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*is paper investigated the mechanical and electroconductivity properties of graphite tailings concrete, in which the graphite
tailings are replaced as sand. *e results showed that the concentration of graphite tailings has an important influence on the
mechanical, electroconductivity, andmaterial properties of concrete. Finally, a newmodel for calculating the relationship between
compressive strength and electrical resistivity based on the grey correlation method was obtained for providing a theoretical basis
for building green and intelligent building materials.

1. Introduction

*e environmental impact of mineral solid waste is slow and
long-term accumulation [1–8]. For a long time, treatment on
mineral solid waste has not received enough attention,
which has led to the relatively lagging development of the
treatment of mineral solid waste in various subsectors in the
field of environmental protection [9–16]. After several years
of mining, the mine has produced a cumulative accumu-
lation of tailings, which cause continuous unrecoverable
damage and pollution to the environment [17–19]. With the
implementation of China’s “Environmental Protection Tax
Law” and “Guidelines for the Construction of Solid Mineral
Green Mines” in 2018, it is also an inevitable choice for
mining enterprises to take the road of green mine con-
struction. *is requires higher standards and requirements
for green treatment and comprehensive utilization of mine
tailings solid waste. *e solid waste generated from the
development of mineral resources is collectively referred to
as “tailings” such as iron tailings, copper tailings, and coal
tailings, which have silicate properties and contain iron

oxide or aluminium oxide [20–22]. *e treatment and
comprehensive utilization of mine tailings have always been
an international problem and listed as a major pollution
problem with the disposal and reuse of construction waste.

Among these problems, graphite tailings for the green
treatment and comprehensive utilization of waste man-
agement are increasingly being valued. Graphite, a signifi-
cant resource in the 21st century, is mainly distributed in
China, India, and Brazil. In 2017, the global graphite mine
production was approximately 0.15 billion tons. China is a
large country in the production of graphite ore, and the basic
reserves of graphite deposits account for 43% of the world
(81-million-ton cumulative production in 2017) and are
mainly distributed in 14 ore veins in six provinces. However,
mining 1-ton graphite mine produces 10 to 15 tons of
graphite tailings. Years of mining have led to the accu-
mulation of solid waste from graphite tailings, resulting in
environmental degradation and soil erosion around the
mine. *e hazards of graphite tailings are gaining recog-
nition, and the green treatment and comprehensive utili-
zation of it are becoming a research hotspot in this field at
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this stage. *e use of graphite tailings for the preparation of
building materials is a common means of greening, which
can not only effectively exert the advantages of mineral solid
waste, but also reduce the consumption of construction sand
by a certain amount. Liu et al. [23–25] conducted a series of
studies on the mechanical properties and electrical modi-
fication of graphite tailings concrete in which graphite
tailings were replaced as sand used in concrete. Kathirvel
et al. [26] studied the mechanical characteristics and elec-
trochemical properties of graphite tailings reinforced con-
crete and mortar with different incorporation amount.
Although a number of published literatures on concrete
containing GT as sand have comprehensively evaluated the
macroscopic properties of concrete, a comprehensive un-
derstanding and research is still at a preliminary stage. Si-
multaneously, there is no research on the influence of GTon
the mesocharacteristics and electrical properties of cement-
based materials, which has an important influence on the
load-electric conversion relationship in the intelligentization
of building materials and structures.

*e present study is conducted to fill these research gaps
by investigating the macroproperties, such as mechanical
and electroconductivity properties, and mesoscopic mor-
phology or pore structure distribution of GTC. *en, a new
model based on grey relational degree theory was deter-
mined for evaluating compressive strength or electro-
conductivity properties of GTC. Finally, the relationship
between mechanical properties and resistivity is investi-
gated, which can provide theoretical support for the ap-
plication of GTreplacing as sand for the preparation of green
and intelligent building materials.

2. Materials and Experimental Details

2.1. Materials

2.1.1. Raw Materials and Mixing Proportions. Ordinary
Portland cement (P.O. 42.5N), local river sand (fineness
modulus of 2.3), graphite tailings (fineness modulus of 0.9),
and groundwater were used throughout the experiments. *e
material appearance, laser particle size distribution, and
granular gradation of graphite tailings and sand are shown in
Figure 1. Local stone with particle size varying between 5mm
and 40.5mmwas used as a coarse aggregate. Tables 1 and 2 list
the mechanical properties of cement and chemical properties
of cement, sand, and graphite tailings. Table 3 lists the mineral
content of cement and graphite tailings. *e physical prop-
erties of sand, graphite tailings, and coarse aggregates are
listed in Table 4. In this study, the graphite tailings were
replaced as sand in different volume ratios from 0% to 100%.
*e water-to-cement ratio (w/c) was 0.52, and the mixing
proportions of GTC are listed in Table 5.

