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By using the crack line analysis method, this paper carries out an elastic-plastic analysis for mode I cracks under plane stress
condition in an elastic perfectly plastic solid and obtains the general form of matching equations of the elastic stress field and the
plastic stress field near the crack line in rectangular coordinate form. .e analysis in rectangular coordinates in this paper avoids
the conversion from rectangular coordinates into polar coordinates in the existing analysis and greatly simplifies the power series
forms of the elastic stress field and plastic stress field near the crack line during the solving process. Furthermore, by focusing on a
new problem, i.e., the center-cracked plate with finite width under unidirectional uniform tension, this paper obtains the elastic
stress field, plastic stress field, and the length of the elastic-plastic boundary near the crack line by using the general form of the
solution. When the dimensions of the plate tend to be infinite, the results of this paper are consistent with those obtained for an
infinite plate with amode I crack. Furthermore, the variation curves of the length of the elastic-plastic boundary are also delineated
in different sized center-cracked plates, and the results are compared with those obtained under the small-scale yielding
conditions. .e solving process and the results in this paper abandon the small-scale yielding conditions completely. .e method
used in this paper not only makes the solving process simpler during the elastic-plastic analysis near the crack line but also
enriches the crack line analysis method.

1. Introduction

In linear elastic fracture mechanics [1–3], the stress intensity
factor is the most critical parameter for the analysis of the
elastic stress field near the crack tip [4–8]. However, in
elastic-plastic fracture mechanics [1, 2, 9], the conventional
crack tip asymptotic analysis method is widely used for the
elastic-plastic analysis near the crack tip region [10–17]; such
a method is confined by the small-scale yielding conditions.
Nowadays, fracture mechanics has been further developed in
analyzing different media with cracks and inclusions under
complex conditions, and many important results have been
obtained [18–24]. .e crack line analysis method, which
mainly focuses on the elastic and plastic fields near the crack
line, is an effective way for elastic-plastic analysis of cracks.
In 1984, the crack line analysis method was first proposed by
Achenbach et al. [25, 26], but the results obtained were still
under the small-scale yielding conditions. In 1994, Yi et al.

developed the crack line analysis method by abandoning the
small-scale yielding conditions [27–32].

.e basic way of the crack line analysis method is as
follows: to obtain the general solution of the plastic stress
field near the crack line and then match it with the exact
solution of the elastic stress field at the elastic-plastic
boundary near the crack line. It abandons the small-scale
yielding assumption, and thus, the related parameters such
as the length of the plastic zone and the unit normal vector of
the elastic-plastic boundary can be obtained. A series of
problems have been solved by using the crack line analysis
method [33–37]. Moreover, such a method can be extended
for elastic-plastic analysis near the crack surface [38, 39].
However, as polar coordinates have to be used during the
elastic stress field analysis or elastic-plastic stress field
analysis near the crack tip, people have been accustomed to
the use of polar coordinates in such analysis, so they nat-
urally pick up polar coordinates when it comes to the
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analysis of the stress field near the crack line, without re-
alizing that the solving process is quite complex as both
expressions of the elastic and plastic stress fields in rect-
angular coordinates must be converted into polar coordi-
nates. .us, almost all the existing studies of the elastic-
plastic analyses of the stress field near the crack line are
carried out in polar coordinates.

By using polar coordinates, Yi and Yan have given the
general steps of the elastic-plastic analysis near the crack line
for the mode I crack under plane stress condition and have
presented an instance of the solving process and the results
[30].

In fact, the elastic and plastic fields near the crack line
can be expressed in rectangular coordinates originally,
without the necessity for further conversion into polar
coordinates. In this paper, two aspects of the work are
conducted: first, focusing on the general equations studied
by Yi and Yan [30], this paper uses rectangular coordinates
to carry out the elastic-plastic analysis near the crack line and
obtains the general form of the matching equations of the
elastic stress field and the plastic stress field. In our analysis,
the expression of the elastic-plastic boundary near the crack
line is given in rectangular coordinates, so are the expres-
sions of the elastic and the plastic stress fields. .e adoption
of the rectangular coordinates reduces the complexity
caused by the unnecessary conversion from rectangular
coordinates into polar coordinates, especially the complexity
in the expressions and conversion during the solving pro-
cess. Second, by using the general form of the matching
equations, a new problem, i.e., a center-cracked plate with
finite width, is analyzed in this paper. For the new problem,
the expression of the elastic field near the crack line is
established, which satisfies not only the basic equations and
the boundary conditions of the crack surface but also the
boundary conditions obtained by the transformation of
equilibrium conditions near the crack line. It is sufficiently
precise near the crack line. .rough matching the suffi-
ciently precise elastic stress field and the general solution of
the plastic stress field at the elastic-plastic boundary by using
the general form of the matching equations, the matching
results near the crack line are obtained for the center-
cracked plate with finite width. When the dimensions of the
plate with finite width tend to be infinite, the solution to a
corresponding infinite plate can thus be obtained. .is
solution, if converted to polar coordinates, is consistent with
the solution by Yi and Yan [30], but the solving process is
substantially simplified. .e solving process and results in
this paper completely abandon the small-scale yielding
conditions. In addition, the variation curves of the length of
the elastic-plastic boundary are also delineated in different
sized center-cracked plates, and the results are compared
with those obtained under the small-scale yielding
conditions.

