy was carried out in two-
electrode configuration, where titanium is the anode, and a
sheet of highly pure platinum with a large surface was the
cathode. &e surface of the titanium alloy exposed to the
solutions is 1 cm2. &e anodization was performed with a
stabilized tension DC power supply.&e range of the applied
potential extended from 20 to 35V in 5M phosphoric acid
solution prepared from a 85% analytical-grade phosphoric
acid.

Before anodization, the titanium samples were polished
with different emery paper sizes (from 220 to 5000 grade).
After, the samples were rinsed vigorously with tap water and
distilled water followed by cleaning in an ultrasonic bath for
15 minutes.

After anodization, samples were characterized by X-ray
diffraction to determine crystalline structures.

XPS was used to determine the oxidation states of ti-
tanium and oxygen on the surface of anodized samples.
Additionally, the anodized samples were characterized by
Raman spectroscopy with an excitation wavelength of
536 nm. &e morphology of the obtained films and their
compositions were determined by scanning electron mi-
croscopies coupled to an EDS analyzer. Some samples are
annealed in an oven for five hours at 800°C.

Impedance spectroscopy and the capacitance measure-
ments at a frequency of 1 kHz were carried out using the type
PZC 301 potentiostat/galvanostat in Na2SO4 10−1M
solution.

3. Results and Discussion

&e anodized samples are colored, and their colors depend
on the anodization potential. We start from a red-violet
color at 20V that becomes dark blue at 25V then turns to a
pale blue color at 35V. &e titanium alloy is coated with a
colored layer after anodization. &is allows broad use in the
field of medical implants, given that we can know its location
depending on the color of the implant [26].

During the anodization processes of samples in phos-
phoric acid 5M, the evolution of the current density with
time consists of a fast drop followed by stabilization at very
low values close to zero, as shown in Figure 1.

It seems that the anodization time had no effect on the
thickness since the composition of the film remained con-
stant, as reported in Figure 2. Nevertheless, the thickness
increased with increasing anodization voltage (Figure 3).
&ese observations are in good agreement with phosphoric
acid or other acidic media results reported in the literature
[27, 28].

When the titanium content decreases, the oxygen con-
tent increases as the anodization voltage increases. &is
suggests that the thickness of the films formed increases with
the anodization voltage. However, when the voltage is fixed,
the oxygen and titanium contents remain unchanged, and

the color of the samples remains unchanged even if the
anodization time varies.

From the diffractograms of anodized samples in phos-
phoric acid 5M, the only peaks observed were attributed to
titanium (file 00–001-1197). No peak characteristics of ti-
tanium oxide were observed, suggesting that the obtained
oxide films are not crystallized. Further, it can be easily seen
that the intensity of the Ti peaks decreases when the applied
voltage increases, suggesting an increase in the thickness of
the oxide films.

XPS measurements can determine the oxidation state of
titanium in the formed films. Figures 5(a) and 5(b) show the
Ti2p and O1s XPS peaks of the oxide films obtained from the
titanium-copper alloy anodized in phosphoric acid 5M at
35V under potentiostatic control.
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Figure 1: Chronoamperometric curves obtained at different ap-
plied potential during 2min, in 5M phosphoric acid.
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Figure 2: Amounts of titanium and oxygen at fixed polarization
voltage (25V) at various times.
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Figure 3: Amounts of titanium and oxygen during 2min at various polarization voltages. Samples anodized at different applied voltage were
characterized by X-ray diffraction. Figure 4 illustrates the results.
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Figure 4: X-ray diffraction of anodized titanium in phosphoric acid 5M obtained at different voltages for 2min. ∗Sample carrier.
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Figure 5: Ti2p XPS spectra for titanium anodized at 35V for 2min in 5M phosphoric acid. (a) Ti2p spectra; (b) O1s spectra.
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&eTi2p3/2 peak is centered at 458.36 eV. Its width at half
height is 1.56 eV. &ese values show that the titanium is at
oxidation state 4. &ese characteristics are consistent with
those of titanium in TiO2. Furthermore, the difference be-
tween the energy of Ti2p3/2 and Ti2p1/2 is around 5.7 eV.&is
value is characteristic of oxygen bond titanium in the TiO2
oxide type [29, 30].

&e oxygen peak, shown in Figure 5(b), is large and can
be deconvoluted to at least two subpeaks, centered at
530.6 eV and 532 eV. &e first peak is attributed to the
oxygen engaged in a Ti-O bond in TiO2, and the second
corresponds either to oxygen bound to water or adsorbed
oxygen type O2 [31, 32]. Indeed, a strong release of oxygen
was observed during the anodization.

Figure 6 shows the Raman spectra of samples anodized at
different voltages in 5MH3PO4. We note the presence of
two visible bands: the first is centered at 443 cm−1 and the
other is centered at 608 cm−1. &is is in addition to a weaker,
wider, and less pronounced band at 160 cm−1.

To be able to attribute the different observed bands,
we performed Raman analysis on the same samples after
having been annealed at 800°C for 5 hours. Figure 7
shows the obtained spectrum for the sample anodized
at 25 V.