2.1.2. Specimen Casting and Curing Conditions. *e GTC
specimens with dimensions of 150mm × 150mm × 300mm
(200 specimens) and 150mm × 150mm × 150mm (200
specimens) were demoulded after 24 h in accordance with
the Chinese standards of GB/T 50081-2001 [27]. Each
sample was placed in a steam curing room with a

temperature of 24± 2°C and a relative humidity of 95% for
different curing days (3, 7, 14, and 28 days).

2.2. Experimental Methods

2.2.1. Mechanical and Electroconductivity Property Test.
A total of 200 specimens were prepared for the compressive
strengths of 3, 7, 14, and 28 curing days by an electronic
universal testing machine (MTS-300). *e electro-
conductivity data are characterized by the resistivity value
due to the quadrupole method under the power supply
voltage of 12V after different curing days (200 specimens).

2.2.2. Material Characterization Tests. In this paper, the
material morphology of graphite tailings concrete was an-
alyzed by scanning electron microscopy (SEM) and atomic
force microscope (AFM), and the pore structure distribution
was investigated by mercury intrusion porosimetry (MIP) in
accordance with Chinese regulations GB/T 21650-2008 [28],
GB/T 16594-2008 [29], and ISO 13095-2014 [30]. In sum-
mary, the flowchart of research and experimental method
used in this paper is shown in Figure 2.

3. Results and Discussion

3.1. Macroscopic Property Analysis of GTC

3.1.1. Compressive Strength of GTC. *e substitution rate of
graphite tailings in concrete is 0% to 100% (in volume
percentage), and the mechanical properties are shown in
Figure 1.*e volume replacement rate in the range of 10% to
20% has a positive effect on the improvement of concrete
mechanical properties. When the replacement ratio of GT is
10%, the compressive strength is 42.27MPa (achieved
maximum) with a growth rate of 14.9%. Simultaneously, the
mechanical properties of concrete (GT> 20%) decline in
volatility (shown in Figures 3 and 4). When the replacement
ratio was 80%, the compressive strength decreased by 27.1%.
Within 10% to 20% of replacement, GT has a positive
improvement in the mechanical properties of concrete. *e
preliminary interpretation reason is as follows: (1) *e
necessity of ultrafine aggregate results. From the perspective
of volume filling and space replenishment, a certain amount
of ultrafine aggregate can improve the macroscopic prop-
erties of thematerial. Because the fineness of GTis 61% lower
than that of sand, it is better to form a stronger cementitious
medium when the amount is substituted, which provides a
guarantee for the composition of the concrete skeleton. (2)
However, the superfine aggregate has a large water ab-
sorption rate and insufficient particle size distribution,
resulting in a threshold for its replacement rate (addition
amount). *e aggregate stability and the bonding capacity
between aggregates in concrete are significantly reduced due
to the excessive introduction of graphite tailings. When the
replacement ratio exceeds 20%, it can significantly inhibit
the development of compressive strength of concrete.
*erefore, considering the strength and design requirements
of building materials, this paper conducts electrical and
material property analysis from GTC-0 to GTC-40.
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3.1.2. Electroconductivity and Resistivity of GTC. Concrete
is currently the most used building material in the world.
With the advancement of society, building materials are
moving towards light, high performance, green, and intel-
ligent. However, the traditional concrete is not an ideal
conductor. *e intelligence of concrete depends on the
changes of conductivity or resistivity based on the influence
on the incorporation of metal fibres, graphite, and metal
powders. Due to the presence of a certain amount of graphite
in the GT, a new type of conductive concrete can be prepared
without affecting the strength. In this paper, the resistivity of
GTC (0% to 40%) was investigated and is shown in Figure 5.
With the gradual hydration and compaction of the matrix
material, the electrical resistivity of the concrete increases in
the order of magnitude, and the resistivity of GTC-0 and
GTC-10 is 2.3×104 and 1.8×104 in loss of 18% at day 28.
Graphite is an allotrope of elemental carbon. Each carbon
atom is connected to another three carbon atoms in a
hexagonal structure. Since each carbon atom uses three
electrons to form three covalent bonds with the surrounding