2. The Plastic Stress Field near the Crack Line in
Rectangular Coordinates

For a mode I crack under plane stress condition in an elastic
perfectly plastic solid, the nonzero stress components are,

respectively, σx, σy, and σxy, and the equilibrium equations
are

zσx

zx
+

zσxy

zy
� 0, (1a)

zσxy

zx
+

zσy

zy
� 0. (1b)

.e Tresca yielding condition is

σx + σy

2
+

��������������
σx − σy

2
 

2
+ σ2xy



� 0, (2)

where k is the yield stress in shear, which is related with the
yield stress σs in tension as

k �
σs

2
. (3)

Near the crack line (Figure 1), the stress components σx,
σy, and σxy of the plastic stress field can be expressed by
Taylor series near the crack line by the following forms (Yi
and Yan [30]):

σx � p
(p)
0 (x) + p

(p)
2 (x)y

2
+ p

(p)
4 (x)y

4
+ O y

6
 , (4a)

σy � q
(p)
0 (x) + q

(p)
2 (x)y

2
+ q

(p)
4 (x)y

4
+ O y

6
 , (4b)

σxy � s
(p)
1 (x)y + s

(p)
3 (x)y

3
+ O y

5
 . (4c)

In equations (4a)–(4c), superscript (p) is plasticity.
By substituting equations (4a)–(4c) into equilibrium

differential equations (1a) and (1b) and Tresca yielding
condition (2) and omitting y4 and the higher-order infin-
itesimals, p0, p2, q0, q2, s1 and s3 can be solved exactly. By
substituting them back into equations (4a)–(4c), the general
solution of the plastic stress field near the crack line can be
obtained in rectangular coordinates. Equations (5a)–(5c) are
the results of the plastic stress field expressed in rectangular
coordinates given by Yi and Yan [30]:

σx �
A

x + L
+ 2k  +

C

(x + L)3
+

D

(x + L)4
 y

2
+ O y

4
 ,

(5a)

σy � 2k +
A

(x + L)3
 y

2
+ O y

4
 , (5b)

σxy �
A

(x + L)2
 y +

C

(x + L)4
+
4
3

D

(x + L)5
 y

3
+ O y

5
 ,

(5c)

where A, C, D, and L are undetermined integral constants.
Equations (5a)–(5c) were expressed in rectangular co-

ordinates in their first appearance. However, in order to
match the solution of the elastic stress field with that of the
plastic stress field in polar coordinates, through the relationship
between rectangular coordinates and polar coordinates
expressed in Taylor series, that is,x � r cos θ � r[1 − (1/2)θ2 +
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O(θ4)] and y � r sin θ � r[θ− (1/6)θ3 + O(θ5)], Yi and Yan
transformed equations (5a)–(5c) from rectangular coordinates
into polar coordinates as shown in [30] as follows, among
which lots of deduction and calculation were conducted:

σx �
A

r+L
+2k +

Ar

2(r+L)2
+

Cr2

(r+L)3
+

Dr2

(r+L)4
 θ2 +O θ4 ,

(6a)

σy �2k+
Ar2

(r+L)3
 θ2 +O θ4 , (6b)

σxy �
Ar

(r+L)2
 θ

+
Ar2

(r+L)3
−

Ar

6(r+L)2
+

Cr3

(r+L)4
+
4
3

Dr3

(r+L)5
 θ3 +O θ5 .

(6c)

By comparing the expressions of σx, σy, and σxy in
equations (5a)–(6c), it can be found that the expression of σx

in rectangular coordinates is one term less in quadratic terms
than that in polar coordinates; the expression of σy rect-
angular coordinates is similar to that in polar coordinates;
and the expression of σxy in rectangular coordinates is two
terms less in cubic terms than that in polar coordinates.

.e conversion of the expression of the plastic stress field
near the crack line from rectangular coordinates into polar
coordinates not only leads to more solving work but also the
complexity of expressions. Moreover, the complex solution
will further lead to the complex process of matching the
expression of the plastic stress field at the elastic-plastic
boundary near the crack line.

3. The Rectangular Form of the Elastic-Plastic
Boundary near the Crack Line

.e elastic-plastic boundary near the crack line can also be
expressed directly in rectangular coordinates. By the premise

that the elastic-plastic boundary is symmetric to and con-
tinuous near the crack line y � 0, the boundary xP can be
expanded by power series in rectangular coordinates near
the crack line as follows:

xp � x0 + x2y
2

+ O y
4

 , (7)

where x0 is the length of the plastic zone along the crack line.
However, Yi and Yan [30] have given elastic-plastic

boundary near the crack line in polar coordinates as
rp � r0 + r2θ

2 + O(θ4), which is not needed in the analysis in
rectangular coordinates in this paper.

According to equation (7), the tangent vector of any
point on the elastic-plastic boundary near the crack line can
be expressed as (1, (dy/dx)) which equals to (2x2y +

O(y3), 1). .erefore, the normal vector of that point is
(1, − 2x2y + O(y3)). .en, the unit normal vector of any
point on the elastic-plastic boundary near the crack line can
be expressed as n � (nx, ny), where

nx � 1 − 2x
2
2y

2
+ O y

3
 , (8a)

ny � − 2x2y + O y
3

 . (8b)

.e deducing process shows that compared with the
polar coordinates, the rectangular coordinates facilitate the
work in obtaining the unit normal vector as it can be ob-
tained directly through the definition of the tangent and
normal vectors or through the implicit function. However,
in polar coordinates, more solving work is involved to obtain
the unit normal vector as it must project the function onto
axis x and y separately. As a result, Yi and Yan [30] have
given the expressions of nx and ny in polar coordinates as
nx � 1 − (1/2)(1 − 2(r2/r0))

2θ2 + O(θ4) and ny � (1 − 2
(r2/r0))θ + O(θ3), which are quite complex. It can thus be
seen that using rectangular coordinates to solve the vector
obviously simplifies the matching process.

