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Concrete cracking causes a gradual change in strain distributions along the cross section height of reinforced concrete beams,
which will finally affect their instantaneous stiffness. A method for assessing the stiffness is proposed based on the gradual change,
which is considered through modeling different strain distributions for key sections in cracked regions. Internal force equilibria
are adopted to find a solution to top strains and neutral axes in the models, and then the inertias of the key sections are calculated
to assess the beam stiffness. (e proposed method has been validated using experimental results obtained from tests on five
reinforced concrete beams. (e predicted stiffness and displacements are shown to provide a good agreement with experimental
data. (e instantaneous stiffness is proven to greatly depend on the crack number and depth. (is dependence can be exactly
reflected by the proposed method through simulating the gradual change in concrete strain distributions.

1. Introduction

To ensure the serviceability of reinforced concrete beams,
stiffness control is an important design objective. However,
cracks tend to appear in these beams due to the low tensile
strength of concrete and greatly affect the beam stiffness
through changing the shape or size of cross sections. So in
the last four decades, many researchers focused on evalu-
ating the stiffness of cracked concrete beams and predicting
their deflection.

(e effective inertia of cross section is widely adopted by
engineers in design for the deflection control of cracked
reinforced concrete beams. Branson [1] developed a model
based on a weighted average of two types of inertias, re-
spectively, representing the uncracked and fully cracked
inertias of reinforced concrete cross sections. But compar-
isons with experimental data showed that Branson’s model
underestimated the instantaneous deflection of lightly
reinforced beams and slabs after cracking [2,3]. Bischoff [4]
modified Branson’s model by introducing empirical factors
that effectively change the ratio of the two inertias. Bischoff’s

model is recommended by fibModel Code 2010 [5], which is
now the most comprehensive code on concrete structures
including their complete life cycle and also a basis for their
future codes. (ese models depend on empirical data to
determine the weight of the cracked inertia and do not
consider actual cracking patterns, so they just can be used at
design stages.

To consider the effect of crack location on the beam
stiffness, François et al. [6] proposed a macro-finite-element
method characterized by the homogenized average inertias
of cross sections, which were calculated based on the concept
of a transfer length necessary for the transmission of tensile
loads from steel to concrete, thanks to a steel-concrete bond.
Castel et al. [7] conditioned a cracked span by using cracking
moments and maximum moments and developed the
macro-finite-element method through assuming the dis-
tribution of steel and concrete strains in the cracked span. By
using a damage variable Dccc, Castel et al. [8] took into
account the effects of both primary cracks and damage on
the bond in the inertia calculation. Murray et al. [9] con-
sidered historical loading to include the time-dependent
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effects of creep and shrinkage in Castel et al.’s method. Xu
et al. [10] modified Dccc by using crack widths and creep
coefficients to assess the time-dependent stiffness.

(emodels of François et al. [6] and Castel et al. [7] were
characterized by homogenized average inertias, and the
inertias of cross sections near cracks were assumed to stay
constant. So the strain distributions of these sections were
also considered to be unchangeable. In fact, due to the crack
presence, these sections do not remain plane, and their strain
distributions show obvious nonlinearity [11,12]. Over a
sufficient distance from a crack, Saint-Venant’s principle
indicates that the concrete cross sections should exhibit a
gradual transition from highly nonlinear deformation to
linear deformation [13].

(erefore, the strain distributions of the sections change
gradually near the cracks, and their neutral axes and inertias
also vary in cracked regions. To exactly analyze the in-
stantaneous stiffness of cracked reinforced concrete beams,
the change in the strain distributions is taken into account in
this paper. Key sections are selected in the region affected by
cracks, and different nonlinear distributions are modeled for
the key sections to consider the change. With the aid of
internal force equilibria, top strains and neutral axes in the
models are solved. Based on the solution, the section inertias
can be exactly calculated to assess the instantaneous stiffness.

2. StiffnessFormulation forCrackedReinforced
Concrete Beams

2.1. %e Effect Region. A reinforced concrete beam with
distributed cracks is considered and assumed to be subjected
to four-point bending, as shown in Figure 1. Due to the crack
presence, concrete strain distribution is not linear along the
height of cross sections, so a region possessing nonlinear
strain distribution can be viewed as the region affected by the
crack. (e region affected by Crack I in Figure 1 is taken as
an example to illustrate the region analysis. It is located
around Crack I, but its length is still unknown.

