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�is paper investigates the nanoscale effect on the effective bulk modulus of nanoparticle-reinforced polymer. An interface-based
model is introduced in this work to study the nanoscale effects on the effective properties of heterogeneous materials. �at
interface model is able to capture discontinuity of mechanical fields across the surface between the nanoparticle and matrix. A
generalized self-consistent scheme is then employed to determine the effective bulk modulus. It has been seen from the results
that, in a certain range of limits, the influence of nanoscale effects on effective properties of heterogeneous materials is significant
and needs to be taken into account. In particular, when the nanoparticle radius is smaller than 10 nm, the value of effective bulk
modulus significantly increases when the characteristic size of nanofillers decreases. Besides, it is seen that the harder the in-
clusion, the smaller the nanoscale influence effects on the overall behaviors of composite materials. Finally, parametric studies in
terms of surface strength and filler’s volume fractions are investigated and discussed, together with a comparison between the
proposed model and other contributions in the literature.

1. Introduction

As indicated by various experimental investigations using
nuclearmagnetic resonance (NMR), there is a disturbed area of
the polymer matrix around the nanofillers. Papon et al. [1]
observed that the mobility gradient distribution of the polymer
matrix is significantly altered by the presence of silica nano-
particles. Using NMR, they found an area of the matrix sur-
rounding the nanoparticles (with a thickness ranging between 2
and 14nm) with slower dynamics. Similarly, Harton et al. [2]
found an immobilized layer of the polymer matrix in the vi-
cinity of the nanoparticle surface when experimentally inves-
tigating poly(2-vinylpyridine) reinforced with silica nanofillers.
�e presence of such a disturbed zone was most likely due to
the inclusions and polymer chains interactions at small scales
(atomic and molecular) [1, 3–7]. In terms of modeling, the

effect of such a “third phase” on the effective properties of the
material is no longer negligible [8]. �erefore, it must be taken
into account and modelled, especially using micromechanical
multiscale techniques [9–12].

Currently, two main approaches are employed for
modeling the disturbed area of the polymer matrix sur-
rounding nanoparticles. �e first approach models the
disturbed area as an interphase of finite volume with un-
known mechanical properties. For example, in the work of
Marcadon et al. [13], the authors have investigated the in-
terphase elastic constants using a micromechanical frame-
work for polyethylene reinforced with silica nanoparticles.
�e results were compared with Molecular Dynamics
simulation assuming that the interphase was isotropic linear
elastic. In another study of Kim et al. [14], parameters of
Molecular Dynamics such as thickness, interfacial interaction,
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and interphase structural change have been used to investigate
the interphase behavior using a multiscale model. Le et al.
[15–17] offered a stochastic multiscale model of the interphase
properties, which exhibited random spatial fluctuations from
both the experimental and simulation points of view. However,
according to experimental results, the relation between the
interphase thickness and the nanofiller size is still a difficulty,
especially when considering the behaviors at small scales (i.e.,
atomic andmolecular scales) [18, 19].Moreover, it is difficult to
monitor the interface’s mid-plane stretch using an interphase
model, especially at small scales such as atomic or molecular
scales [20, 21].

In the second approach, which is based on continuum
mechanics, the force transmission between the nanofillers and
matrix has been investigated considering an interface (an in-
terphase with no volume). �e main goal of such model is to
replace the interphase model, which means that traction or
displacement jumps across the interphase are equal to those of
the interface [22]. �is type of interface model has been ef-
fectively applied to determine the influence of nanofiller
characteristic size on the effective behaviors of heterogeneous
materials. For instance, in the work of Gu and He [23], the
interface properties have been investigated using Taylor’s ex-
pansion through a thin interphase medium. In another work
[24], Benveniste has proposed an interface model to study the
behavior of a thin anisotropic interphase. Numerical methods
such as Finite Elements have been also used for these interface
models. For example, in the work of Yvonnet et al. [25], the
authors have used Finite Element Method to implement the
interface model for the jumps of mechanical fields. As men-
tioned above, interphase models are difficult to monitor the
mid-plane stretch of the interface; therefore, this is one of the
most significant advantages of the proposed interface model
[20], which leads to the possibility of dealing with nanoscale
effects [26].

�us, this work investigates the nanoscale effect on the
effective properties of particulate polymer nanocomposites
using an interface model. Section 2 describes the micro-
structure, homogenization scheme, and interface model.
Section 3 presents the explicit calculation for obtaining the
effective properties (bulk modulus) of the heterogeneous
material exhibiting nanoscale effect. Finally, we present
some numerical results and discuss them.