4. The Rectangular Form of the Plastic Stress
Field at the Elastic-Plastic Boundary near the
Crack Line

In the above analysis, the general solution of the plastic stress
field near the crack line in rectangular coordinates (5a)–(5c)
and the rectangular form of the elastic-plastic boundary near
the crack line (7) have been obtained, respectively. By
substituting equation (7) into equations (5a)–(5c), the
rectangular form of the plastic stress field at the elastic-
plastic boundary near the crack line can be obtained in this
paper:

σ(p)
x � σ(p)

x0 + σ(p)
x2 y

2
+ O y

4
 , (9a)

σ(p)
y � σ(p)

y0 + σ(p)
y2 y

2
+ O y

4
 , (9b)

σ(p)
xy � σ(p)

xy1y + σ(p)
xy3y

3
+ O y

5
 , (9c)

where

y
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x

Figure 1: Elastic-plastic boundary near the crack line.
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y0 � 2k, (10c)
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A
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σ(p)
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A

x0 + L( 
2, (10e)

σ(p)
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C
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4 +

4
3

D
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5 −

2Ax2
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3. (10f)

.e expression of the plastic stress field in rectangular
coordinates, i.e., equations (9a)–(9c), at the elastic-plastic
boundary near the crack line is much more concise than that
given by Yi and Yan [30] in polar coordinates, especially in
the terms of σ(p)

x2 and σ(p)
xy3. .e expressions of σ(p)

x2 and σ(p)
xy3

in polar coordinates by Yi and Yan [30] are as follows:
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2
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1
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(11b)

It can be seen that the solutions in polar coordinates are
more complex. Subsequent analysis will show that con-
verting rectangular coordinates into polar coordinates is
completely unnecessary.

5. The Power Series Form of the Elastic Stress
Field near the Crack Line and Its
Expression at the Elastic-Plastic Boundary in
Rectangular Coordinates

As the stress components of the elastic field, namely, σx, σy,
and σxy, are continuous near the crack line, they can be
expanded by the Taylor series as follows:

σx � p
(e)
0 (x) + p

(e)
2 (x)y

2
+ O y

4
 , (12a)

σy � q
(e)
0 (x) + q

(e)
2 (x)y

2
+ O y

4
 , (12b)

σxy � s
(e)
1 (x)y + s

(e)
3 (x)y

3
+ O y

5
 . (12c)

In equations (12a)–(12c), superscript (e) is elasticity.
.e form (12a)–(12c) in a power series of the elastic

stress field is a general form rather than a specific one as its

specific form can only be obtained for a specific problem
under its boundary conditions.

By substituting equation (7) into equations (12a)–(12c),
the expression of the elastic stress field at the elastic-plastic
boundary near the crack line can thus be obtained:

σ(e)
x � σ(e)

x0 + σ(e)
x2 y

2
+ O y

4
 , (13a)

σ(e)
y � σ(e)

y0 + σ(e)
y2 y

2
+ O y

4
 , (13b)

σ(e)
xy � σ(e)

xy1 + σ(e)
xy3y

3
+ O y

5
 . (13c)

It should be noted that equations (13a)–(13c) are still a
general form.

6. The Matching Results of the Elastic and
Plastic Stress Fields at the Elastic-Plastic
Boundary near the Crack Line in
Rectangular Coordinates

.e expressions of the elastic and plastic stress fields at the
boundary have been obtained in rectangular coordinates as
in equations (9a)–(9c) and equations (13a)–(13c), respec-
tively..ematching condition of the stress fields is the stress
is continuous at the boundary, that is, the tangent/normal
stress components of the elastic and plastic fields are equal at
any point of the elastic-plastic boundary. .e matching
condition can be expressed as σe

nn � σp
nn and σe

ns � σp
ns, where

σnn � σxn2
x + σyn2

y + 2σxynxny and σns � (n2
x − n2

y)σxy+

(σy − σx)nxny. nx and ny have been obtained in equations
(8a) and (8b) above.

.rough matching, simplification, and decoupling of the
two stress fields at the elastic-plastic boundary, the following
equations can be obtained:

σ(e)
x0 � σ(p)

x0 , (14a)

σ(e)
y0 � σ(p)

y0 � 2k, (14b)

σ(e)
xy1 � σ(p)

xy1, (14c)

σ(e)
x2 � σ(p)

x2 , (14d)

σ(e)
y2 � σ(p)

y2 , (14e)

σ(e)
xy3 � σ(p)

xy3. (14f)

Equations (14a)–(14f) are the general form of the
matching equation near the crack line by the crack line
analysis method.

7. The Matching Results for a Center-Cracked
Plate with Finite Width

Equations (12a)–(13c) are the general forms of the elastic
field. Only for a specific problem, can the specific form of the
stress field be obtained.
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In Yi and Yan’s study [30], after the obtainment of the
general form of the matching equations in polar coordinates,
a unidirectional tensile-cracked plate with infinite width was
taken as an instance for the analysis.

.is paper aims at a new problem, i.e., a center-cracked
plate with finite width subjected to uniform stress σ along
the y direction at infinity, as shown in Figure 2. Compared
with an infinite plate, solving the elastic stress field of a finite
plate is more complex due to the existence of specific
boundary conditions. For instance, during solving of stress
intensity factor in some classical crack problems, analytical
solution can usually be obtained for an infinite plate but not
for a finite plate, so the numerical method is often used for
analysis of a finite plate.

