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/is work presents a systematic numerical study of Cherenkov optical radiation generated by a modulated source that moves with
uniform velocity on a two-dimensional (2D) photonic crystal (PCr) slab surface. We apply the FDTD technique with emphasis on
the dispersion properties of the periodic medium to perform our numerical analysis./e field oscillations generated at the passage
of a modulated source in the PCr produce a series of spectral resonances corresponding to the eigenmodes in the spatial frequency
domain for the photonic slab. /e amplitudes of the field oscillations have maximal values in the group cone closely to the path of
the moving charge.

1. Introduction

Dielectric two-dimensional photonic crystals, composed of
either dielectric rods or air columns, are widely used to
obtain a high control over the propagation of light without
loss of energy. It has been shown theoretically and experi-
mentally that photonic crystal slab structural defects behave
as waveguides [1], resonant devices [2], nanocavity laser [3],
photonic circuits, and various functional devices [4–6]. In a
conventional material, the Cherenkov radiation is coherent,
and the charged particle movement is associated with a
velocity threshold, a forward-pointing radiation cone, and a
forward direction of emission [7, 8]. Cherenkov radiation
generated by a charged particle in dielectric homogeneous
medium has been extensively studied. In a more complex
periodic medium, e.g., a meta-material, we can also get a
variety of anomalous effects [9], such as backward direction
Cherenkov radiation [10–15]. However, the Cherenkov

radiation (CR) has a different behavior in a photonic crystal.
Photonic crystals, where very complex Bragg scattering is
possible, exhibit a new medium for unusual radiation pat-
tern under different particle-velocity regimes. [16–19].

/ere are various approaches to study the influence of a
periodic medium on the Cherenkov effect. For example, in
[20], there is a complete description of stimulated Cherenkov
radiation and laser oscillation in a photonic crystal in the
range 10GHz, getting significant power and high spectral and
spatial coherence [20]. /e fiber-optical Cherenkov radiation
also was of great interest in recent years [17, 21].

Other studies are devoted to the analysis of the Cher-
enkov emission spectrum through the photonic band
structures calculation in photonic crystals. In such simu-
lations, the method of the finite differences in time domain
(FDTD) was applied, and it was shown that the spectral and
spatial distributions can be varied over different ranges of
velocities [16, 22].
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However, in the aforementioned studies, the case of a
modulated source moving through a slab of photonic crystal
has not been studied. We propose a simpler approach based
on the geometrical design of the photonic crystal and
characteristics of the source, allowing obtaining a coherent
radiation in the specific frequency ranges. Unlike previous
works, our approach does not require an analysis of the
crystal band structure. Getting the output of desired
wavelengths is of high interest for creation of novel light
sources, e.g., in the extreme ultraviolet (EUV) radiation
range [23]. Among other applications, such a study includes
the velocity-sensitive particle detection and radiation gen-
eration at selected range of frequencies.

Askar’yan demonstrates theoretically that Cherenkov
radiation generated from a modulated source moving with
velocity v0 occurs when the medium has an inhomogeneous
structure. For example, when the wave packet is transmitted
through the boundary between two media, then the tran-
sition radiation should be produced [24]. It is interesting to
investigate the optical modes in the photonic crystal asso-
ciated with the Cherenkov radiation generated by a mod-
ulated wave train, since this kind of wave packet is produced
in most cases of practical interest [24].

In this paper, we study numerically the Cherenkov
optical radiation in a two-dimension (2D) photonic crystal
slab (PCr). /e modulated source is nonrelativistic, having
the eigenfrequency ω0. We performed the finite differences
time domain (FDTD) simulations [25], where the size of the
photonic crystal structure is fixed, and the values of dielectric
permittivity inside and outside the holes of the structure are
varied. With the use of spectral Fast Fourier Transform
(FFT) analysis we have found that the spatial frequencies of
the oscillations produced by Cherenkov emission also os-
cillates correspondingly to the eigenmodes located in the gap
zone of the photonic crystal slab.