To determine the length, the beam is assumed to be cut
by Section C where Crack I lies and Section D where the
external load is located. (en, the free body of the beam CD
is produced, as shown in Figure 2, and equivalent loads
acting on the cuts are both equal to the momentM0, which is
the product of the external load P0 and its distance lp to the
right support.

(e body CD is only subjected to the moment M0 at its
ends. According to Saint-Venant’s principle [14], for each
end, the concrete strains of sections near it are affected by the
local distribution of the loads and do not agree with the
plane-section hypothesis. (e length of a local region where
these effect sections are located is not bigger than the load
length [15]. At Section C, the equivalent load is a resultant
force of the stresses of concrete and steel bars, so the load
length is not bigger than the beam height h. As a result, the
length of the local region is also smaller than h. To simplify
the analysis, the length is set as the section height h.

As the crack is located at one end of the body, the local
distribution of the equivalent load at this end is directly
related to the crack. As a result, the local region near this end

affected by the load can be viewed as a region affected by the
crack. Because the length of the local region is h, the length lef
of the effect region in the free body is also equal to h.

(e free body is on the right side of Crack I, so the right
half of the entire region affected by the crack is determined.
(e entire region can be considered to be bilaterally sym-
metrical about the crack, so its length is 2lef. For other cracks,
the effect regions can be obtained by using the same method.

2.2. Models of Nonlinear Strain Distribution for Key Sections.
Concrete strain distributions change with their axial dis-
tances to the studied crack. For the section at the end of the
effect region, the entire section bears the bending moment,
and its strain distribution is linear along the section height.
However, for the cracked section, only the concrete above
the crack tip bears the moment, and its strain distribution
exhibits high nonlinearity due to strain concentration near
the tip, as shown in Figure 3.

To describe this change process, three types of key
sections, denoted by Section 1, Section 2, and Section 3, are
selected in the effect region, and different nonlinear strain
distributions are modeled for these sections. Section 1 is the
cracked section. Section 2 is closer to the crack compared to
Section 3. (e detailed characteristics of these sections will
be studied as follows.

2.2.1. Strain Distribution of Section 1. (e crack tip appears
in this section, and concrete strains near the tip are con-
centrated, so the strain distribution of this section is highly
nonlinear. It is assumed that concrete strains above the
neutral axis are linear to the height, while strains between the
neutral axis and crack tip are proportional to the square root
of their vertical distances to the neutral axis, as shown in
Figure 3. So the concrete strain distribution can be written as

εc(y) �

εct
h − yn

y − yn( , y>yn,

εcp
y− yn

dc− yn
 

1/2
, dc <y≤yn,

0, y≤dc,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1)

where εct and εcp denote the concrete strains at the section
top and crack tip, respectively, and yn is the y-axis coordinate
value of the neutral axis.

In this section, concrete strains near the beam bottom
are equal to zero. But the steel bar is subjected to a large
tensile force and is debonding from the concrete. (e steel
strain is calculated according to the tension force transfer
between the bar and concrete in an effective area around the
bar. Wu and Gilbert [16] found that only concrete within a
distance of 1.5db from the bar surface influences the bond-
slip relationship, where db denotes the bar diameter, so the
depth dea of the effective area is assumed to be equal to 3db.
(e sum of the tensile forces of the bar and concrete in the
effective area is considered to stay constant for the key
sections and can be expressed as follows:
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Etεt2At + EcεcbsAce � Etεt1At, (2)

where εcbs is the concrete strain in the effective area of
Section 2, εt1 and εt2 denote the steel strains of Section 1 and
Section 2, respectively, Ace is the effective area, and Et and Ec
are the elastic moduli of steel and concrete. So εt1 can be
calculated according to the following equation:

εt1 � εt2 +
EcεcbsAce

EtAt
. (3)

(e calculation of εt2 will be introduced below.