For the new problem mentioned above, its plastic field
still satisfies equations (5a)–(5c). However, as the boundary
conditions of the plate with finite width are difficult to
satisfy, no analytical solution for its elastic field has been
obtained. .is paper, based on the analytical exact solutions
of the corresponding infinite plate, will establish the elastic
field near the crack line of the finite plate and make the
established stress field near the crack line precise enough.

When the width b of the plate trends to infinity, i.e.,
b⟶∞, the finite plate turns into a corresponding infinite
plate. For such an infinite plate, Westergaard’s stress
function can be used for the analysis to obtain analytical
solutions [1–3, 9]. Specifically, the stress field for the
problem can be expressed by using Westergaard’s stress
function ZI(z) � (σz/

������
z2 − a2

√
) as follows:

σx � ReZI(z) − y1ImZI
′ (z) − σ, (15a)

σy � ReZI(z) + y1ImZI
′ (z), (15b)

σxy � − y1ReZI
′ (z), (15c)

where Re and Im denote the real and imaginary parts of the
complex function ZI(z) and ZI

′(z), respectively; ZI
′(z)

denotes the first-order derivative of ZI(z) with respect to z.
And complex variable z � x1 + iy1 (under the coordinate
system of x1O1y1 with the origin at the center of the crack).

Equations (15a)–(15c) expressed by Westergaard’s stress
function ZI(z) satisfy the basic equations in theory of
elasticity (equilibrium differential equations and compati-
bility equation). Meanwhile, when ZI(z) � (σz/

������
z2 − a2

√
),

the far-field boundary condition σx � 0, σy � σ, and σxy � 0
of the cracked plate with infinite width, and the boundary
condition on the crack surface, σy � σxy � 0, can be satisfied,
so equations (15a)–(15c) are the exact solution of the cracked
plate with infinite width corresponding to the center-
cracked plate with finite width as shown in Figure 2.

Next, by using equations (15a)–(15c), a sufficiently
precise elastic stress field near the crack line of the center-
cracked plate with finite width can be established. After
modified by constants M and N, equations (15a)–(15c) turn
into

σx � M · ReZI(z) − y1ImZI
′(z)  − N · σ, (16a)

σy � M · ReZI(z) + y1ImZI
′(z) , (16b)

σxy � M · − y1ReZI
′(z) . (16c)

Obviously, equations (16a)–(16c) satisfy the basic
equations of the theory of elasticity and satisfy the traction-
free boundary condition on the crack surface also. .e
reasons lie in the following: first, as equations (15a)–(15c)
satisfy equilibrium differential equations and the compatible
equation of the theory of elasticity and equations (16a)–(16c)
are modified by constants M and N from equations
(15a)–(15c), thus the satisfaction of equilibrium differential
equations, and the compatible equation by equations
(16a)–(16c) is not affected by the modification; second, as
equations (15a)–(15c) satisfy the traction-free boundary
conditions σy � 0 and σxy � 0 on the crack surface and
equations (16a)–(16c) are multiplied by constant M from
equations (15a)–(15c), thus, the satisfaction of the boundary
conditions σy � 0 and σxy � 0 by equations (16a)–(16c) is
not compromised. .us, as long as boundary conditions
near the crack line are established, equations (16a)–(16c) will
be sufficiently precise in the region near the crack line. And
the boundary conditions can be built from the equilibrium
conditions along the section of the crack line.

y1

σ

σ

y

D C O1 A

2a x0

B
x1, x

2b

Elastic-plastic boundary

Figure 2: A center-cracked plate with finite width subjected to
uniform stress σ along the y direction at infinity.
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.rough the shift of the coordinate system from x1O1y1
to xAy with the origin at the crack tip, there will be z �

x + a + iy as x1 � x + a and y1 � y. .en, by Westergaard’s
stress function with the complex function method, let z �

x + a + iy and expand equations (16a)–(16c) in Taylor series;
the elastic stress field near the crack line of the finite plate can
be expressed as follows:

σ(e)
x �

Mσ(x+a)
�������
x2 +2ax

√ − Nσ −
Mσ

�������
x2 +2ax

√
9a2(x+a)

2 x2 +2ax( )
2y

2
+O y

4
 ,

(17a)

σ(e)
y �

Mσ(x+a)
�������
x2 +2ax

√ +
Mσ

�������
x2 +2ax

√
3a2(x+a)

2 x2 +2ax( )
2y

2
+O y

4
 ,

(17b)

σ(e)
xy �

Mσa2
�����������

x0
2 +2ax0( 

3
 y 1 −

3 4x2 +8ax+5a2( 

2 x2 +2ax( )
2 y

2
 +O y

4
 .

(17c)

Clearly, the above equations have been expressed in
rectangular coordinates, so there is no need to further
convert them into polar coordinates.

Suppose that the plate is divided into the upper and
lower parts along the section of the crack lines AB and CD
(Figure 2); then, the stress on the section of the crack line
should be balanced by the external load. .us, it can be
obtained that

2
x0

0
σ(p)

y 
y�0dx + 2

b− a

x0

σ(e)
y 

y�0dx � 2bσ, (18)

where σ(p)
y is presented in equation (9b) and σ(e)

y is presented
in equation (17b). By substituting equations (9b) and (17b)
into equation (18) and then integrating, it can be obtained
that

M �
bσ − 2kx0

������
b2 − a2

√
−

����������
x0 x0 + 2a( 



 σ
.

