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Many factors influence the shear resistance of rock joints. Among them, the above overburden load is the most important factor.
+e uneven thickness of the overburden causes the joints to be subjected to the nonuniform distribution load. While the peak
shear strength shows nonlinear relationship with normal stress, linear superposition cannot be used to calculate the overall shear
resistance of joint under nonuniform normal stress distribution. In this paper, the nonlinear shear strength model, JRC-JCS
model, is applied to study the overall shear resistance of the joint under four nonuniform distribution patterns of normal stress.
+e results show that when the normal stress is distributed in a nonuniform way, the shear resistance provided by rock joint as a
whole decreases with the increase of the normal stress distribution interval. Given the nonuniform distribution of normal stress
along the joint, the shear resistance obtained by the Mohr-Coulomb linear model is overestimated. In order to give full play to the
overall shear performance of the joint, the shear strength at different positions on the joint should be as close as possible.+en, the
shear strength of joint parts can enter peak state condition simultaneously, at which time the shear strength is fully exerted.

1. Introduction

+e shear behavior of rock joints is the determinate factor
that controls stability of rock mass [1–6]; it has been a
concern in rock mechanics and rock engineering [7–10].
Numerous joint shear strength models have been established
based on experiments [11–14] and theoretical analyses
[15–17]. In general, shearing along the joint surface and
cutoff of asperities significantly influence shear strength.
Grasselli [13], Homand et al. [16], and Zhang et al. [18]
reported the relationship between shear strength and surface
topography. Under shearing, stress concentration on joint
surface roughness and slipping along the surface and cutoff
of asperities occur simultaneously; normal stress also con-
trols the shearing process by inhibiting the dilatation effect
of the joint and affecting the contact of the rough surface;
therefore, the shear strength envelope of joints represents a
nonlinear characteristic [1, 19]. +ere are many factors
influencing the shear resistance of joints in rock mass, such

as thickness of overburden, joint roughness, filling condi-
tion, and occurrence of rock strata. Among them, the above
overburden load is the most important factor. Due to the
difference of occurrence conditions, the thickness of the
joint overburden is often nonuniform, as shown in Figure 1.
+e uneven thickness of the overburden causes the joints to
be subjected to the nonuniform distribution load, and the
stress distribution of the rough body on the contact surface is
affected by the uneven degree and distribution form of the
overburden load [19]. To obtain the shear strength of a whole
joint, shear strength should be derived at different normal
stress levels. Such condition also necessitates the estab-
lishment of a nonlinear shear strength model to characterize
shear behavior. A potential unstable wedge from Kangaroo
Valley site in New South Wales, Australia, was recorded in a
study [20, 21]; the simplified model is shown in Figure 1.
Under gravity, part A features potential sliding along the
joint. In the study, shear strength of joints is independent of
normal stress level [21, 22], but only a portion of this
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strengthmatches the characteristics of the joint surface; thus,
the overall shear capacity of a joint can be obtained, and
mechanical analysis can be contacted by applying the limit
equilibrium method. Indraratna et al. [20] proposed a new
nonlinear shear strength criterion based on JRC-JCS model,
which considers the influence of normal stress level and
asperity features; however, the nonuniform distribution of
normal stress along the joint is not considered in its
application.

Owing to the nonuniform distribution of normal stress
along the joint and the nonlinear shear strength, which is
closely related to joint morphology, normal stress level, and
material properties [23–26], linear superposition cannot be
used for shear resistance calculation of joints. +e different
distributions of normal stress on a joint correspond to
varying degrees of shear resistance. +is study investigates
the shear resistance of joints based on nonlinear shear
strength criterion at different nonuniform normal stress
distributions. +e results are compared with those of the
traditional linear shear strength model, Mohr–Coulomb
criterion. Progressive failure theory is then applied to de-
termine optimal reinforcement location of joints.

2. Nonlinear Shear Behavior and Progressive
Failure of Joints

+e contact between the upper and lower surfaces of rock
joint is closely related to normal stress and joint mor-
phology, whereby a greater normal stress indicates a tighter
contact [27–31]. Under shearing, two failure mechanisms
occur through contact. In the first mechanism, the joint slips
along the contact with angle α, and this mechanism is used
for low normal loads (Figure 2(a)). In the second mecha-
nism, the rough surface is plastified and breaks (Figure 2(b)),
corresponding to high normal loads [1]. +is mechanism
subsequently forms the shear band.