2. Basic Equations

In this paper, we exploit the FDTD 3D algorithm that be-
came a widely used algorithm for modelling in complex
materials. /e Maxwell equations are

∇ × E(r, t) � − μ0
z

zt
H(r, t),

∇ × H(r, t) � ε0ε
z

zt
E(r, t) + qv0f(r, t),

(1)

where ε � ε(r) is a dielectric permittivity of the PCr structure
[26]. We consider the charge q that moves with uniform
velocity v0 parallel to y direction: v0‖􏽢ey, closely to the 〈x, y〉

surface. In the numerical grid, the point particle (bunch) is
simulated by the Gaussian impulse f(r, t) � cos(ω0t)

W− 3exp − [x2 + (y − v0t)
2 + z2]/W2􏽮 􏽯, where ω0 is the

modulating frequency and W is the width.
To perform the numerical simulations, we used the

dimensionless variables for normalization, the vacuum light
velocity c � (ε0μ0)

− 0.5, and the typical spatial scale for nano-
optic objects l0 � 500 nm were used. /e electrical and
magnetic fields are renormalized with the electrical scale

E0 � ql0ε0, and magnetic scale H0 � (ε0/μ0)
0.5E0,

respectively.

3. Numerical Results

/e considered photonic crystal slab structure perforated by
periodical air rods in a dielectric medium is shown in
Figure 1.

2D photonic crystals have been extensively studied be-
cause they are relatively easier to fabricate using existing
techniques and to operate in optical frequencies [27–30].We
focus our attention on the 2D lattice of air holes that is a
widely used structure, since the triangular lattice of air holes
has a large band gap [31], see also experiments [32, 33]. /e
slab thickness, radius, and refractive index contrast deter-
mine the properties of photonic crystal slabs [34]. In our
approach, we use a high index contrast, that is required
between the dielectric material, and the holes to open a
bandgap in the xy-plane [33]. Since the lattice constant of the
photonic crystal must be comparable to the wavelength of
the light [34], we use, a� 500 nm. /e radius and height of
the holes we have chosen are in the experimentally accessible
range for reasonable values [31, 35, 36], such that, r � 0.3
and h � 1a, which normally is used within the resolution
range of electron beam lithography. Such parameter values
also allow improving the accuracy of numerical simulation,
[31]. We should note that, since the spatial period of PCr is
comparable with the field wavelength (l0/λ)≤ 1, such a 2D
system acts as a distributed 2D plane resonator having a
special eigenfrequency spectrum.

Since the refractive index of a photonic system varies in
space and it is well-defined only locally (or in average), we
only know numerical methods to calculate the Cherenkov
emission in such 3D inhomogeneous photonic systems. To
realize the FDTD simulation, the scheme from [2] was
followed, which we have elaborated for our purposes. /e
renormalized variables were used (dx/dt)⟶ 3(dx/dt) �

(
�
3

√
(dl/dt)) � cn ≡ 1.73 that is the vacuum light velocity in

the numerical approach, such that v0 < cn, where v0 is the
velocity of charge.

3.1. Cherenkov Radiation in a Photonic Crystal Slab. /e
practically interesting case of the Cherenkov radiation (CR)
in the case of dielectric permittivity of the slab and holes with
distinct values εs ≠ εh was considered. Besides, the critical
velocity of the Cherenkov radiation in a homogeneous
medium was used as a reference value.

Figure 2 shows the field oscillations within the Cher-
enkov cone v0 � 1.5 generated at the time when the particle
touches the output boundary of the computational system.
Figure 2(a) shows the 3D field component |Ex|, with the uses
radius r � 0.25 and εs � 3, εh � 1 as permittivity of slab and
holes, respectively. Figure 2(b) displays the field |Ex| when
r � 0.35 and εs � 15. It is worth noting that the increase in
hole radius does not significantly affect the field of Cher-
enkov radiation. However, when the difference in dielectric
constants is increased, the angle of the cone is reduced, but
the amplitude of oscillations becomes larger. We observe
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that such a geometry on the field within the Cherenkov cone
acquires a highly inhomogeneous structure due to the
discontinuity of dielectric permittivity in the boundary of
holes.

Cherenkov radiation (CR) in a photonic crystal arises
from a coherent excitation of its eigenmodes by the
moving charge. Its origin lies in both the transition ra-
diation, which occurs when the charge crosses a dielectric
boundary or experiences at an inhomogeneous dielectric
environment, and the conventional CR. In these cases, the
coherence is preserved throughout the medium as we see
in [37]. Unlike the case of Cherenkov radiation in a
homogeneous medium, there exist radiating modes in this
inhomogeneous dielectric case. It is interesting to study
the behavior of these oscillations within the Cherenkov
group cone [38].

A simple physical interpretation of the group cone can be
put forward in terms of group velocity considering that for
each direction around the charge velocity, the burst of
Cherenkov light is emitted into a group of modes, while the
peak of the pulse moves in space with a velocity equal to the
group velocity vg experiencing an almost negligible ab-
sorption [38].