(19)

Additionally, at the intersection point B (or D) between
the crack line and the free boundaries, the stress should
satisfy the boundary equation:

σ(e)
x 

x�b− a,y�0 � 0. (20)

By substituting equation (17a) into (18), it can be ob-
tained that

N �
Mb

������
b2 − a2

√ . (21)

.e idea is to establish the elastic stress field near the
crack line (i.e., equations (16a)–(16c)) of a cracked plate with
finite width by modifying the precise solution of the elastic
stress field (i.e., equations (15a)–(15c)) of a corresponding
infinite plate originated from Yi [27]. Yi established the
elastic stress field for a cracked plate with finite width during
the analysis of a mode III crack. Before that, Yi proposed a

method for solving stress intensity factor by establishing the
precise elastic stress field of cracked plates with finite width
[40, 41], which was called the crack-line stress field method
for estimating stress intensity factor [42], and such a method
has been widely used. In this paper, the sufficiently precise
solution of the elastic stress field near the crack line was
obtained in rectangular coordinates for the center-cracked
plate with finite width and was then matched with the
precise solution of the plastic stress field.

By substituting equation (7) into equations (17a)–(17c),
the coefficients in equations (13a)–(13c) can all be obtained
for a unidirectional tensile finite plate with the mode I center
crack:

σ(e)
x0 �

Mσ x0 + a( 
��������
x2
0 +2ax0

 − Nσ, (22a)

σ(e)
x2 � −

Mσa2
��������

x2
0 +2ax0


9 x0 + a( 

2 x2
0 +2ax0( 

2 +
x2

x2
0 +2ax0

⎡⎣ ⎤⎦, (22b)

σ(e)
y0 �

Mσ x0 + a( 
��������
x2
0 +2ax0

 , (22c)

σ(e)
y2 �

Mσa2
��������

x2
0 +2ax0


3 x0 + a( 

2 x2
0 +2ax0( 

2 −
x2

x2
0 +2ax0

⎡⎣ ⎤⎦, (22d)

σ(e)
xy1 �

Mσa2
�����������

x2
0 +2ax0( 

3
 , (22e)

σ(e)
xy3 � −

Mσa2
�����������

x2
0 +2ax0( 

3


3 4x2
0 +8ax0 +5a2( 

2 x2
0 +2ax0( 

2 +
3x2 x0 + a( 

x2
0 +2ax0

⎡⎣ ⎤⎦.

(22f)

By far, both left and right sides of equations (14a)–(14f)
have obtained specific forms. By matching equations
(10a)–(10c) and (22a)–(22f), it can be obtained that

x0 � a

����������
σ2s

σ2s − (Mσ)2



− 1⎡⎣ ⎤⎦, (23)

L � − x0
x0 + 2a( b

a2
������
b2 − a2

√
��������

x2
0 + 2ax0



+ 1 , (24)

A � Mσx0
b2 x0 + 2a( 

b2 − a2( )a2

��������

x2
0 + 2ax0



, (25)

x2

x0
�

3 x0 + a( 

2x2
0 x0 + 2a( 

+
M

������
b2 − a2

√

b

σa2 x0 + a( 

σsx
3
0 x0 + 2a( 

2, (26)

where equation (3), i.e., k � (σs/2), is used, in which k is the
yield stress in shear and σs is the yield stress in tension.

Undetermined constantM can be solved from equations
(19) and (23):
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M �
σsa + bσ( 

������
b2 − a2

√

b2σ
−

a

�����������������

σsb( 
2

− σsa + bσ( 
2



b2σ
. (27)

In order to ensure that the radical
�����������������

(σsb)2 − (σsa + bσ)2


in equation (27) is no less than zero, there is

σ
σs
≤

b − a

b
. (28)

Substitute equation (27) into equation (23), and by
equation (28), it can be obtained that

x0 ≤ b − a. (29)

Equation (28) or (29) presents the applicable condition
for obtaining the results of a finite plate, that is, the external
load σ is less than (σs(b − a)/b), or the length of the plastic
zone is less than the length of the ligament (b − a). By
substituting equation (26) into equations (8a) and (8b), the
unit normal vector of the elastic-plastic boundary near the
crack line can also be obtained.

Assuming b⟶∞, the solution of a corresponding
infinite plate can be obtained. It can be seen from equation
(19) or (27) that when b⟶∞, there is M⟶ 1. Fur-
thermore, according to equation (21), when b⟶∞ and
M⟶ 1, there is N⟶ 1. If M⟶ 1 and N⟶ 1 are
substituted into equations (17a)–(17c), the power series form
of the elastic stress field near the crack line for the corre-
sponding cracked plate with infinite width can thus be
obtained. Similarly, if M⟶ 1 and N⟶ 1 are substituted
into equations (23)–(26), the matching results x0, L, and A
and (x2/x0) can be obtained for the corresponding infinite
plate:

x0 � a

������
σ2s

σ2s − σ2



− 1⎛⎝ ⎞⎠,

L � − x0
x0 + 2a

a2

��������

x2
0 + 2ax0



+ 1 ,

A � σx0
x0 + 2a( 

a2

��������

x2
0 + 2ax0



,

x2

x0
�

3 x0 + a( 

2x2
0 x0 + 2a( 

+
σa2 x0 + a( 

σsx
3
0 x0 + 2a( 

2,

(30)

where x0 is the length of the plastic zone along the crack line;
(x2/x0) is related to the unit vector of the point at the elastic-
plastic boundary near the crack line in rectangular coor-
dinates; and L and A are the integral constants.

If x0 in the results is replaced by r0, it can be seen from
the matching results that x0, L, and A obtained in this paper
are consistent with r0, L, andA in Yi and Yan [30], except for
(x2/x0) and (r2/r0) as they are related to the unit vector of
the point at the elastic-plastic boundary near the crack line in
rectangular coordinates and polar coordinates, respectively.
When Yi and Yan [30] analyzed the cracked plate with
infinite width (the cracked plate with finite width in this
paper was not analyzed), they transformed all the expres-
sions into polar coordinates, which made the solving process

extremely complicated, although the final results are not so
complicated.