carbon atom, there is one electron remaining in each carbon
atom, and these electrons are free to move, so they have good
conductivity. Graphite is incorporated into the concrete with
GT, which forms a conductive network interconnected
inside the concrete. However, as the GT content increases,
the compressive strength of the incorporated concrete de-
creases significantly. Simultaneously, when the GT incor-
poration is greater than 20%, the resistivity of the concrete is
not satisfactory and the high content of GT has only a certain
change in the electrical resistivity of the early stage of
concrete at day 3 or day 7. According to the resistivity, the
conductivity of GTC was calculated and is shown in Figure 6
and the conductivity of GTC-0 and GTC-10 is 4.34×10−5

and 5.56×10−5 at day 28 with an increase of 1.22×10−5. GT
has an increase in the electrical conductivity of pure con-
crete, although this increase does not change as much as a
magnitude change. However, since the concrete itself is not a
conductive material, the change in the weak electrical
properties can provide a possibility for the preparation of
intelligent building materials in the future. Fitting
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Figure 1: (a) Material appearance, (b) particle size distribution, and (c) granular gradation of GT and sand.
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relationship between resistivity and compressive strength of
GTC at day 28 is shown in Figure 7.

3.2. Material Property Analysis of GTC. In order to further
explore the modification mechanism of GT on concrete

compressive strength and electrical resistivity, this paper
conducted a mesoexperimental analysis of GTC-0 to GTC-40.

3.2.1. Material Feature Analysis of GTC. Variations in the
material features of GTC (solid samples) are shown in

Table 1: Mechanical properties of Portland cement (MPa).

Flexural strength (MPa) Compressive strength
(MPa) Fineness Setting time (h :m)

3 days 28 days 3 days 28 days 1.2 Initial setting Final setting
3.3 6.9 19.2 38.5 3 : 30 4 :19

Table 2: Chemical properties of Portland cement, sand, and graphite tailings (%).

Materials Chemical compositions

Cement CaO SiO2 Al2O3 Fe2O3 MgO SO3 Loss
59.64 21.47 5.80 4.04 3.24 2.08 2.44

GT CaO SiO2 Al2O3 Fe2O3 MgO SO3 V2O5 K2O Loss
15.55 62.50 10.21 5.07 2.33 0.54 0.42 2.26 1.17

Sand SiO2 Loss
99.80 0.02

Table 3: Mineral content of cement and graphite tailings (%).

Cement C3S C2S C4AF C3A Gypsum Semiwater gypsum Impurities
65.70 18.10 8.50 4.70 2.10 0.20 0.07

Graphite tailings Hematite Clay Plagioclase Quartz Black mica Impurities LOI
1.10 7.40 41.40 38.30 8.60 3.20 4.15

Table 4: Properties of sand, graphite tailings, and stone.

Physical properties Fine aggregate Fine aggregate Coarse aggregate
Type Natural stand Graphite tailings Crushed stone
Size (mm) 0.16–5 0.2–0.4 5–40.5
Apparent density (kg/m3) 2,620 2,855 2,650
Bulk density (kg/m3) 1,630 1,540 1,550
24-hour water absorption (%) 16.80 37.10 2.17
Fineness modulus 2.49 0.90 —
pH value 7.00 10.00 7.30

Table 5: Mixing proportions of GTC 0% to 100% (kg/m3).