In the following, the spectra of electromagnetic oscil-
lations associated with the Cherenkov emission for different
perforated slab systems are calculated.

In Figure 3 the values of optical eigenmodes of PCr
excited by the moving charge calculated for different PCr
configurations given by variation in the dielectric permit-
tivity of slab (εs) and cases of radiuses r � 0.25; 0.3; 0.35 are
displayed. A decreasing value of the spectral peak’s values for
greater contrast of the permittivities is observed. /e inset
panel of Figure 3 shows the curve of the set of spatial fre-
quencies obtained as a result of our numerical simulations
(red line) and the values by applying the formula
f � (c/λ)

��εp

􏽰 (blue line), which is a simple dimension re-
lationship, where εp is a weighted dielectric permittivity of
PCr εp � (εs(Vs − Vc) − εhVc)/(Vs + Vc) [37]. Here, Vs and
Vc are the volume of the slab and holes, respectively.

3.2. Modulated Source for a Hole Slab of Photonic Crystal.
Uniform motion of a modulated source in the medium can
produce radiation when the medium is inhomogeneous, for
example, when the wave packet is transmitted through the
boundary between two media, then transition radiation
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Figure 1: No magnetic photonic crystal slab structure with average dielectric permittivity, where dielectric slab (εs � 3) is perforated by
holes (εh � 3) ordered periodically.
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Figure 2: (Color on line) snapshots the field |Ex|(x, y) in plane (x, y) for a particle moving with v0 � 1.5> vc and frequency source ω0 � 0.
(a) r � 0.25, εs � 3. (b) r � 0.35, εs � 15. /e Cherenkov group cone is well defined with oscillations in the path of the charge.
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Figure 3: Frequency (ks) calculated numerically for different values of εs in a slab of holes εh � 1 for radius r � 0.25, 0.3 and 0.35. It is seen
that for a greater contrast of the dielectric constant, the value of the ks decreases, until reaching the minimum value in ks ∼ 0.43 for r � 0.25
and the maximum ks ∼ 0.87 for r � 0.35. /e graph inside the panels show the case of ks for r � 0.3 where the red curve is the experimental
data, while the blue one shows the results following from the equation εp � (εs(Vs − Vc) − εhVc)/(Vs + Vc). See more details in text.
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Figure 4: /e time dependence for the components (a) Ex, (b) Ey, (c) Hx, and (d) Hz, in various points along the charge path with velocity
v0 � 1.5 and frequency ω0 � 0.
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should be created [24]. In the following, we analyze in more
detail the Cherenkov field for a modulated source with ω0 �

0 and ω0 ≠ 0. A geometry with r � 0.3 and a permittivity of
the slab εs � 3 were studied.

Figure 4 shows the time dependence of field at a long-
time simulation when a particle with velocity v � 1.5 and
modulation ω0 � 0 passes over a slab. /e Figures 4(a) and
4(b) display the components Ex and Ey, respectively. We
observe that Ex,y amplitudes have an oscillating shape shift
with a pedestal defined by a point position. Panel (c), (d)
shows that the field Hy,z (x, y) has smoother shape due to the
continuity of magnetic field in the system.

Figure 5 displays the frequency spectrum of electro-
magnetic oscillations shown in Figure 4 for various points
along the charged path, having the highest spectral peaks at
ks ∼ 0.82. Such oscillations correspond to optical eigen-
modes of PCr excited by the moving charged particle for
components (a) Ex, (b) Ey, (c) Hx, and (d) Hz for values
v0 � 1.5 and ω0 � 0.

Figure 6 shows the 3D spatial structure of the field Ex at
long-time simulation L2 � 10l0 × 10l0, where l0 � 500 nm.

/e cases (a) v0 � 1.5, ω0 � 0; (b) v0 � 1.5, ω0 � 0.82; (c)
v0 � 1, ω0 � 0; (d) v0 � 1, ω0 � 0.82 are displayed. Figure 6
shows that the distribution of the field Ex in PCr is struc-
turally stable, and this is due to discontinuity in the
boundary of holes, for all cases shown.

Figure 7, shows the frequency spectrum of electro-
magnetic oscillations corresponding to Figures 6(c) and
6(d), for various points along the charge path at
x±(1/4), xc, x3/4, xs, xf at x � ± (L/4, 0). In Figure 7(a), we
observe the existence of near-static, no radiating field ar-
tificial peak around ks � 0 [38], in panel (b), ks ≃ 0.82, and
such oscillations correspond to optical eigenmodes in PCr
excited by moving charged particle; this evince the existence
of the Cherenkov radiant field for a modulated source in an
inhomogeneous medium.