For the center-cracked plate with the finite plate, Fig-
ure 3 shows the variations of (x0/a) with (σ/σs) in several
instances for (b/a) � 1.5, 2, 5, 10, and∞. (b/a) �∞ is the
instance of a cracked plate with infinite dimensions, and the
relevant results of which have also been shown in Figure 4.

Table 1 shows the variations of (x0/a) with (σ/σs) in
several instances for (b/a) � 1.5, 2, 5, 10, and∞. From the
table, it can be seen that if (b/a)≥ 1.5, when (σ/σs)< 0.15,
the differences between the sizes of the plastic zones are not
significant in different sized center-cracked plates; if
(b/a)≥ 5, when (σ/σs)< 0.3, the sizes of the plastic zones are
slightly different from those of the corresponding cracked
plate with infinite width (when (b/a)⟶∞), and the
maximum difference is about 11%; and if (b/a)≥ 10, when
(σ/σs)< 0.50, the sizes of the plastic zones are slightly dif-
ferent from those of the corresponding cracked plate, and
the maximum difference is less than 8%. It can thus be seen
that, for a cracked plate with finite width, if the dimensions
of the plate are sufficiently large compared with those of the
crack, the size of the plastic zone of the finite plate has only
slight difference from that of the infinite plate with the crack
if the stress level is relatively not high.

In the classical theory of fracture mechanics, for a
cracked plate with infinite width (when (b/a)⟶∞), Irwin
has given the length of the plastic zone along the crack line,
namely, r0 � (K2

I/2πσ2s ), and after modification by consid-
ering stress relaxation, the length of the plastic zone is r0′ �
(K2

I/πσ2s ) (where KI � σ
���
πa

√
) [43, 44]. Figure 4 shows a

comparison of the variation of (x0/a) with (σ/σs) between
the results of this paper (when b⟶∞) and those in
[43, 44] for a cracked plate with infinite width. .e com-
passion shows that the size of the plastic zone in this paper is
in better agreement with r0 in [43, 44] when (σ/σs) is not
high enough. When (σ/σs)< 0.4, the difference between the
two is no more than 10%.

It should be noted that the confining condition for the
solutions given in this paper for a cracked plate with finite
width, i.e., equation (28), is obtained by the satisfaction of
equation (27), and equation (29) corresponding to equation
(28) is x0 ≤ b − a, which means that the largest length of the
plastic zone is exactly the length of the ligament (b − a). For
an analytical solution, the reason why the confining con-
dition (28) or (29) is so precise lies in that the plastic stress
field, i.e., equations (5a)–(5c), is the general solution near the
crack line, and the elastic stress field, i.e., equations
(17a)–(17c), is sufficiently precise near the crack line.
.erefore, by matching the elastic stress field with the so-
lution of the plastic stress field near the crack line, the
obtained results are sufficiently precise near the region of the
crack line. .e analysis in this paper abandoned the small-
scale yielding condition. It is noteworthy that the crack line
analysis is valid for the elastic-plastic analysis of the region
near the crack line only, just as the conventional crack-tip
asymptotic analysis method is valid for the analysis of the
region near the crack tip only. By far, the analytical solution
for the elastic-plastic crack problem on a larger range of
cracked bodies can hardly be obtained.
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Figure 4: Comparison of the variation of (x0/a) with (σ/σs).

Table 1: Variations of (x0/a) with (σ/σs) in several instances for (b/a) � 1.5, 2, 5, 10, and∞.

(σ/σs) 0.05 0.10 0.15 0.20 0.25 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00

(x0/a)

(b/a) � 1.5 0.002 0.010 0.026 0.053 0.100 0.197
(b/a) � 2 0.002 0.007 0.017 0.033 0.055 0.087 0.208 1.000
(b/a) � 5 0.001 0.005 0.012 0.022 0.036 0.054 0.106 0.191 0.337 0.647 4.000
(b/a) � 10 0.001 0.005 0.012 0.021 0.034 0.051 0.097 0.168 0.281 0.477 0.909 9.000
(b/a) �∞ 0.001 0.005 0.011 0.021 0.033 0.048 0.091 0.155 0.250 0.400 0.667 1.294 ∞
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Figure 3: Comparison of variations of (x0/a) with (σ/σs) in different sized center-cracked plates.
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8. Conclusions

.rough the above analysis, the following conclusions can be
made:

(1) By using the crack line analysis method, this paper
obtains the general form of the matching equations
in rectangular coordinates for the elastic and plastic
stress fields near the crack line for mode I cracks
under plane stress condition in an elastic perfectly
plastic solid. In the analysis, the complexity caused
by the unnecessary conversion from rectangular
coordinates into polar coordinates is avoided, es-
pecially the complexity in the expressions and
conversion during the solving process. .us, by
using rectangular coordinates, the analysis of near
crack line elastic-plastic fields for mode I cracks is
substantially simplified.

(2) For the center-cracked plate with finite width, the
solution of its elastic field is established near the
crack line by modifying the precise solution of the
elastic field of a corresponding infinite plate, which is
sufficiently precise as it satisfies both the basic
equations in the theory of elasticity and the boundary
conditions of the crack surface and the crack line. By
matching the precise elastic stress field with the
precise plastic stresses field at the elastic-plastic
boundary, sufficiently precise matching results are
obtained in this paper near the crack line, and it
abandons the small-scale yielding conditions. .e
variation curves of the length of the elastic-plastic
boundary are also delineated in different sized
center-cracked plates. In the obtained results for a
finite plate, by assuming b⟶∞, the solution to a
corresponding infinite plate can thus be obtained,
and the results are compared with those obtained
under the small-scale yielding conditions.