2.2.2. Strain Distribution of Section 2. Section 2 is close to
the crack, and there is a slipping between the steel bar and
concrete, so the steel strain is not equal to the concrete
strain εcl at the level of the bar. However, Manfredi and
Pecce [17] considered that a section close to the crack
possessed a characteristic that the concrete in compres-
sion and steel in tension could be strained according to the
plane-section hypothesis, as shown in Figure 3. In this
paper, Section 2 is considered to have such a character-
istic, and its distance to the crack is assumed to be 0.2lef.
(erefore, the steel strain εt2 can be calculated based on
the hypothesis as follows:

εt2 �
εct

h − yn
dc − dt( . (4)

(e concrete strain distribution is still nonlinear along
the section height. An inflection point appears at the po-
sition whose height is equal to the crack depth dc because
the crack appearance causes distinct strain distributions
above and below the crack tip. (e bottom strain is small
as this section is close to the crack, and the strains below
the inflection point follow a nonlinear distribution, as
shown in Figure 3. (e concrete strain distribution can be
expressed as

εc(y) �

εct
h − yn

y − yn( , y> dc,

εct
h − yn

dc − yn(  − εcb 
y

dc
 

3
+ εcb, y≤ dc,

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(5)

where εcb is the bottom strain.

2.2.3. Strain Distribution of Section 3. In the three key
sections, Section 3 is the farthest from the crack.(e distance
of Section 3 to the crack is considered to be a transfer length
lt, which is an embedment length from the crack to the first
point at which the strains of steel and concrete are equal to
each other. According to fib Model Code 2010 [5], lt can be
calculated by
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Figure 2: Free body of the beam segment.
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Figure 1: A reinforced concrete beam with cracks.
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Figure 3: Models of strain distribution in the three sections: (a) Section 1; (b) Section 2; (c) Section 3.
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lt � c +
fctmdb

4τbmsρef
, (6)

where c denotes the thickness of the concrete cover, ρef
denotes the effective reinforcement ratio, fctm is the mean
tensile strength of concrete, and τbms is the bond strength
between steel and concrete; for stabilized cracking stages,
τbms � 1.8fctm. (erefore, the steel strain εt3 of this section is
equal to the concrete strain εcl at the steel level.

As Section 3 is the farthest from the crack, the crack
effects on it are weakest. A bilinear distribution is used to
simulate the concrete strain distribution, as shown in Fig-
ure 3. An inflection point still appears at the position whose
height is equal to the crack depth dc. So the strain distri-
bution can be expressed as

εc(y) �

εct
h − yn

y − yn( , y>dc,

εct
h − yn

dc − yn(  − εcb 
y

dc
+ εcb, y≤dc.

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(7)

(e sections between two cracks can be considered to be
only affected by the crack closer to them, and their strain
distribution also can be analyzed by using the above method.
However, key sections to be selected may change with the
crack spacing ls. When ls is larger than 2lef, the section at the
end of the effect region can be taken as another key section.
(e strain distribution of this section is not affected by the
cracks and can be obtained by using the plane-section hy-
pothesis. When ls is between 2lt and 2lef, the three types of
key sections, Section 1, Section 2, and Section 3, should be
considered.When ls is smaller than 2lt, the two types, Section
1 and Section 2, are considered.

2.3. Solution of Unknowns in the Models. Although different
models are built to describe the change in concrete strain
distributions, there are still some unknowns in these models,
such as the bottom strain εcb, the top strain εct, and the
neutral axis location yn. To solve so many unknowns, the
bottom strain εcb is needed to be modeled according to its
change in the effect region and the internal force equilibria of
the cross section are used.

For sections beyond the effect region, concrete strains
accord with the plane-section hypothesis, and the bottom
strain can be solved by using the classical beam theory as

εcb0 �
M0

EcI0
yn, (8)

where I0 denotes the inertia of transformed sections unaf-
fected by cracks, including the contribution of steel. How-
ever, for the cracked section, its bottom strain is equal to 0, as
only the upper part of the section bears the internal force,
and there is no load acting on the crack interface. (erefore,
the bottom strains change from εcb0 to 0 in the effect region.