According to Serrano et al. [1], in a critical slip page
situation of ith contact plane, critical shear load (Ti) and
critical normal load (Ni) satisfy the following relationship:

Ti

Ni

�
cos αi tanφb + sin αi

cos αi − sin αi tanφb

� tan φb + αi( , (1)

where φb refers to basic friction angle and αi denotes the
angle between the tangential plane in ith contact and mid-
plane of the joint.

+e critical state is governed by the dip angle of the
contact plane and basic friction angle. Shearing of different
contact planes can occur before or during a critical state,
resulting in simultaneous occurrence of shearing asperities
and sliding along the contact. +is phenomenon is associ-
ated with the joint material and normal stress level.
+erefore, shearing of rock joint shows nonlinear charac-
teristics. Correspondingly, progressive failure occurs with
shear displacement, forming a nonlinear stress-displace-
ment relationship (as shown in Figure 3).

Under shearing, slipping along the contact surface and
cutoff of asperities occur simultaneously, and peak shear
strength shows nonlinear characteristics [32]. Barton and
Choubey [33] proposed an empirical law (JRC-JCS model)
of friction for rock joints based on an extensive experiment
on natural rock joints. In the experiment, nonlinearity is
reflected by the influence of joint roughness coefficient and
compressive strength on friction angle. +is model is the
most widely accepted in practice. From the analysis, shear
strength is a nonlinear function with parameters of normal
stress and joint characteristics. Although the distribution of
normal stress along the joint is nonuniform in slopes or
tunnels, the manner of quantifying the effect of normal stress
distribution on overall shear capacity is the key for analyzing
rock mass stability.

3. Shear Resistance of Joint under Nonuniform
Normal Stress Distribution

3.1.NonuniformDistributionofNormal Stress. Rock joints in
slopes or tunnels considerably influence the instability of
rock masses [34–37]. +e destabilizing phenomenon is often
sliding along the joint. Different parts of the joint corre-
spond to different levels of normal stress, the shear strength
is different, and the contribution to the overall shear re-
sistance is also different. +e existence of the joint in the
slope or tunnel often makes the joint in different normal
stress levels. At this state, the distribution of normal stress is
nonuniform. +e shear strength of the joint is a quantity
related to the normal stress level and the characteristics of
joint. Given the nonlinearity of shear strength, the shear
capacity of joint differs at varying normal stress levels.
Different joint parts correspond to different levels of normal
stress and shear strength.+us, their contributions to overall
shear resistance also vary. Consequently, quantitative
measurement must be performed for the normal stress
distribution of the overall shear strength of joints.

3.2. Simplifying Nonuniform Normal Stress Distribution and
Overall Shear Capacity. Owing to nonlinearity of shear
strength and nonuniform distribution of normal stress, it is
impossible to make a simple linear superposition of the
overall shear strength of joint with nonuniform normal
stress [19]. For linear Mohr–Coulomb criteria, linear su-
perposition is available for shear resistance calculation and is
thus independent of normal stress distribution [38–40].
Obtaining normal stress distribution on joints by analytical
method presents difference. For this reason, in this study, a
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Figure 1: Simplified model of a rockslide along joint.
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joint submitted to four patterns of normal stress distribu-
tion, but the normal loads were the same (Figure 4).
Figure 4(a) represents normal stress uniform distribution,
Figure 4(b) denotes symmetric distribution, and Figures 4(c)
and 4(d) are linearly increasing distributions. L and B refer
to the length and width of the joint, respectively.

Let L� 2m, B� 1m, and q� 1.0MPa; and the joint
properties are the same with joint J-II by Hu et al. [41]; that
is, JCS is 27.5MPa, JRC is 16.5, and residual friction angle is
35°. Cohesion and friction measure 0.82MPa and 41.51°,
respectively, as described by the Mohr–Coulomb criteria.
+erefore, peak shear strength of the joint can be determined
by JRC-JCS model and Mohr–Coulomb criteria, respec-
tively, as follows:

τ � σn tan 35 + 16.5 log
27.5
σn

  ,

τ � 0.82 + 0.885σn,

(2)

where τ represents peak shear strength (MPa); σn denotes
normal stress (MPa).