W/C� 0.52 Replacement
volume (%) Cement (kg·m−3) River sand

(kg·m−3) GT (kg·m−3) Coarse aggregate
(kg·m−3) Water (kg·m−3) Admixture

(kg·m−3)
GTC-0 0 346.15 550.33 0.00 1284.10 180.00 1.04
GTC-10 10 346.15 495.27 59.97 1284.10 18.00 1.04
GTC-20 20 346.15 440.24 119.94 1284.10 180.00 1.04
GTC-30 30 346.15 385.21 179.91 1284.10 180.00 1.04
GTC-40 40 346.15 330.18 239.88 1284.10 180.00 1.04
GTC-50 50 346.15 275.15 299.85 1284.10 180.00 1.04
GTC-60 60 346.15 220.12 359.81 1284.10 180.00 1.04
GTC-70 70 346.15 165.09 419.78 1284.10 180.00 1.04
GTC-80 80 346.15 110.06 479.75 1284.10 180.00 1.04
GTC-90 90 346.15 55.03 539.72 1284.10 180.00 1.04
GTC-100 100 346.15 0.00 599.69 1284.10 180.00 1.04
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Figure 8.With the increasing amount of GTincorporation, the
hydration product appears in the dense cluster form. 10% of
GTaddition will improve the hydration process of the cement-
based material and be conducive to the growth of hydration
products. However, when the GTamount is from 20% to 40%,
the mesoscopic characteristics of GTC exhibit more pore
structure, microcracks, and needle-like products because the
high water absorption of GT leads to insufficient hydration,
which affects the macrostrength performance. In order to
further observe the effect of the amount of GTincorporated on
the GTC hydration product, SEM analysis was performed by

grinding theGTC solid into a powder.*emesoscopic features
of GTC (power) are shown in Figure 9; the 10% addition of GT
is advantageous for the formation of flocculent C-S-H gels and
the aggregation of the C-S-H gel which is beneficial to the full
hydration of the cement-based material.

3.2.2. Mesoscopic Feature Analysis of GTC. In this study,
nanoscale characterization of GTC was performed by AFM
and is shown in Figures 10 and 11.*e surface of the cement-
based material changes from rough to flat (with a sheet or
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Figure 2: (a) Research flowchart and (b) experimental flowchart.
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granular product) with the increase of GT amount, and the
surface has some uneven areas such as valley or gully regions
due to the insufficient degree of hydration. *e max values of
topography vs. distance of GTC-0 to GTC-40 are 13.6 nm
(appeared in the 2.87 μm), 2.3 nm (appeared in the 0.51 μm),
8.1 nm (appeared in the 0.22 μm), 3.8 nm (appeared in the
2.87 μm), and 4.9 nm (appeared in the 2.87 μm). GT’s own
ceramic material properties play a role in the nano-
modification of cement-based materials. *e proper amount
of GT is beneficial to the optimization of the surface mor-
phology andmorphology and surface roughness of the matrix

gel in cement-based materials. Simultaneously, graphite
particles present in GT increase the roughness of the matrix
and increased roughness is detrimental to the propagation of
electrical signals. *e results of AFM experiments were
quantified by gradation histograms and are shown in Fig-
ure 12. GT has an increasing effect on the grayscale value of
GTC roughness and the largest one is in GTC-40.

3.2.3. Evolution of Pore Structure of GTC. In this paper, the
pore structure characteristics of GTC are shown in
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Figure 13. *e peak value of the pore size distribution of
GTC-10 was the lowest and that of GTC-40 was the highest.
*e area integral values of the MIP curves decreased from
1879.64mL·nm/g to 1722.58mL·nm/g and increased to
2150.85mL·nm/g. *is trend implies that the pore structure
of GTC becomes unstable with the increase in the content of
graphite tailings. *e porosity, median pore size, average
pore size, most probable pore size, and total pore area with
different contents of graphite tailings are shown in Table 6.
*e porosity of GTC-0 to GTC-40 changed from 18.6% to
16.4% and increased to 22.6%, and the total pore area

decreased from 20.5m2/g to 17.8m2/g and increased to
25.2m2/g. *e median pore size, average pore size, and most
probable pore size decreased from 28.7 nm to 22.0 nm,
19.3 nm to 18.8 nm, and 9.1 nm to 8.0 nm and increased to
27.9 nm, 19.8 nm, and 21.1 nm, respectively. When com-
paring the results of the pore sizes for GTC-0 and GTC-10,
more small-diameter pores were observed as the content of
graphite tailings increased because of the filling of graphite
tailings, which led to the densification of the matrix.

*e development of mesostructure and formation of the
microstructure of cement-based materials directly affect the
macroscopic properties such as compressive strength,
workability, durability, electroconductivity, and fire resis-
tance and characterization [31–41]. In particular, the pore
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structure has a significant influence on the strength and
durability of the cement-based material. At the same time, the
addition of different contents of admixture (instead of cement
or fine aggregate) has important modifications and effects on
the nanoscale characteristics of cement-based materials
[42, 43]. In this paper, the graphite-tailed ore is used to replace
the fine aggregate to make the cement-based material. Based
on the multiscale method, the influence equation of the
different graphite tailings on the pore structure of the cement-
based material, which is related to the distribution of pore
sizes and porosity, was established according to the inho-
mogeneity effect of graphite tailings.*e pore size in different
contents of GT was established as follows:

Ri(φ) � aif(φ), (1)

where Ri(φ) is the different types of pore size such as median
pore size, average pore size, most probable pore size, or
others with different GT contents, φ is the GT contents, ai is
the fitting factors, and f(φ) is the relationship equation of
GT contents.