2. Materials and Methods

2.1. Description of Heterogeneous Microstructure. As depic-
ted in Figure 1, the thickness of interphase between the
matrix and the inclusion is assumed to be zero, which
converts it to an interface conveying the mechanical values
between the matrix and the nanofillers.

�emicrostructure in question comprises three phases: the
nanoparticle (denoted by the subscript p), the interface Γ
(denoted by subscript s), and the matrix (denoted by subscript
m), respectively. �e nanoparticle has a radius of rp, whose
volume fraction is denoted byfy.�emechanical properties of
the matrix and nanoparticle are considered linear, homoge-
neous, and isotropic. Consequently, the elasticity tensor of the
nanoparticle and matrix phases is written as
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where i� {p; m} and κ and µ are bulk and shear modulus,
respectively. �e mechanical property of the interface is
considered spherically transversally isotropic (as it is a
spherical surface surrounding the nanoparticle, with a unit
normal vector n). In spherical coordinates {er, eθ, eφ}, the
constitutive law for the zero-volume interface is expressed as
follows [27]:
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where κs and µs denote the interface bulk and shear modulus,
respectively.

2.2. Jumps of Mechanical Fields across the Interface Model.
�e jumps of mechanical fields such as traction or dis-
placement fields across the interface Γ are represented below.
First, let us denote the stress discontinuity at the interface by
Γ. Such a jump, denoted by σ, could be expressed as

σn � σ(m)
n − σ(p)

n � −divs σ(s)
􏼐 􏼑, (3)

where n is the unit normal vector, divs is the divergence
operator, and σ(s) is the stress tensor of the interface, re-
spectively [28]. In spherical coordinates, the discontinuity of
the stress field is written:

σrr er + σrθ eθ +⟦σrφ⟧eφ � −divs σ(s)
􏼐 􏼑. (4)

�e surface divergence has the following explicit form
[29]:
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Note that, in the interface model, the displacement field
across Γ is continuous:

u � u
(m)

− u
(p)

� 0. (6)

�ese conditions across the interface Γ will be added to
the homogenization formulations to determine the effective
moduli of the heterogeneous material.

2.3. Homogenization Using Generalized Self-Consistent
Scheme. Homogenization technique is a two-scale method
used to study the behavior of composite materials [30]. �e
main objective of the method is to determine the behavior of
the material at the global scale based on information given
from the local scale. �e local scale information of the
structure is numerically calculated, with the boundary
conditions being mostly of the periodic type. It is worth
noting that the local problem is not computed on the whole
structure, but only on a representative volume element
which is sufficient to represent the behavior of the whole
structure. A relation between local and global scales is
constructed based on the goal of minimizing the potential
energy between the two scales. For more advanced devel-
opments about homogenization technique, readers are re-
ferred to the works [31–38].

In this work, the hypothesis of separation of scale was
adopted [39, 40], enabling the generalized self-consistent
micromechanical scheme to be used to determine the ho-
mogenized properties of the heterogeneous material
[41–43]. Figure 2 depicts the homogenization scheme in-
cluding the nanoparticle, the interface, the matrix phase, and
the effective medium, respectively.

As the radius and volume fraction of the nanoparticle are
given, the radius of the matrix phase, denoted by Rm, is
deduced:

Rm �
R3

p

fv

􏼠 􏼡

1/3

. (7)

�e self-consistent condition for the domain V is written
as

􏽚

zV

tu0 − t
0
u􏼐 􏼑dS � 0, (8)

where u and t represent the displacement and traction fields
and u0 and t0 are the imposed displacement and stress field
on the boundary of the domain, respectively. �is condition
was established on the basis of the self-consistency of the
energy of the system.

Finally, Figure 3 presents the methodology flowchart of
the present work.