Under shearing, the joint is at the ultimate state. +e
overall shear resistance (unit: MN) of the joint can be ob-
tained by the JRC-JCS model and Mohr–Coulomb criteria,
respectively, as follows:

F � 
L
σn tan 35 + 16.5 log

27.5
σn

  dL, (3)

F � 
L
σn 0.82 + 0.885σn( dL, (4)

where L denotes the length of joint.
In Figure 4(a), σn � q � 1 MPa, and the shear resistance

of the joint from JRC-JCS model is as follows:

F � 
L
tan 35 + 16.5 log

27.5
1

  dL � 3.2958. (5)

In Figure 4(b), the distribution of normal stressσn, can be
obtained with the following expression:

σn �

−x + 1.5q, 0≤ x≤
L

2
,

x + 1.5q, −
L

2
≤x< 0.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(6)

Substituting (6) into (3), the shear resistance is computed
as follows:

F � 
L/2

0
(−x + 1.5q)tan 35 + 16.5 log

27.5
−x + 1.5q

  dL

+ 
0

−L/2
(x + 1.5q)tan 35 + 16.5 log

27.5
x + 1.5q

  dL

� 3.2722.

(7)

In Figure 4(c), the normal stress distribution can be
obtained with the following expression:

σn � −
1
2

x + 1.5q, 0≤ x< L. (8)

Substituting (8) into (3), we obtain the shear resistance as
follows:
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Figure 2: Two failure mechanisms of shearing along the joint (from [1]).
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Figure 3: Progressive failure of joint under shearing
(σn1 > σn2 > σn3).
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F � 
L

0
−
1
2

x + 1.5q tan 35 + 16.5 log
27.5

−1/2x + 1.5q
  dL

� 3.2722.

(9)

In Figure 4(d), the normal stress distribution can be
obtained with the following expression:

σn � −0.6x + 1.6q, 0≤x≤ L. (10)

Substituting (10) into (3), the shear resistance is calcu-
lated as follows:

F � 
L

0
(−0.6x + 1.6q)tan 35 + 16.5 log

27.5
−0.6x + 1.6q

  dL

� 3.2612.

(11)

+e Mohr–Coulomb model is a linear model, and shear
resistance can be obtained by linear superposition of shear
strength [42, 43]. Hence, shear resistance is determined by
normal load and not based on the distribution of normal
stress. Under the same normal load, the results of the JRC-
JCS model show that shear resistance provided by the whole
structure decreases with increasing normal stress interval,
shown in Table 1. If the results of the first distribution
(uniform distribution) are taken as the standard, the results
of the other three distributions are 0.72%, 0.72%, and 1.1%
less than those of the first distribution, respectively. +e
shear resistance of a joint was determined by the length of
joint, shear strength (linearity and nonlinearity), and normal

stress. However, the larger the normal stress and the length,
the larger the difference. Owing to the nonuniform distri-
bution of normal stress in practice, the shear resistance
obtained by the Mohr–Coulomb linear model is over-
estimated. Considering the nonlinear shear behavior of rock
joint, adopting the nonlinear shear strength model is nec-
essary, and it is essential to specify the normal stress dis-
tribution on joint surface. At different normal stress levels,
the shear strength of joint is different. When the normal
stress is distributed in a nonuniform way, the shear resis-
tance provided by rock joint as a whole decreases with the
increase of the normal stress distribution interval. In ad-
dition, when the level of normal stress is very low, the JRC-
JCS model presents an uncomputable situation, where
tan[ϕr + JRClog(JCS/σn)] is an oscillatory function.

4. Optimization of Reinforcement Position

+e deterioration of shear resistance in rock joints often
leads to engineering failure, such as slope sliding, which
endangers the safety of engineering. +erefore, it is very
important to reinforce the rock joint [44, 45]. Under
shearing, progressive failure occurs in rock joints. With
shear displacement, shear strength first increases to peak
strength and then approaches residual strength [46–48].
However, normal stress on the joint shows no uniform
distribution. On the basis of nonlinear shear strength, at
different positions, stress can occur before or during peak
intensity (critical state) and possibly at the residual strength
stage. Asadollahi and Tonon [7] showed that the increase in
normal stress on joint increases displacement of the joint
reaching the peak shear strength, as shown in Figure 3.
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Figure 4: Distribution patterns of normal stress along the joint surface (where q� 1.0Mpa). (a) Uniform distribution. (b) Symmetric
distribution. (c) Linear distribution. (d) Linear distribution.

4 Advances in Materials Science and Engineering



Slope stability analysis methods, such as the common
limit equilibrium and strength reduction, are based on limit
state under the assumption that sliding zoom is at critical
state [49–52]. In practice, the state may be observed before or
after the peak state, resulting in failure to satisfy this as-
sumption. As summed up by Huang [53], the typical geo-
mechanical models of landslides in rocks, including the
“three sections” (i.e., sliding-tension cracking-shearing),
“retaining wall collapse,” and creep-bending-shearing
model, indicate that different parts of rock develop in varied
shear states during landslide inoculation. In the slope

treatment of potential instability along the joint, the joint
should avoid partial transition into progressive failure,
which requires control of the entire progressive failure
process. +e normal stress of the joint or potential slip zone
of the slope is nonuniform and the shear strength provided
by different positions is not the same. +e potential sliding
trend is generated under the action of gravity, and the shear
resistance provided by the joint as a whole is used to
overcome the sliding force.