*e porosity of cement-based materials with different
contents of GT was defined as follows:

PRi
(φ) � bj ·


Ri

R0
(4/3)π Ri( 

2

VGTC
· Aw , Aw  � H ×

[W]m

[GTC]m,

(2)

where PRi
(φ) is the porosity with different GT contents,

VGTC is the volume of GTC, bj is the fitting factor, [Aw] is the
combined water coefficient, H is the hydration degree, [W]m

is the mass of water, and [GTC]m is the mass of GTC
specimen.

*e calculation and experimental values of pore size and
porosity based on equations (1) and (2) are shown in Fig-
ure 14. As shown in Figure 13, the calculation results of the
pore structure characteristics are in favourable agreement
with the experimental results.

3.3. Relationship between GTC Mechanics and Resistivity
according to the Grey Correlation Method. In Section 3.1.2,
the relationship between the compressive strength of GTC
and the resistivity is determined by the fitting method.
However, the established relationship equation has low
correlation and fitness, which need to be improved. *is
paper chooses the grey relational degree method and pro-
poses a new relational computing model.

Grey correlation method is a multifactor statistical
analysis method. It uses grey correlation degree to describe
the strength, size, and order of the relationship between the
factors based on the sample data of each factor [44–46]. *e
grey correlation method is a significant tool for data fitting
and data correlation analysis in engineering, economics, and
data processing [47–49]. A multiscale relational model for the
eigenvalues of pore structure and the macroscopic properties
of cement-based materials was established based on the grey
correlation method. *e flowchart of this calculation method
is shown in Figure 15. *e correlation degree between the
eigenvalues of the pore structure and the macroscopic
properties of the GTC was determined as follows:
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Figure 10: AFM analysis of GTC (0% to 40%). (a) GTC-0; (b) GTC-10; (c) GTC-20; (d) GTC-30; (e) GTC-40.
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Figure 11: Topography vs. distance analysis of GTC (0% to 40%). (a) GTC-0; (b) GTC-10; (c) GTC-20; (d) GTC-30; (e) GTC-40.
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Figure 12: Grayscale analysis on AFM results of GTC (0% to 40%). (a) GTC-0; (b) GTC-10; (c) GTC-20; (d) GTC-30; (e) GTC-40.
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Step 1. Establish compressive strength row matrix A and
resistivity row matrix B with pore structure characterization:

A � [Com(φ)]′, Ri(φ) ′, PRi
(φ) ′ 

n

�

(Com(φ))0 (Com(φ))1 . . . (Com(φ))n

Ri(φ)( 0 Ri(φ)( 1 . . . Ri(φ)( n

PRi
(φ) 0 PRi

(φ) 1 . . . PRi
(φ) 

n

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
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,

B � [Ele(φ)]′, Ri(φ) ′, PRi
(φ) ′ 

n

�

(Ele(φ))0 (Ele(φ))1 . . . (Ele(φ))n

Ri(φ)( 0 Ri(φ)( 1 . . . Ri(φ)( n
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(φ) 0 PRi
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⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

(3)

whereA is the compressive strength rowmatrix with pore size
and porosity, B is the resistivity rowmatrix with pore size and
porosity, [Com(φ)]′ is the compressive strength row matrix,
[Ele(φ)]′ is the resistivity row matrix, [Ri(φ)]′ is the pore
size row matrix, [PRi

(φ)]′ is the porosity row matrix,
(Com(φ))0 is the variable of compressive strength matrix,
(Ele(φ))0 is the variable of resistivity matrix,(Ri(φ))0 is the
variable of pore size matrix, and (PRi

(φ))0 is the variable of
porosity matrix.

Step 2. Dimensionless processing of A and B matrices:
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1
(Com(φ))1

(Com(φ))0
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(Com(φ))n
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1
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n

PRi
(φ) 0
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,
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,

(4)

where A′ is the compressive strength row matrix with pore size
and porosity (nondimensionalization) and B′ is the resistivity
rowmatrixwith pore size and porosity (nondimensionalization).