(is change can be described by a quadratic polynomial
[7]. (e values of the bottom strains at the crack and the end

of the effect region are equal to 0 and εcb0, respectively.
Besides, the bottom strains at sections beyond the effect
region are still εcb0, which indicates that the derivative of
bottom strains dεcb/dx at the end is equal to 0. By
substituting these boundary conditions into the quadratic
polynomial, the bottom strains are expressed as

εcb(x) � εcb0
2 x − lc( 

lef
−

x − lc( 
2

l2ef
 , lc ≤ x≤ lc + lef( ,

(9)

where lc is the distance of the crack to the left support. (e
bottom strain is assumed to be symmetrical to the crack.

As a result, two unknowns are left in the models of strain
distribution: the top strain εct and the location yn of the
neutral axis. (en, the internal force equilibria of the cross
section are used.


Ac

Ecεc(y)dA + EtεtAt � 0, (10a)


Ac

Ecεc(y) y − yn( dA + EtεtAt dt − yn(  � M0, (10b)

where Ac is the concrete area. Based on equations (10a) and
(10b), the unknowns will be calculated successively for the
key sections.

For Section 3, the bottom strain can be obtained from
equation (9), and the steel strain εt can be expressed in terms
of concrete strains based on equation (7).

εt1 � εcl �
εcb h − yn(  − εct dc − yn( 

dc h − yn( 
dc − dt(  + εct

dc − yn

h − yn
.

(11)

By substituting equations (7) and (11) into the force
equilibrium equations (10a) and (10b), the following
equations are obtained:


Acu

Ec
εct

h − yn
y − yn( dA + 

Acb

Ec εcp − εcb 
y

dc
+ εcb dA

+ EtεtAt � 0,

(12a)


Acu

Ec
εct

h − yn
y − yn( 

2dA + 
Acb

Ec εcp − εcb 
y

dc
+ εcb 

· y − yn( dA + EtεtAt dt − yn(  � M0,

(12b)

where Acu and Acb denote concrete areas above and below
the inflection point, respectively. Equations (12a) and
(12b) are a set of simultaneous equations involving two
variables. By solving equations (12a) and (12b), the two
unknowns are determined, and the top strain and neutral
axis are obtained.

For Section 2, the steel strain can be expressed using the
concrete strain, as shown in equation (4). By substituting
equation (4) and equation (5) into equations (10a) and (10b),
an equation set similar to equations (12a) and (12b) is

4 Advances in Materials Science and Engineering



obtained and then solved to yield the top strain and neutral
axis.

(e neutral axis of Section 1 can be considered to have
the same height as that of Section 2 due to strain concen-
trations near the crack tip. From Figure 3, it is found that the
concrete tensile strains are much bigger at Section 1 than at

Section 2 because of the concentration effect, so the tensile
force acting on the concrete at Section 1 is larger. Besides, the
steel strain is also bigger at Section 1 according to equation
(3). (erefore, the total tensile force is larger at Section 1.

As the beam is subjected to the bending, the resultant
force of compressed strains should be large to balance the
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Figure 4: Layout of the reinforcement and loading arrangement (unit: mm).
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Figure 5: Cracking patterns of the test beams (solid lines� 1st stage; dotted lines� 2nd stage).
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tensile force, and the compressed area is not smaller at
Section 1. So the compressed area should not decrease near
the crack, and the neutral axes of sections close to the crack
are almost at the same height. (is phenomenon was val-
idated by numerical studies [11,12].

However, there is a new unknown in the distribution
model of Section 3: the concrete strain εcp at the crack tip. So
two unknowns are still needed to be solved in themodels: the
concrete strains εct and εcp. Equation (1) and equation (3) are
substituted into equations (10a) and (10b), and an equation
set similar to equations (12a) and (12b) is obtained. To solve
this set, εct and εcp are obtained.

2.4. Formulation of Stiffness Matrix. In the effect region,
concrete strains change linearly along the section height
from the beam top to the neutral axis according to the strain
distribution models in Figure 3. So the inertias Ieq of studied
sections can be expressed using the top strain and neutral
axis as

Ieq �
M0

Ecεct
h − yn( . (13)

Using equation (13), the inertias are exactly obtained for
the key sections.(e variation curve of section inertias in the
effect regions can be obtained by applying the piecewise
polynomial fitting of the inertias obtained by equation (13),
and the changing trend of inertias can be represented by the
fitted curve.