&e bands observed for the annealed sample (blue line)
correspond to those of the rutile phase of TiO2. &is is
further confirmed by the X-ray diffraction spectrum of the
anodized samples, which has been annealed for 5 hours at
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Figure 6: Raman spectra of different anodized samples at different voltages in H3PO4 5M.

250 500 750 1000 1250

Sample anodized at 25V 
Sample annealed at 800°C for 5 hours a�er being anodized at 25V

λ (cm–1)

Figure 7: Raman spectra obtained for anodized sample at 25V before and after annealing at 800°C for 5 hours.
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80°C (Figure 8); it clearly shows that annealed films consist
mainly of rutile TiO2 phase.

According to the literature, the bands appearing on the
Raman spectrum (Figures 6 and 7) may be allocated as
follows.

&e band at 443 cm−1 corresponds to the Eg mode of the
TiO2 rutile, while the one centered at 608 cm−1 corresponds
to the A1g mode of the TiO2 rutile [33].

Other studies have suggested that the band observed at
146 cm−1 is relative to the B1g mode of rutile [34–39].
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Figure 8: X-ray diffraction of anodized samples annealed at 800°C for 5 Hours. •: Simple careers; Ti: titanium; R: rutile.
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Figure 9: Open-circuit potential against time in 0.1M Na2SO4.
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However, other studies attribute this band to the anatase
phase [40].

From the above, it can be concluded that, during an-
odization, a poorly crystallized rutile TiO2 is formed.

After anodization of the samples in 5M phosphoric acid,
we recorded the evolution of the open-circuit potential as a
function of time in 0.1M of Na2SO4. As shown in Figure 9,
we can note that the potential stabilizes at a noble value with
increasing anodization potential and also protects the tita-
nium surface alloy against corrosion better. After one hour,
the potential tries to be fixed and we can subsequently
perform Nyquist and Bode plots.

&e Nyquist and Bode representations of the impedance
spectra of the anodized Ti-Cu alloy (2%) at different voltages
in H3PO4 5M for 2min, obtained in 10−1M of Na2SO4 at
open-circuit potential (OCP), are, respectively, shown in
Figures 10(a) and 10(b).

From Nyquist representation, and as shown in
Figure 10(a) inset, it can be concluded that there are no
masked phenomena at high frequency.

&e Bode representation, as presented in Figure 10(b),
shows that the interfacial process is the same for all studied
samples. Moreover, the observed phase shift is negative,
suggesting a capacitive behavior of the equivalent electrical
circuit. &e peak observed at high frequency suggests the
presence of a constant phase element (CPE) since the phase
shift does not reach −90 (≈−70 rad).&e existence of masked
phenomena at low frequency cannot be excluded since the
phase shift at low frequency (between 100MHz and 1Hz) is
different from zero, and there is a small shoulder when log
(frequency) is equal to −0.5.

&e plot of Z Modulus as a function of the logarithm of
the frequency shows the presence of two straight line seg-
ments with slopes α1 and α2 (Figure 11). &e values of these
parameters are regrouped in Table 1.

It can be observed that both parameters are less than one,
while the values of α1 are close to 0.5. &is suggests that the
equivalent circuit may include two CPEs with the presence
of a Warburg diffusion regime (W) [41].

Indeed, the equivalent circuit capable of fitting the ex-
perimental curves (−imZ � f (ReZ)), with an acceptable
correlation coefficient, is given in Figure 12.

In this diagram, Rs is the solution resistance, Rf is the
resistance of the formed films, and Rdt is the charge transfer
resistance. Moreover, CPEf is the constant phase element
relative to the formed films, CPEdl is the constant phase
element relative to the charge transfer, and W is the War-
burg impedance.

&e surface roughness of the samples may account for
the CPE in the electrical equivalent circuit. Indeed, the SEM
micrographs (Figure 13) of a sample polished by emery
paper show a rough surface, which leads to distributed el-
ements and consequently to a nonideal capacity.

&e experimental curve and the best fit obtained by this
equivalent circuit are presented in Figure 14.

Figure 14 illustrates that there is good agreement be-
tween the theoretical and experimental curves. Additionally,
we note that the metal/oxide/solution interface remains the
same in the range of applied potential. Furthermore, the
fitting parameters grouped in Table 2 further support the
conclusions derived from the Bode representation. Using
Mansfield law, we get

Ci � Qi × R
1−α
i 

1/α
. (1)

We have determined the film capacitance Cf and the
capacitance of the double layer Cct.

&e thickness d of the films is obtained from the relation
C� εε0/d S, where ε is the relative permittivity of the formed
film, εo is the absolute permittivity of the vacuum, and S is
the surface area of the film.
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Figure 10: Electrochemical impedance spectroscopy of anodized samples, obtained in 10−1M of Na2SO4 at OCP. ((a) Nyquist repre-
sentation; (b) Bode representation).
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Table 1: α1 and α2 values resorted from slopes of log (z) against log (frequency) at different anodization voltages.