Step 3. Calculate the reference line and establish the dif-
ference line matrix:
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Figure 13: Pore size distribution of GTC (0% to 40%).

Table 6: Pore structure characteristics of GTC 0% to 40%.

Test piece number Porosity (%) Median pore size (nm) Average pore size (nm) Most probable pore size (nm) Total pore area (m2/g)
GTC-0 18.6 28.7 19.3 9.7 20.5
GTC-10 16.4 25.0 18.8 8.0 17.8
GTC-20 19.3 22.0 17.6 11.1 23.2
GTC-30 19.9 27.3 19.3 13.7 21.8
GTC-40 22.6 27.9 19.8 21.1 25.2
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Figure 14: Analysis of pore structure characteristics on GTC (0% to 40%). (a)Median pore size; (b) average pore size; (c) most probable pore
size; (d) porosity.
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where A′(Com(φ)) is the calculated reference line of
compressive strength rowmatrix with pore size and porosity
(nondimensionalization), B′(Ele(φ)) is the calculated ref-
erence line of resistivity row matrix with pore size and
porosity (nondimensionalization), and ΔA′ and ΔB′ are the
difference line matrices of compressive strength and
electroconductivity.

Step 4. Calculate correlation coefficient:

ξnk ΔA′(  �
minn

1mink
1 ΔA′


 + ρmaxn
1maxk

1 ΔA′




ΔAk
′ + ρminn

1mink
1 ΔA′



,

ξnk ΔB′(  �
minn

1mink
1 ΔB′


 + ρminn
1mink

1 ΔB′




ΔBk
′ + ρminn

1mink
1 ΔB′



,

(6)

where ξnk(ΔA′) is the correlation coefficient of compressive
strength row matrix with pore size and porosity (non-
dimensionalization), ξnk(ΔB′) is the correlation coefficient
of resistivity row matrix with pore size and porosity
(nondimensionalization), and ρ is the resolution coefficient,
which is usually equal to 0.5.

Step 5. Calculate correlation degree:

r〈ΔA′〉 �
1
N



n

k�1
ξnk ΔA′(  · r〈ΔB′〉 �

1
N



n

k�1
ξnk ΔB′( ,

(7)

where r〈ΔA′〉 is the correlation degree of compressive
strength row matrix with pore size and porosity (non-
dimensionalization), r〈ΔB′〉 is the correlation degree of

resistivity row matrix with pore size and porosity (non-
dimensionalization), and N is the number of associated
calculation data.

Based on the preliminary analysis of the correlation
degree, the most relevant set of pore structure characteristic
data values is selected for establishing an estimation matrix
by supposing that the system has characteristic data se-
quence as follows:

X(0)
j (k) �

x
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1 (1) x

(0)
1 (2) . . . x

(0)
1 (k)

x
(0)
2 (1) x

(0)
2 (2) . . . x

(0)
2 (k)

⋮ ⋮ ⋱ ⋮

x
(0)
j (1) x

(0)
j (2) . . . x

(0)
j (k)
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, (8)

where X(0)
j (k) is the characteristic data sequence.

Suppose the 1-AGO sequence as

X
(1)
j (k) � 

n

k�1
x

(0)
j (k), j � 1, 2, . . . , n, (9)

where X
(1)
j (k) is the 1-AGO sequence.

Generate X
(1)
1 (k) nearest neighbor mean sequence Z

(1)
1

as

Z
(1)
1 (k) �

1
2

X
(1)
1 (k) + X

(1)
1 (k − 1) , k � 2, 3, . . . , n,

(10)

where Z
(1)
1 (k) is the 1 mean sequence.