Figure 8(a) shows the characteristic Cherenkov cone
when ω0 � 0, and v0 � 1.5. In Figure 8(b), the group cone is
well defined but with fewer oscillations in the charged path,
this is due to the modulation of the particle bunch. /e
situation changes when the velocity of the source is de-
creased. In this case, when v0 � 1, we do not observe the
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Figure 5: (Color on line) the spatial frequency spectrum of electromagnetic oscillations shown in Figure 4 for various points along the
charge path, having highest spectral peaks at ks ∼ 0.82. Such oscillations correspond to optical eigenmodes of PCr excited by the moving
charged particle for components (a) Ex, (b) Ey, (c) Hx, and (d) Hz, for values v0 � 1.5 and ω0 � 0.
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Figure 6: (Color on line) the spatial (x, y) shape of field component Ex for particle that moves at different speeds and modulated
frequencies. (a) v0 � 1.5, ω0 � 0. (b) v0 � 1.5, ω0 � 0.82. (c) v0 � 1, ω0 � 0. (d) v0 � 1, ω0 � 0.82. (a), (c) Oscillations are very similar when
ω0 � 0, and we observe the same amplitude. (b), (d)/e oscillations do not correspond to the positions of the holes in the structure, and this
is due to the modulation of the source. /e number of oscillations and amplitude of Ex has dependence of ω0 ≠ 0.
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Figure 8: (Color on line) snapshots the field Ex(x, y) in plane (x, y) for particle moving with (a)-(b) v0 � 1.5 and (c)-(d) v0 � 1. (a) Field Ex

for ω0 � 0, the Cherenkov cone is well defined with oscillations in the path of the charge. (b) Field Ex for ω0 � 0.82, the Cherenkov emission
is observed, with a lower number of oscillations than subsection (a) due to the modulation of the source. (c)ω0 � 0, oscillations in the path of
the charge; however, in this case, we did not observe the group cone. (d) Cherenkov group cone for ω0 � 0.82 and v0 � 1.
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Figure 9: (Color on line) snapshots the field Ex(x, y) in plane (x, y) for particle bunch moving with parameters (a)
εs � 12.25, v0 � 0.6, ω0 � 0.52; (b) εs � 9, v0 � 0.62, ω0 � 0.57; (c) εs � 6, v0 � 0.8, ω0 � 0.67; (d) εs � 3, v0 � 0.1, ω0 � 0.82. /e Cher-
enkov wave cone is well defined for all cases shown.
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Cherenkov group cone (see Figure 8(c)). In periodic dis-
persive materials, the critical velocity in the medium is not
well defined. We observe that it is possible to extend the
velocity range v0 and observe the group cone for a modu-
lated source, and this situation is shown in Figure 8(d).

Figure 9 shows the group cone for different PCr systems,
when ω0 ∼ ks. Cases are shown: (a) εs � 12.25, ω0 � 0.52; (b)
εs � 9, ω0 � 0.57; (c) εs � 6, ω0 � 0.67; (d) εs � 3, ω0 � 0.82.
Cherenkov group cone is well defined for all cases.

4. Conclusions

/e optical field of Cherenkov by a modulated source in a
perforated slab of photonic crystal is studied with details.
Similar field structures can be produced in various cases of
practical interest; therefore, we can conclude that considered
periodic medium with studied optical properties may by
adequate to this scope. We have shown that the Cherenkov
group cone exists when the modulation frequency ω0 ≠ 0 in a
wider range of charge velocities. In our approach, the slab
parameters are fixed, while the spatial frequency spectrum is
a result of numerical simulations. Such oscillations of the
Cherenkov field correspond to optical eigenmodes of the
photonic crystal excited by the moving modulated source.
Applications may include velocity-sensitive particle detec-
tors, laser oscillation, fiber-optic Cherenkov, detection, and
field radiation generation at selectable frequency ranges.
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Cherenkov radiation in photonic crystal fibers for broadband
visible wavelength generation,” Optics Letters, vol. 35, no. 14,
pp. 2361–2363, 2010.

[18] S. Xiang-Wei, Y. Jin-Hui, K. Wang et al., “Highly efficient
Cherenkov radiation generation in the irregular point of
hollow-core photonic crystal fiber,” Chinese Physics B, vol. 21,
no. 11, Article ID 114102, 2012.
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