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Power spectral density (PSD) is used for evaluating a structure’s vibration process. Moreover, PSD not only shows a discrete form
of vibration but also presents various components in a vibration structure.�e superposition of multiple vibration patterns on the
same spectrum poses difficulty in analyzing the spectral information in the way needed to find the structure’s discrete vibration.
�is paper proposes a method for separating the synthetic vibration signal into a structure’s discrete vibration and other ex-
traneous vibrations using the maximal overlap discrete wavelet transform (MODWT) method combined with the method of fast
Fourier transform (FFT). With the combination of these two algorithms, MODWT and FFT, the signals of the synthesized
vibration have been separated into component signals with different frequency ranges.�is means that PSD will be formed, which
is based on the combination of the single power spectra of the component signals. �us, the single spectrum of each of these
constructed components can be used to evaluate the types of discrete vibrations coexisting in a structure’s vibration process. �e
survey results in this paper show the sensitivity and suitability of select types of discrete vibrations to be separated out during the
assessment of the structural change, so as to achieve the best possible plan for eliminating the unwanted and unexpected noise and
vibration components.

1. Introduction

�e extraction of information from the structure’s vibration
measurement signals is quite popular for short-term studies
[1–3]. �e actual vibration signals are often utilized in the
time domain so as to evaluate the signal change corre-
sponding to time. In the time domain, parameters extracted
from the received signal will evaluate the changes in qual-
itative structure during the operation procedure [4, 5]. Many
studies have converted from the time domain to the fre-
quency domain so as to assess the quantitative change [6–9].
�is analytical technique will utilize the quantitative values
of the vibration process inside the structure. �e charac-
teristics of the vibration signal are usually expressed as
follows: value of the discrete vibration frequency [10–12],
vibration amplitude [13], maximum power [14], damping
[15], and elongation strain [16]. In the laboratory, any
structure subjected to a sufficiently strong outside force will

vibrate. �eoretically, the structure will take on a unique
vibration corresponding to the impact of a given applied
force [17]. Many vibrations are the result of the structure
being subjected to an initial outside force. But many other
vibrations may manifest as an effect of the accumulation of
either driving and damping forces or various boundary
conditions. �us, it is necessary to eliminate these types of
extraneous component vibrations, especially the noise
components, in order to accurately assess the structure’s
most intrinsic vibration. �is analysis allows for the ac-
quisition of more signal information under the elapsed time
as well as more information regarding changes in the
structure itself. For the signals’ component separation, many
different algorithms are used, such as Fourier analysis
[18, 19], Kalman analysis [20–22], the Gaussian noise filter
analysis [23–25], and, the most widely applicable algorithm,
the wavelet analysis [26–31] and many methods have been
highly effective [32, 33]. �e association of wavelet analysis
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with the other algorithms improves the processing efficiency
[34]. However, the wavelet studies have not yet clarified the
existence and effects of the noise due to extraneous vibra-
tions. Apart from that, the current wavelet analysis has not
yet specifically indicated the relationship between the
components and the overall signals. With the same point of
view about research in the laboratory, experimentally ob-
served structure vibrations result from the impact of various
applied forces or from other random forces. And in the
process of a structure’s force bearing, the structure itself will
suffer many forms of vibrations, possibly including a large
amount of noise vibration.�is means that the structure will
simultaneously perform many types of vibrations, including
both discrete and coherent vibrations, resulting in an overall
oscilloscope signal with too much information. �us, this
obtained signal is not really suitable for evaluating structural
changes or determining the information needed at the
measured time. �e synthesis resulting from many different
vibrations makes the results of an assessment less accurate,
and, simultaneously, the parameters utilized become less
sensitive than originally expected.