*en, the prediction calculation equation is determined
based on GM (1, n) model as follows:
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Multiscale computational 
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Figure 15: Grey correlation calculation process.
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j (k), (11)
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x
(1)
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(12)

where q is called the development coefficient, gi−1 is called
the driving coefficient, and gi−1x

(1)
j (k) is called the driving

term.
Formula (12) is reduced and the grey predictionmodel of

the original sequence is as follows:

compressive strength: x
(0)
1

∧

(A, k + 1) � x
(1)
1

∧

(A, k + 1)

− x
(1)
1 (A
∧

, k),

(13)

resistivity: x
(0)
1

∧

(B, k + 1) � x
(1)
1

∧

(B, k + 1) − x
(1)
1

∧

(B, k),

(14)

where q is called the development coefficient, gi−1 is called
the driving coefficient, and gi−1x

(1)
j (k) is called the driving

term.
Finally, the relationship between the compressive

strength and resistivity of GTC is determined as follows:

F x
(0)
1

∧

(A, k + 1)  � I · x
(0)
1

∧

(B, k + 1), (15)

where I is called the correlation coefficient.
*e compressive strength and resistivity properties of

GTC based on equations (13) and (14) are shown in Tables 7
and 8. *e comparisons and analyses on the compressive
strength and electroconductivity properties of GTC based on
the multiscale model and experimental data were carried out
and are shown in Figure 16. *e calculated values of
compressive strength are larger for the experimental results
of GTC-10 and GTC-40 and smaller for those of GTC-20
and GTC-30. *e average error rate is 3.01% and the max
error rate is 3.79%. *e calculated values of resistivity
properties are larger for the experimental results of GTC-10
and GTC-30 and smaller for those of GTC-20 and GTC-40.
*e average error rate is 6.10% and the max error rate is
10.56%. Analysis of the calculation error by the variance in
probability theory is shown in Figure 16(c). It can be found
that the variance distribution conforms to the bell-shaped
distribution (normal distribution). *e maximum variance
appears when calculating the values of compressive strength
and electroconductivity of GTC-30. *e calculation model
in this paper has positive calculation accuracy in addition to
the large instability and error in calculating GTC-30. Cal-
culation result of new relationship between compressive
strength and resistivity of GTC established by grey corre-
lation is shown in Figure 17. A better correlation between the
compressive strength and the resistivity can be obtained by
the grey correlation degree (correlation coefficient is 0.93).

Table 8: Most grey correlation of resistivity of GTC 0% to 40%.

Type GTC-0 GTC-10 GTC-20 GTC-30 GTC-40 Correlation degree
Resistivity value (Ω·cm) 22495.893 18570.065 22303.266 20124.508 24931.015 —
Porosity (%) 18.6 16.4 19.25 19.91 22.58 0.8950
Median pore size (nm) 28.7 25.0 22.0 27.3 27.9 0.8678
Average pore size (nm) 19.3 18.8 17.6 19.3 19.8 0.8416
Most probable pore size (nm) 9.7 8.0 11.1 13.7 21.1 0.7573
Total pore area 20.5 17.8 23.2 21.8 25.2 0.7950
Note: values in italics indicate the highest correlation.

Table 7: Most grey correlation of compressive strength of GTC 0% to 40%.

Type GTC-0 GTC-10 GTC-20 GTC-30 GTC-40 Correlation degree
Compressive strength (MPa) 36.79 42.27 36.55 33.13 32.32 —
Porosity (%) 18.6 16.4 19.25 19.91 22.58 0.7651
Median pore size (nm) 28.7 25.0 22.0 27.3 27.9 0.7411
Average pore size (nm) 19.3 18.8 17.6 19.3 19.8 0.8186
Most probable pore size (nm) 9.7 8.0 11.1 13.7 21.1 0.5371
Total pore area 20.5 17.8 23.2 21.8 25.2 0.7358
Note: values in italics indicate the highest correlation.
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4. Conclusions

Graphite tailings are waste solids produced during the
process of graphite mining, which has already caused
considerable damage to the natural ecological environment.
Partial replacement of graphite tailings by building sand is
one of the effective ways to reuse solid waste resources. *e
mechanical and conductivity properties and micro- and
mesoscopic structures of graphite tailings concrete have
been investigated in this paper. *e following conclusions
can be drawn from this study:

(1) *e 10% GT incorporation has a significant change
in the increase of compressive strength and the
decrease in resistivity of GTC.

(2) GT has an important influence on the meso-
morphology, mesofolding, and pore structure of
GTC. Due to the high water absorption of GT, when
the amount of GT incorporated is more than 20%,
the degree of hydration of GTC is suppressed, the
bonding ability between coarse aggregates is lowered,
and the pore structure is increased.

(3) *e relationship between the mechanics and resis-
tivity of GTC is constructed based on the grey
correlation theory. *is relationship can provide a
theoretical basis for the preparation of green and
intelligent concrete building structures through GT
in the future.
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