3. Results and Discussion

3.1. Determination of Effective Bulk Modulus. �e homo-
geneous isotropic strain boundary condition to determine
the effective bulk modulus is represented by
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Figure 2: Diagram of generalized self-consistent scheme.
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where ε0 is a material constant. In spherical coordinates, this
condition reads

u
0
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u
0
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u
0
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, ∀x ∈ zV .
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(10)

Applying the above boundary conditions, the displace-
ment solution can be expressed as
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where i� {p; m; e} (e denotes the effective medium) and f(i) is
an unknown function to be solved. �e strain field can then
be expressed as the first derivative of the displacement field
such as

ε(i)
rr �

df
(i)

(r)

dr
,

ε(i)
θθ �

f
(i)

(r)

r
,

ε(i)
φφ �

f
(i)

(r)

r
.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(12)

By virtue of Hooke’s law, the stress field can be written:

Start
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Figure 3: Flowchart methodology of this work.
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where λ is the Lamé elastic constant and
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In spherical coordinates, the equilibrium equation is
expressed:
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�e differential equation obtained is of the form
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where b1(i) are the constants as a function of λi and μi:
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�e form of the function f is such that

f
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� Air
3αi− 1( )/2 + Bir

− 3αi+1( )/2, (18)

where αi is a material parameter defined by He and Ben-
veniste [44]. In this case with an isotropic material, αi is
equal to 1. On the other hand, Ai and Bi are unknown
constants, where i� {p; m; e}. It should be pointed out that, at
r� 0, the function f must be finite. Moreover, as r tends
toward infinity, the homogeneous strain boundary condi-
tions need to be satisfied. �us, we obtain Bp � 0 and Ae � ε0.
Such simplification allows us to reduce the number of
unknown constants to 4, which are solved by applying the
conditions across the interface between the nanoparticle and
matrix, and those between the matrix and equivalent me-
dium, respectively. At the interface between the nanoparticle
and matrix, there is discontinuity of the stress field and
continuity of the displacement field, respectively. Such
conditions are written:
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At the interface between the matrix and equivalent
medium, the mechanical values are continuous across the
interface. �erefore,
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A linear system of equations is then obtained that allows
us to calculate Ap, Am, Bm, and Be, respectively. Finally, we
obtain the effective bulk modulus of the heterogeneous
material, as a function of the mechanical properties of
different material phases and geometrical parameters:

κeff �
12κmκsR

3
m + 12κpμmR

4
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4
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4
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3
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3
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3
m + 12μmRpR

3
m

. (21)

3.2. Investigation of Nanoscale Effect on Effective Bulk
Modulus. �enanoscale effect on the effective bulk modulus
is presented in this section. Various works have set out to
determine the elastic surface moduli, for instance, by using
stress simulation [45], atomistic simulation [46], contrasting
between the atomistic simulation and continuum model
[47], semi-analytical method [48, 49], and the asymptotic
approach [40, 50]. In this work, we adopted the formulation
proposed by Quang and He [40] to generate the surface
moduli:

κs �
hEs

1 − ]2s
,

μs �
hEs

2 1 − ]s( 􏼁
,

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(22)

where Es and ]s are the surface Young’s modulus and
Poisson’s ratio, respectively, and h presents the thickness of

the fine interphase. In this work, different values of κs were
considered such as 1, 3, 5, and 7N/m, respectively. In ad-
dition, different values of volume fraction fv were investi-
gated such as 0.2, 0.3, 0.4, and 0.5, respectively.

On the other hand, for numerical application, the elastic
moduli of the matrix and nanoparticle are chosen as
Em � 6GPa, ]m � 0.25; Ep � 11.5GPa, ]p � 0.25.

Let us denote the effective bulk modulus with and
without interface effects such as Keff and κeff0, respectively. It
is worth noting that the case without interface effects means
that the change of mechanical fields such as traction or
displacement between the matrix and inclusion is assumed
to be continuous. In this study, we focus on investigating the
ratio between κeff and κeff0 to determine the robustness of the
proposed scheme.

Figure 4 presents the results of nanoscale effect, as a
function of characteristic size of nanofillers, surface mod-
ulus, and volume fraction of nanoparticle, respectively. It
can be seen that the effects of characteristic size of nanofillers
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are mostly detected when the nanoparticle radius is smaller
than 10 nm. In particular, the effective bulk modulus in-
creases when the nanoparticle radius decreases. On the other
hand, when the characteristic size of nanofillers is greater
than 30–40 nm, their effects on the effective bulk modulus
are unnoticeable (i.e., κeff/κeff0 ratio is smaller than 1.02,
equivalent to a maximum increase of 2% in bulk modulus).
�is observation shows that when the characteristic size of
reinforcement becomes nanometric [9, 10, 51, 52], the in-
terface plays a significant role in the effective behavior of the
material. On the other hand, in terms of the volume fraction
of the nanoparticle, it did not show any significant impact on
the effective bulk modulus [53, 54].