(e finite-element method is used to analyze the stiffness
characteristics of cracked concrete beams in this paper. Each
element is viewed as a beam element with four degrees (node

displacements at each end, transversal displacement, and
rotation), and its local stiffness matrix can be written as

Kle � 
1

0

EcIf(ξ)

l3me

d2N(ξ)

dξ2
 

Td2N(ξ)

dξ2
dξ, (14)

where If is the fitted curve of inertias along the element
length, lme denotes the element length, ξ is equal to (x− xml)/
lme, where xml is the x-axis coordinate of the left node of the
element, and N is the Hermite interpolation function [18].

(e local stiffness matrix of each element is assembled as
usual by the addition of stiffness coefficients corresponding
to the same node, and then the global stiffness matrix of the
cracked beam is obtained. (is global matrix can be used to
calculate the displacements of the beam subjected to a given
load.

3. Experimental Validation

3.1. Experimental Program. To test the proposed method, a
comparison is made with experimental data from Castel
et al. [8] on the instantaneous stiffness of five reinforced
concrete beams labeled B1, B2, B3, B5, and B6. All the beams
were simply supported beams with a span of 3.3m, and their
cross sections were 400× 300mm rectangular sections. (e
reinforcement layout of the beams is shown in Figure 4. (e
elastic modulus Ec of concrete measured in standard con-
ditions was 33GPa, and the flexural tensile strength fct f was
3.5MPa. (e yield stress fy of steel bars was 500MPa.

Table 1: Measured data of the cracking pattern for the beam B1 at
the 1st test stage (unit: m).

Number
South side North side

Location Depth Spacing Location Depth Spacing
1 1.159 0.149 — 1.083 0.119 —
2 1.296 0.119 0.137 1.302 0.168 0.219
3 1.605 0.218 0.309 1.512 0.098 0.210
4 1.761 0.168 0.156 1.708 0.165 0.196
5 2.004 0.186 0.244 2.010 0.124 0.302
6 2.148 0.051 0.144 2.151 0.161 0.141

Table 2: Measured data of the cracking pattern for the beam B1 at
the 2nd test stage (unit: m).

Number
South side North side

Location Depth Spacing Location Depth Spacing
1 — — — 0.916 0.091 —
2 1.163 0.225 — 1.096 0.228 0.181
3 1.302 0.207 0.139 1.314 0.267 0.218
4 1.615 0.273 0.313 1.527 0.250 0.212
5 1.768 0.243 0.153 1.733 0.264 0.207
6 — — — 1.865 0.092 0.132
7 2.015 0.274 0.247 2.017 0.180 0.151
8 2.157 0.181 0.142 2.165 0.263 0.149
9 — — — 2.406 0.132 0.240

Table 3: Distances of the selected key sections to the left support of
the beam B1 (unit: m).

Number
1st stage 2nd stage

South side North side South side North side
1 0.759 0.683 0.763 0.516
2 0.959 0.883 0.963 0.716
3 1.079 1.003 1.083 0.836
4 1.159 1.083 1.163 0.916
5 1.296 1.163 1.233 0.996
6 1.376 1.222 1.302 1.016
7 1.525 1.302 1.382 1.096
8 1.605 1.382 1.535 1.176
9 1.683 1.432 1.615 1.235
10 1.761 1.512 1.768 1.315
11 1.841 1.592 1.848 1.395
12 1.924 1.628 1.935 1.447
13 2.004 1.708 2.015 1.527
14 2.148 1.788 2.086 1.607
15 2.228 1.930 2.157 1.653
16 2.348 2.010 2.237 1.733
17 2.548 2.081 2.357 1.799
18 — 2.151 2.557 1.865
19 — 2.231 — 2.017
20 — 2.348 — 2.165
21 — 2.551 — 2.245
22 — — — 2.326
23 — — — 2.406
24 — — — 2.486
25 — — — 2.606
26 — — — 2.806
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All the beams were tested in four-point bending for all
test cases, as shown in Figure 4.(e test of the instantaneous
stiffness was divided into two stages. (e 1st stage test was
carried out after a precracking loading test, which was done
at 28 days after casting to establish a stabilized cracking
pattern. In the first stage test, each beam was subjected to 10
loading and unloading cycles, and the cracking pattern and
displacements were measured in each cycle. (e cracking
pattern is shown by the solid lines in Figure 5.