Assuming that reinforcement is used to improve normal
stress on the joint surface in Figure 4, the same increment of

Table 2: Shear strength at different normal stress levels.

Normal stress (MPa)
Shear strength (MPa)

M-C JRC-JCS
1.6 2.24 2.32
1.5 2.15 2.21
1.0 1.71 1.65
0.5 1.26 1.01
0.4 1.17 0.87

Table 1: Comparison of overall shear resistance of a joint with different normal stress distribution patterns.

Normal stress distribution
Overall shear resistance (unit: MN)

Uniform
distribution (a)

Symmetric
distribution (b)

Linearly increasing
distribution (c)

Linearly increasing
distribution (d)

M-C 3.41 3.41 3.41 3.41
JRC-JCS model 3.2958 3.2722 3.2722 3.2612
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Figure 5: Peak shear strength and the average shear strength of the joint in JRC-JCS model (peak shear strength: the solid red line; average
shear strength: the dashed red line). (a) Uniform distribution. (b) Symmetric distribution. (c) Linear distribution. (d) Linear distribution.
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normal stress will result in different increments of shear
strength considering the nonlinearity of shear strength.When
normal stress is smaller, the increase of shear strength is
higher for the same increment of normal stress (as listed in
Table 2), which is more conducive to the improvement of
overall shear resistance. Considering the nonlinear shear
strength behavior of joint independently and when the re-
inforcement method is used to improve the normal stress
level of the structural surface, then reinforcement is loaded at
location with a lower original normal stress level and better
results are obtained. However, from the theory of progressive
failure, under shear load with certain shear displacement, the
front edge of the structure has reached the peak state, whereas
the back edge has shown otherwise. At this point, the joint can
remain stable. When shear load is sufficiently large, the front
edge of the structure reaches the residual strength stage after
adequate shear displacement, and the back edge reaches the
peak stage slowly. In this case, the shear resistance of the
structural surface has not fully developed as it is not entirely at
the peak shear state. To maximize the shear capability of the
joint, the shear stress shear displacement curves should be
closely located (Figure 3) for the different parts of the joint to
avoid progressive failure.

Based on the JRC-JCS model, the distribution of shear
strength on the joint surface under nonuniform stress
distribution is obtained, as shown in Figure 5 and Table 2, in
which peak shear strength and average shear strength are
presented in solid red and dashed red lines, respectively.
According to the above analysis, reinforcement should be
located in the area where peak shear strength approaches
average shear strength; that is, the vicinity of the solid red
line intersects the dashed red line (as shown in Figure 5).
Under the action of shear force, part of the joint produces a
certain shear displacement, and different positions of the
joint are close to each other on the shear stress shear dis-
placement curve. +en, the shear strength of joint parts can
effectively avoid entering the residual state, at which time the
shear strength is fully exerted.

Joint reinforcement should be considered from two
aspects: nonlinear shear strength and progressive failure
along the joint. In nonlinear shear criterion, a lower original
normal stress level causes more significant marginal effect of
shear resistance for the same increment of normal stress. In
addition, progressive failure along the joint should also be
avoided. Reinforcement should cause the shear capacity of
joint to lie close to the region where peak shear strength is
near the average value. Consequently, the shear curves at
different positions of the joint are closely located, and then
joint parts enter peak state condition simultaneously under
shearing, to achieve full shear capacity.

5. Conclusions

(1) Due to the difference of occurrence conditions, the
thickness of the joint overburden is often nonuni-
form. Different parts of the joint correspond to
different levels of normal stress, the shear strength is
different, and the contribution to the overall shear
resistance is also different.

(2) When the normal stress is distributed in a non-
uniform way, the shear resistance provided by rock
joint as a whole decreases with the increase of the
normal stress distribution interval. Given the non-
uniform distribution of normal stress along the joint
in practice, the shear resistance obtained by the
Mohr–Coulomb linear model is overestimated.

(3) In order to give full play to the overall shear per-
formance of the joint, the shear strength at different
positions on the joint should be as close as possible.
+en, the shear strength of joint parts can enter peak
state condition simultaneously, at which time the
shear strength is fully exerted.
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