.e analysis in this paper simplifies the matching process
of the elastic and plastic fields near the crack line, and a new
problem of a cracked plate with finite dimensions is solved.
.e adoption of rectangular coordinates enriches the crack
line analysis method, and it can be used for the analysis of
cracks under more complex conditions.

Data Availability

.e data used to support the findings of this study are in-
cluded within the article.

Conflicts of Interest

.e authors declare that there are no conflicts of interest
regarding the publication of this paper.

Acknowledgments

.is work was supported by the National Natural Science
Foundation of China for Young Scholars (grant number
51408091).

References

[1] E. Gdoutos, Fracture Mechanics: An Introduction, Springer,
Berlin, Germany, 2005.

[2] T. L. Anderson, Fracture Mechanics: Fundamentals and Ap-
plications, CRC Press, Boca Raton, FL, USA, 2015.

[3] N. Perez, Linear-Elastic Fracture Mechanics, Springer Inter-
national Publishing, Berlin, Germany, 2017.

[4] J. C. Newman and I. S. Raju, “An empirical stress-intensity
factor equation for the surface crack,” Engineering Fracture
Mechanics, vol. 15, no. 1-2, pp. 185–192, 1981.

[5] J. E. Srawley, “Wide range stress intensity factor expression for
ASTM E-399 standard fracture toughness specimens,” In-
ternational Journal of Fracture, vol. 12, no. 3, pp. 475-476,
1976.

[6] L. B. Freund, “.e stress intensity factor due to normal impact
loading of the faces of a crack,” International Journal of
Engineering Science, vol. 12, no. 2, pp. 179–189, 1974.

[7] H. Xia, R. Guo, F. Yan, and H. Cheng, “Real-time and
quantitative measurement of crack-tip stress intensity factors
using digital holographic interferometry,” Advances in Ma-
terials Science and Engineering, vol. 2018, Article ID 1954573,
8 pages, 2018.

[8] R. Q. Huang, L. Z.Wu, and B. Li, “Crack initiation criteria and
fracture simulation for precracked sandstones,” Advances in
Materials Science and Engineering, vol. 2019, Article ID
9359410, 12 pages, 2019.

[9] H. L. Larsson, Elastic-Plastic Fracture Mechanics, MIR Pub-
lishers, Moscow, Russia, 1978.

[10] J. A. Hult and F. A. McClintock, “Elastic-plastic stress and
strain distribution around sharp notches under repeated
shear,” in Proceedings of the 9th International Congress on
Applied Mechanics, vol. 8, pp. 51–58, Brussels, Belgium, 1956.

[11] M. F. Koshinen, “Elastic-plastic deformation of a single
grooved flat plate under longitudinal shear,” Journal of Basic
Engineering, vol. 85, no. 4, pp. 585–591, 1963.

[12] J. R. Rice, “Contained plastic deformation near cracks and
notches under longitudinal shear,” International Journal of
Fracture Mechanics, vol. 2, no. 2, pp. 426–447, 1966.

[13] T. M. Edmunds and J. R. Willis, “Matched asymptotic ex-
pansions in nonlinear fracture mechanics-II. Longitudinal
shear of an elastic work-hardening plastic specimen,” Journal
of the Mechanics and Physics of Solids, vol. 24, no. 4,
pp. 225–237, 1976.

[14] J. W. Hutchinson, A Course on Nonlinear Fracture Mechanics,
Technical University of Denmark, Copenhagen, Denmark, 1979.

[15] J. Pan and C. F. Shih, “Elastic-plastic analysis of combined
mode I and III crack-tip fields under small-scale yielding
conditions,” Journal of the Mechanics and Physics of Solids,
vol. 38, no. 2, pp. 161–181, 1990.

[16] G. Sinclair, “Stress singularities in classical elasticity-I: re-
moval, interpretation, and analysis,” Applied Mechanics Re-
views, vol. 57, no. 4, pp. 251–298, 2004.

[17] H. S. Lee, D. J. Kim, Y. J. Kim, R. A. Ainsworth, and
P. J. Budden, “Transient elastic-plastic-creep crack-tip stress
fields under load-controlled loading,” Fatigue & Fracture of
EngineeringMaterials & Structures, vol. 41, no. 4, pp. 949–965,
2017.

[18] T. Nishioka and S. N. Atluri, “Numerical analysis of dynamic
crack propagation: generation and prediction studies,” En-
gineering Fracture Mechanics, vol. 16, no. 3, pp. 303–332,
1982.

[19] K. Gall, M. F. Horstemeyer, B. W. Degner, D. L. McDowell,
and J. Fan, “On the driving force for fatigue crack formation

Advances in Materials Science and Engineering 9



from inclusions and voids in a cast A356 aluminum alloy,”
International Journal of Fracture, vol. 108, no. 3, pp. 207–233,
2001.

[20] M. L. L. Wijerathne, K. Oguni, M. Hori et al., “Numerical
analysis of growing crack problems using particle dis-
cretization scheme,” International Journal for Numerical
Methods in Engineering, vol. 80, no. 1, pp. 46–73, 2009.

[21] K. Zhou and R. Wei, “Modeling cracks and inclusions near
surfaces under contact loading,” International Journal of
Mechanical Sciences, vol. 83, pp. 163–171, 2014.