Moreover, as shown in Figure 4(a), the nanoscale effect
increases with increasing interface modulus. For instance, at
Rp � 2 nm and fv � 0.4, the κeff/κeff0 ratios are 1.029, 1.081,
1.126, and 1.165, when κs are 1, 3, 5, and 7N/m, respectively.
It should be noted that the higher the strength (energy) of
the interface, the greater the effect on the effective properties.
As observed in Figure 4(b), the size effects are proportional
to the inclusion volume fraction, between the solutions with
and without the interface. For instance, at Rp � 2 nm and
κs � 5N/m, κeff/κeff0 ratios are 1.059, 1.091, 1.126, and 1.164,
when fy are 0.2, 0.3, 0.4, and 0.5, respectively. �e degree of
influence of the interface on the effective behaviors is also
proportional to the volume fraction of the inclusions, as they
are dependent on each other.

3.3. Comparison with Existing Models. In this section, we
compare the results of the framework proposed in this study
and other frameworks existing in the literature, as in the
work of Firooz et al. [52], Zemlyanova and Mogilevskaya
[55], Nazarenko et al. [56], Duan et al. [22], and Gu et al.
[57]. �e formulae, interface models, and homogenization
techniques used to compute the effective bulk modulus for
each paper are expressed in Table 1.

Material properties used to compute the effective bulk
modulus of 6 models are indicated in Table 2. Figures 5(a)–
5(c) show the comparison of the effective bulk modulus
between the framework proposed in this paper and 5 other
frameworks in the literature, with the volume fraction
fy � 0.2, 0.4, and 0.6, respectively, in function of the radius
of the nanoparticle Rp. �e contrast of elastic properties (i.e.,
Young’s modulus) between the nanoparticle and the matrix
in this case is fixed at 10. It can be seen that good agreement
between all the solutions for the bulk modulus was obtained;
i.e., the model used in this work and other models in the
literature have a stronger correlation. However, for the case
of Duan et al. [22], a slight difference was observed for
particle radius smaller than 10 nm. Moreover, for the case of
fv � 0.2, the model proposed by Firooz et al. [52] also
exhibited a difference compared to others. It is interesting to
notice that Duan et al. [22] and Firooz et al. [52] have used
composite spheres assemblage and Mori-Tanaka method for
the homogenization scheme. Moreover, a general interface
model has been developed in Firooz et al. [52]. Besides,
Table 3 summarizes the values of κeff/κeff0 for each frame-
work at Rp � 1 nm and Rp � 50 nm. We can see that when the
volume fraction increases, the ratio values (especially when
Rp� 1 nm) become close to each other.

Figures 6(a)–6(d) show the comparison of the effective
bulk modulus between the framework proposed in this
paper and 5 other frameworks in the literature, with the
contrast of elastic properties (i.e., Young’s modulus) be-
tween the particle and the matrix Ep/Em � 10, 20, 30, and
1000, respectively, in function of the radius of the nano-
particle Rp. Such a comparison reveals the influence of
particle to matrix stiffness ratio on the overall bulk modulus
(for very stiff and very soft inclusions, respectively). �e
volume fraction of the inclusion used in this case is fixed at
0.4. It is seen that the higher the Ep/Em ratio, the smaller the
nanoscale effect we have on the overall behavior of the
material.
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Figure 4: Nanoscale effect on bulk modulus as a function of (a) κs and (b)fy.
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It is seen that the higher the Ep/Em ratio, the smaller the
nanoscale effect on the effective properties of nano-
composites. From an experimental point of view, the effects
of polymer/particle interactions on polymer chain dynamics
and on mechanical properties of nanocomposites have been

widely investigated, sometimes with non-conclusive evi-
dence. �e importance of interactions, like covalent bonds
or hydrogen bonds, among the surface of inorganic fillers
and the organic matrix has been shown at a molecular level
by, for example, Avolio et al. [58] and Nicola et al. [59].
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Figure 5: Comparison of effective bulk modulus ratio curves between 6models, in function of nanoparticle radius, with (a)fy � 0.2, (b)fy �

0.4, and (c) fv � 0.6, and Ep/Em � 10.

Table 2: Material properties used to compute the effective bulk modulus of 6 models.

Em(GPa) ]m Ep(GPa) ]p fv λs � μs(N/m)

6 0.25 11.5 0.25 0.4 1
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Table 3: Values of the κeff/κeff0 ratio between different frameworks in the case where the contrast of elastic properties is fixed and the volume
fraction is varied.