(en, the beams were subjected to a sustained load for a
period of 6 months. After 6 months, the cracking pattern,
including the old cracks with a larger depth and new cracks
that formed during the period of sustained loading, was
measured, as shown in Figure 5 by the dotted line. (e 2nd
stage test was implemented, and the beams were then
subjected to the same cycles of loading and unloading to
again measure the instantaneous stiffness.

3.2. Validation and Discussion. In the stiffness assessment,
crack spacing is an important parameter. However, cracks in
the tests were not vertical and had curved shapes. At dif-
ferent loading stages, cracks appeared with different spacing
and depths. To objectively estimate the crack spacing, a
method suggested by Gribniak et al. [19] is adopted in this
paper. In this method, selected points in the cracks are
mapped to the x-axis; then, a clustering technique is used to

identify the points on the x-axis that are related to the same
crack, and the average distance of the adjacent point cluster
is taken as the crack spacing.

Besides, cracks do not show exactly the same pattern
when observed from either side of the beams, so the crack
spacing should be estimated from both the south and north
sides. (e inertias along the beam span also should be
assessed from the two sides.

(e beam B1 is taken as an example to illustrate the
assessment process. (e measured depths and estimated
locations of cracks in the beam B1 are shown in Tables 1 and
2. According to these depths and locations, the key sections
in the region affected by cracks are determined, as shown in
Table 3, and their nonlinear strain distributions are modeled
using the proposed method. By solving these models, the
concrete strains and neutral axis are obtained, and the in-
ertias of the key sections are calculated by using equation
(13). (en by applying the piecewise polynomial fitting of
these inertias, the variation curves of inertias Ifs and Ifn are
estimated for the north and south sides. Finally, the average
of the two fitted inertia curves is taken as the inertia of the
beam B1, as shown in Figure 6.

From Figure 6, it is observed that the strains do not
remain constant near the cracks. (e closer the studied
section is to the cracks, the smaller its bottom strain becomes
but the larger its top strain gets. (e top strains reach their
local maximum at every crack. Besides, the maximums are
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Figure 6: Calculated results of the key sections in the beam B1 (the load P � 9.09 kN): (a) bottom strains; (b) top strains; (c) neutral axes; (d)
inertias for two sides; (e) average inertias.
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larger for deeper cracks. (e neutral axis also changes
continuously along the beam span and becomes higher as it
gets closer to the cracks.

As the strains and neutral axis change gradually in the
effect regions, the inertias Ifs and Ifn and their average vary
continuously according to equation (13). (e inertias are
compared with the homogenized inertias calculated by Xu
et al. [10] in Figure 6(e), which were obtained by assuming
that inertias and strain distributions were constant near
cracks. In fact, more and more studies show that the strain
distributions near cracks change gradually [11–13], so the
changing inertias are more suitable for cracked beams.

From Figure 6(e), it is also seen that the beam inertias are
smaller at the 2nd stage than at the 1st stage.(e larger depth
of the old cracks at the 2nd stage is considered to be the main
reason. Although there are new cracks that formed during
the period of sustained loading, their number and depth are
both small. So the effect of the new cracks on the inertias is
small. However, the larger depth of the old cracks at the 2nd
stage causes the bigger top strains and higher neutral axis, as
shown in Figures 6(b) and 6(c). As a result, the inertias at the
2nd stage are smaller. Similar phenomena also can be ob-
served in the inertias of the other beams shown in Figure 7,
which are also calculated through the proposed method.

Based on these inertias, the stiffness matrices of these
cracked beams are estimated by using equation (14) and
adopted to calculate the beam displacements. (ese

calculated results are compared with the data measured in
the experiments, as shown in Figure 8. It is found that the
calculated results provide a good agreement with the
measured data for both test stages. If an equivalent stiffness
is considered to be equal to the load divided by the dis-
placement, it is evaluated by using the experimental data and
the calculated displacements, respectively. (e evaluated
results are compared with the stiffness obtained by Xu et al.
[10], as shown in Table 4.

From Table 4, it is seen that, at the 2nd stage, the dif-
ference ratios of the experimental and calculated stiffness are
not more than 4%, while the ratios at the 1st stage increase
but still are not more than 7%, which indicates the exactness
of the proposed method for assessing the stiffness of rein-
forced concrete beams.