[22] T. Ishii, Y. Obara, M. Kataoka, and J. SangSun, “Numerical
analysis of tensile crack initiation and propagation in gran-
ites,” Procedia Engineering, vol. 191, pp. 674–680, 2017.

[23] J. Yang, X. Wang, and K. Zhou, “A numerical elastic-plastic
contact model for a half-space with inhomogeneous inclu-
sions and cracks,” Acta Mechanica, vol. 230, no. 6,
pp. 2233–2247, 2019.

[24] F. Shen and K. Zhou, “An elasto-plastic-damage model for
initiation and propagation of spalling in rolling bearings,”
International Journal of Mechanical Sciences, vol. 161-162,
p. 105058, 2019.

[25] J. D. Achenbach and Z. L. Li, “Plane stress crack line fields for
crack growth in an elastic-perfectly plastic material,” Engi-
neering Fracture Mechanics, vol. 20, no. 3, pp. 534–544, 1984.

[26] Q. Guo and K. Li, “Plastic deformation ahead of a plane stress
tensile crack growing in an elastic-perfectly-plastic solid,”
Engineering Fracture Mechanics, vol. 28, no. 2, pp. 139–146,
1987.

[27] Z.-J. Yi, “.emost recent solutions of near crack line fields for
mode III cracks,” Engineering Fracture Mechanics, vol. 47,
no. 1, pp. 147–155, 1994.

[28] Z. J. Yi, S. J. Wang, and H. L. Wu, “Precise elastic-plastic
analysis of crack line field for mode II plane strain crack,”
International Journal of Fracture, vol. 80, no. 4, pp. 353–363,
1996.

[29] Z. J. Yi, S. J. Wang, and X. J. Wang, “Precise solutions of
elastic-plastic crack line fields for cracked plate loaded by
antiplane point forces,” Engineering Fracture Mechanics,
vol. 57, no. 1, pp. 75–83, 1997.

[30] Z.-j. Yi and B. Yan, “General form of matching equation of
elastic-plastic field near crack line for mode I crack under
plane stress condition,” Applied Mathematics and Mechanics,
vol. 22, no. 10, pp. 1173–1182, 2001.

[31] X. P. Zhou, J. H. Wang, and Y. B. Huang, “Near crack line
elastic-plastic analysis for an infinite plate loaded by a pair of
point shear forces,” Journal of Shanghai Jiaotong University
(Science), vol. E-8, no. 2, pp. 115–117, 2003, in Chinese.

[32] J.-h. Wang and X.-p. Zhou, “Near crack line elastic-plastic
analysis for a infinite plate loaded by two pairs of point tensile
forces,” Mechanics Research Communications, vol. 31, no. 4,
pp. 415–420, 2004.

[33] C.Wang and C. P.Wu, “Elastic-plastic analytical solutions for
an eccentric crack loaded by two pairs of anti-plane point
forces,” Applied Mathematics and Mechanics (English Edi-
tion), vol. 24, no. 7, pp. 782–790, 2003.

[34] Z.-j. Yi, “Revisiting the Hult-McClintock closed-form solu-
tion for mode III cracks,” Journal of Mechanics of Materials
and Structures, vol. 5, no. 6, pp. 1023–1035, 2010.

[35] J. H. Guo, Z. X. Lu, and X. Feng, “.e fracture behavior of
multiple cracks emanating from a circular hole in piezo-
electric materials,” Acta Mechanica, vol. 215, no. 1–4,
pp. 119–134, 2010.

[36] J. Guo and Z. Lu, “Line field analysis and complex variable
method for solving elastic-plastic fields around an anti-plane

elliptic hole,” Science China Physics, Mechanics and Astron-
omy, vol. 54, no. 8, pp. 1495–1501, 2011.

[37] J. L. Deng, P. Yang, Q. Dong, and X. Yan, “Elasto-plastic
fracture analysis of finite-width cracked stiffened plate,”
Applied Mechanics and Materials, vol. 496–500, pp. 1052–
1057, 2014.

[38] F. Huang, Z. J. Yi, J. Y. Gu, X. He, C. Zhao, and Y. Li, “Elastic-
plastic analysis near the crack surface region on a mode III
crack under a pair of point forces,” AIP Advances, vol. 6, no. 6,
Article ID 065113, 2016.

[39] F. Huang, Z. J. Yi, Q. G. Yang et al., “Elastic-plastic analysis of
the crack surface vicinity under a pair of anti-plane forces
applied at an arbitrary point on the crack surface,” AIP
Advances, vol. 8, no. 10, Article ID 105033, 2018.

[40] Z. J. Yi, “A new method of determining the stress intensity
factors,” Journal of Chongqing Jiaotong Institute, vol. 10, no. 3,
pp. 37–41, 1991, in Chinese.

[41] Z.-J. Yi, “.e new and analytical solutions for mode III cracks
in an elastic-perfectly plastic material,” Engineering Fracture
Mechanics, vol. 42, no. 5, pp. 833–840, 1992.

[42] Q.-Z. Wang, “.e crack-line (plane) stress field method for
estimating SIFs—a review,” Engineering Fracture Mechanics,
vol. 55, no. 4, pp. 593–603, 1996.

[43] G. R. Irwin, “Fracture,” in Handbuch der Physik VI, S. Flugge,
Ed., Springer-Verlag, 1958pp. 551–590, Springer-Verlag,
Berlin, Germany, in German.

[44] G. R. Irwin, “Plastic zone near a crack and fracture tough-
ness,” in Proceedings of the 1960 Sagamore Research
Conference, New York, USA, 1960.

10 Advances in Materials Science and Engineering