Ref. fy � 0.2,
Rp � 1

fy � 0.2,
Rp � 50

fy � 0.4,
Rp � 1

fy � 0.4,
Rp � 50

fy � 0.6,
Rp � 50

fy � 0.6,
Rp � 50

�is work 1.0151 1.0004 1.0343 1.0009 1.0636 1.0016
Firooz et al. [52] 1.0057 1.0002 1.0286 1.0008 1.0632 1.0016
Zemlyanova and Mogilevskaya
[55] 1.0174 1.0005 1.0395 1.0010 1.0735 1.0019

Nazarenko et al. [56] 1.0174 1.0005 1.0395 1.0010 1.0735 1.0019
Duan et al. [22] 1.0085 1.0002 1.0193 1.0004 1.0353 1.0008
Gu et al. [57] 1.0151 1.0004 1.0343 1.0009 1.0636 1.0016
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Figure 6: Comparison of effective bulk modulus ratio curves between 6 models, in function of nanoparticle radius, with fv � 0.4 and (a) Ep/
Em � 10, (b) Ep/Em � 20, (c) Ep/Em � 30, and (d) Ep/Em � 103.
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However, the effect of such interactions on experimentally
measured macroscopic properties is not easy to rationalize.

In several experimental studies, nanoscale effect on the
effective properties of heterogeneous materials has been
clearly shown, particularly for polymers reinforced with
spherical nanofillers. For example, in the work of Douce
et al. [60], the inclusion size effect on the effective behavior
(tensile modulus) of nanocomposite has been investigated.
�ree different inclusion diameters have been used for the
comparison such as 15, 35, and 60 nm. In particular, it can be
noted, for example, that the effective tensile modulus was 4.3
and 3.95GPa for the inclusions whose diameters are 15 and
35 nm, respectively. However, the effects of 60 nm particles
were not observed in this case. A possible explanation is that,
for this size of reinforcements (i.e., larger than 50 nm in
diameter), the nanoparticles tend to form aggregates, which
are responsible for the very significant increase of the
modulus. Most recently, Blivi et al. [61] have explored ex-
perimental evidence of size effect in silica-reinforced pol-
y(methyl methacrylate). Uniaxial tensile tests have been
carried out and showed that Young’s modulus has increased
in decreasing particle size (particle sizes are 500, 150, 60, and
25 nm and volume fraction of reinforcement is kept con-
stant). Finally, other experimental results on nanoscale effect
are available, such as [61–64].

For a micromechanics modeling point of view, the
proposed model can be used to retrieve information on the
interface/interphase formation and properties [51, 53]. More
precisely, formation of the interphase is exhibited by its
thickness, whereas properties of the interphase are directly
related to the thickness and the interface parameters (bulk
and shear surface moduli). �us, if the interface parameters
are known, the interphase properties can be computed
through an inverse identification. On the other hand, the
prediction of nanocomposites overall properties accounting
for interphase/interface effect is much more complex in real
systems because of various aspects such as the following:

(i) �e thickness of interphase in function of particle
distribution size, shape of nanoparticle, and tem-
perature [13, 40, 42, 65–67]

(ii) Existence of both nanoparticulate agglomeration
phenomenon and free nanoparticles in real systems
[66, 68]

(iii) Existence of overlapping interphase in real systems
[69–72]

(iv) Stochastic analysis being required in most cases
[73, 74, 75, 76, 77, 78, 79]

4. Conclusions

In this work, an interface model was integrated into the
classical homogenization scheme to explore the nanoscale
effect of materials reinforced with nanometric fillers. To this
end, the mechanical values across the surface between the
nanofiller and matrix exhibited discontinuities, which were
captured by the interface model.�e effectivemodulus of the
material was then derived based on the generalized self-

consistent micromechanical scheme. It was shown that the
effective bulk modulus depended on the characteristic size of
fillers, especially when they are nanometric in scale.
Moreover, the effective modulus depended on the surface
strength and the volume fraction of the fillers.

�e comparison with experimental data (mostly for
measurement of Young’s modulus of nanocomposites) will
be considered in our next research, where effective bulk,
shear, and Young’s moduli are expressed as a function of
surface parameters. In this work, we mainly focus on the
nanoscale effect on the effective behaviour of heterogeneous
materials in the elastic regime. In future works, other re-
gimes such as elastoplastic or viscoplastic can be taken into
account for this type of study. In addition, besides using
numerical method such as Finite Element Method, Mo-
lecular Dynamics can also be applied to study the atomic and
molecular scales. At present, there is a shortfall in such
simulations coupling continuum mechanics and atomistic
simulations to model the interface region between the
matrix and nanofillers.
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