For the beams B5 and B6, the stiffness obtained by the
proposed method is closer to the experimental stiffness,
compared to the results predicted by Xu et al. [10]. It is
because Xu et al. [10] assessed the stiffness using the coef-
ficients of shrinkage and creep, but these coefficients had an
error for the beams B5 and B6 [10]. On the contrary, the
instantaneous stiffness is taken as a deformation resistance at
an instant, and the shrinkage and creep are long-term de-
formations, so the shrinkage and creep could not take their
effects at an instant, and their effects are not considered in
this paper. (erefore, the results obtained by the proposed
method are not disturbed by the error.
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Figure 7: Inertias of key sections in the effect regions for the beams (a) B2, (b) B3, (c) B5, and (d) B6.
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For the same beam, the stiffness is smaller at the 2nd
stage than at the 1st stage, which coincides with the smaller
inertia at the 2nd stage shown in Figure 7. As mentioned
earlier, the larger crack depth at the 2nd stage is the main
reason for the smaller inertia, so it also causes the smaller
stiffness.

(e stiffness of the beam B3 is smaller compared to that
of the beam B1. It is due to the fact that the beam B3 has
more cracks and its entire region affected by the cracks is
longer. As the inertias of sections in the effect region de-
crease, the stiffness of the beam B3 becomes smaller. Similar
phenomena also can be found by comparing the stiffness of
the beams B2 and B6.

(erefore, the instantaneous stiffness of cracked rein-
forced concrete beams greatly depends on the crack depth

and number. (e proposed method models different non-
linear strain distributions for key sections to consider the
gradual change in strain distributions caused by cracks, and
its calculated results can exactly reflect the dependence of the
beam stiffness on the cracking pattern, including the crack
depth and number.

4. Conclusions

(e following conclusions can be drawn from this paper:

(1) A method for assessing the instantaneous stiffness of
reinforced concrete beams is proposed based on the
gradual change in concrete strain distributions near
cracks, which is considered through modeling
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Figure 8: Comparison between calculated and experimental displacements of the beams (a) B1, (b) B2, (c) B3, (d) B5, and (e) B6.

Table 4: Calculated and experimental stiffness of the test beams (unit: kN/mm).

Test beams
1st stage 2nd stage

Kexp Kcal1 Kcal2 Kcal1/Kexp Kcal2/Kexp Kexp Kcal1 Kcal2 Kcal1/Kexp Kcal2/Kexp

B1 40.79 43.80 40.69 1.07 1.00 31.43 31.20 33.39 0.99 1.06
B2 43.05 41.94 42.02 0.97 0.98 31.00 29.63 32.74 0.96 1.06
B3 29.01 30.85 30.01 1.06 1.03 23.57 23.49 22.14 1.00 0.94
B5 38.01 35.79 33.61 0.94 0.88 31.22 31.56 31.22 1.01 1.00
B6 36.50 33.83 31.50 0.93 0.86 23.17 23.85 24.80 1.03 1.07
Kexp denotes the experimental stiffness, Kcal1 is the beam stiffness calculated by the proposed method, and Kcal2 denotes the beam stiffness calculated by Xu
et al. [10].
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different strain distributions for key sections in the
regions affected by the cracks. With the aid of in-
ternal force equilibria, the top strain and neutral axis
are solved. Based on the solution, the section inertias
can be exactly calculated to assess the beam stiffness.

(2) (e effectiveness of the proposed method has been
validated experimentally using five reinforced con-
crete beams with cracks. At the 1st and 2nd stage
tests, the difference ratios of the experimental and
estimated stiffness are not more than 7% and 4%,
respectively.

(3) (e instantaneous stiffness is taken as a deformation
resistance at an instant, and its value is proven to
greatly depend on the crack depth and number. (e
proposed method can exactly reflect this dependence
through simulating the change in concrete strain
distributions near cracks.

(4) (e proposed method only utilizes the information
of the current cracking pattern, including the crack
number and depth, and does not require the
knowledge on the previous load history, shrinkages,
and creeps. So it is applicable to assess the instan-
taneous stiffness of existing cracked reinforced
concrete beams under stabilized cracking stages.
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