Anodization voltage 20V 25V 30V 35V
α1 0.36 0.40 0.35 0.35
α2 0.81 0.80 0.84 0.83
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W

Figure 12: Electrical equivalent circuit for the as-anodized Ti-Cu (2%) alloy.

Figure 13: Micrograph of Ti-Cu (2%) freshly polished with emery paper (until 5000 grade).
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are given in Table 2.

Table 2: Electrochemical parameters for the electrical equivalent circuit obtained in Na2SO4 0.1M

(V) χ × 103 R1
(Ω)

Qf × 106

(F×cm−2)
a1
(α2)

Cf × 106

(F×cm−2)
Rf
(Ω)

Qdl × 106

(F× cm−2)
a2
(α1)

Cdl × 106

(F×cm−2)
Rct
(Ω) S3 (Ω× s−1/2)

20 25 35.33 1.28 0.92 0.6 745 29.80 0.42 132 101165 15011
25 50 30.07 1.22 0.90 0.58 1042 28.28 0.40 258 154531 23354
30 36 27.43 0.75 0.94 0.46 779 29.88 0.38 365 155282 36812
35 24 30.03 0.6 0.94 0.33 726 29.1 0.38 359 160000 61223
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Figure 15: Mott–Schottky curve obtained at 1KHz, in 0.1M of Na2SO4 sample anodized in phosphoric acid.
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From Table 2, we can say that increasing anodization
potential results in a decrease in the capacitance of the
formed film and, consequently, to an increase in the
thickness of the formed films.

Previous studies [42] have shown that the thickness (d)
of the films obtained by anodizing titanium in H3PO4 varies
linearly as a function of the anodizing voltage (Va) according
to the following equation:

d � 1.94 × Va + 5.2(nm). (2)

To have this order of magnitude, we must choose a
dielectric constant value of around 30 for the formed films.
&is value has been reported in the literature for TiO2 films
from anodized titanium samples in aqueous media [20, 43].

It is important to note that the capacity of the double
layer is at least 300 times greater than that of the formed film.
Consequently, the Mott Schottky plot of 1/c2 as a function of
V at constant frequency is relative to film capacitance.

To determine the charge carrier density Nd, we used the
following expression:

1
C2 �

2
εε0eNd

E − Efb +
KT
e

 , (3)

where εr is the dielectric constant of the film, ε0 is the
vacuum permittivity (8.854×10−14 F cm−1), e is the ele-
mentary charge, Efb is the flat-band potential, K is the
Boltzmann constant (1.38×10−23 J/K), and T is the absolute
temperature.

In Figure 15, we present the evolution of 1/c2 against
potential in Na2SO4 0.1N at a frequency of 1 kHz.&e curves
have two inflection points, between which a large linear
increase of 1/c2 as a function of the potential Ewas observed.
&e slope of these lines is positive, indicating that the formed
oxide TiO2 is an n-type semiconductor. &e slope of this line
permits us to determine the values of charge carrier density
Nd and the flat-band potential, which are summarized in
Table 3 as a function of the anodization voltage.

&e increase of the charge carrier density with the an-
odization voltage can be related to the nature of defects of
the oxide formed during anodization as summarized in
Table 3. Additionally, the flat-band potential decreases as a
function of the anodizing voltage; this is in perfect agree-
ment with the increase of charge carrier numbers (i.e., a
decrease in band bending).

4. Conclusion

Samples of titanium copper (2%) alloy were anodized in 5M
phosphoric acid under potential control. &e range of ap-
plied potential was extended from 20 to 35V with a two-
electrode configuration. &e obtained anodized samples
were colored and easily distinguishable depending on their

anodized potential. &e chronoamperometric curves
recorded during the anodization process showed an abrupt
drop of the current with time due to the formation of a
protective layer.

It is found that the thickness of the formed films in-
creased with increasing anodizing potential. &e formed
films consisted of a poorly crystallized rutile TiO2, as shown
by Raman, X-ray diffraction, and XPS and EDX
measurements.

&e electrochemical impedance spectra obtained in
0.1M of Na2SO4, for the anodized samples showed that the
charge transfer resistance increased with increasing applied
potential. In addition, it was found from the electrochemical
impedance study that the thickness of the formed film in-
creases with increasing applied potential and that the relative
permittivity of the formed oxide is approximately 30. &e
formed film is an n-type semiconductor, and the charge
carrier density is in the range of 1018 cm−3.
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Supplementary Materials

&e graphical abstract resume different techniques used in
the present work. We used the anodization technique for
obtaining oxide films under potential control, with two
electrode devices. Obviously, the current density was also
recorded. &e obtained film was characterized before
annealing and after being annealed with different charac-
terization techniques such as X-ray diffraction, XPS, Raman
shift, and also scanning electron microscopy coupled to EDS
(right side of the graphical abstract). &e nonannealed
samples were studied for electrochemical properties by
performing EIS and Mott–Schottky measurements (left side
of the graphical abstract). (Supplementary Materials)
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