With this recognition, the evaluation results will be
better in the case of separating these synthetic signals into
discrete signals. �is paper implements the combination
method of MODWT and FFT so as to analyze the signal’s
spectrum of actual vibration by clearly separating the
characteristics of each vibration. �is means that the paper
still evaluates the signal change through the vibration
spectrum as in previous studies, but without using the
characteristics extracted from an overall vibration spectrum
[35–37]. �e present study separates this spectrum into
discrete forms corresponding to the forms of different vi-
brations and simultaneously eliminates the components of
noise vibration. �is procedure will enhance the quality of
the evaluated parameters obtained from each type of discrete
vibration for the structural change. �e results from this
study will show the unique vibration frequency of each form
of component vibration. Accordingly, these discrete vibra-
tions can be separated according to their own natural fre-
quencies. Furthermore, they will form a resonant area where
most of the energy formed will be concentrated. �us, the
study proposes using the maximal overlap discrete wavelet
transform (MODWT) on the FFT basis so as to solve the
problem of identifying and separating these components.
�is study also identifies the signal change in both the time
domain and the frequency domain. �e study has separated
the signal of the original vibration into component signals
and simultaneously has approximated each of these signals
with the signal of either noise or lack of noise. �us, each
separated signal can represent a vibrating form of the
original signal corresponding to each force situation exerted
on the structure. �e extracted signal contains an area of
vibration frequency with characteristics of its vibration
conditions, which can be considered the main form of vi-
bration. Conversely, the separated signal is not in the area of
discrete vibration frequency and can be considered a form of
noise. �is study will help identify the structural changes
over an elapsed time and sudden changes through the power
spectrum. �is survey will help identify the trend generated

by the vibration forms embedded in the spectrum of discrete
vibration power.

2. Theoretical Basis

2.1. Disadvantages of the Conventional Wavelet Transfor-
mationMethod. Discrete wavelet transforms are considered
multiresolution analysis. �is analysis is applied to noise
filtering and field separation during data processing [38]. In
actual vibration, each vibrating signal has its own frequency
response. Some types of signals, however, are extraneous and
often referred to as noise signals. Generally, a signal analyzed
by a wavelet transformation usually consists of two discrete
components based on the area of distributed frequency: the
low-frequency area and the high-frequency area. However,
in many previous surveys [26–31], the high-frequency value
is largely caused by noise or unwanted external environ-
mental agents. Discrete wavelet transform is capable of
decomposing the original signal into two components, the
approximation and the detailed components, presented as
follows:

x(t) � 􏽘
n

cj,nϕj,n(t) + 􏽘
∞

j�J

􏽘
n

dj,nψj,n(t). (1)

According to the technique of multidecomposition
analysis, any x(t) signals can be rewritten as the sum of
signals of successive approximation and detailed compo-
nents.�is means that the function x(t) is limited by the sum
of the decomposed signals and its own successive approx-
imation. �erefore, with the suggestion from this paper for
the difference between two consecutive signals at 2j− 1 and 2j,
resolution is the detailed signal at 2j resolution. �e function
ϕ(t) denotes the proportional function of two consecutive
signals, and ψ(t) denotes the wavelet function with the
wavelet coefficient {dj,n}, specified by the following equation:

dj,n � 2− j/2
􏽚

+∞

− ∞
x(t)ψj,n 2− j

(t − n)􏼐 􏼑dt. (2)

At the same time, the approximate function or the ratio
coefficient between two consecutive signals {cj,n} is repre-
sented in the following equation:

cj,n � 2− j/2
􏽚

+∞

− ∞
x(t)ϕj,n 2− j

(t − n)􏼐 􏼑dt. (3)

�e relationship of the ratio coefficient and the wavelet
coefficient of the wavelet signal is determined through
equations (4a) and (4b):

cj,n � 􏽘
k∈Z

gkcj− 1,2n− k, (4a)

dj,n � 􏽘
k∈Z

hkcj− 1,2n− k, (4b)

in which gk represents the filter of low-frequency area, hk
represents the filter of high-frequency area, and k is the
discrete wavelet transform to the Mth levels. Equations (4a)
and (4b) represent the approximate and detailed signal of the
j resolution level, and it is decomposed from the
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approximate signal of the j − 1 resolution level. In the case of
making the reverse analysis during the phase of signal re-
covery, the approximate signal segment of the j − 1 reso-
lution level is calculated from the approximate signal and the
detailed signal at j resolution through the following
equation:

cj− 1,n � 􏽘
k∈Z

gkcj,2n− k + 􏽘
k∈Z

hkdj,2n− k. (5)

Equations (4a), (4b), and (5) are implemented via dis-
crete wavelet transform (DWT). For the case in which the
data are obtained for a long enough time, the method of
discrete wavelet transformation is no longer correct or ef-
fective, because the amount of noise of the signal will in-
crease when the measurement time of the signal is too long
[39, 40]. �is paper proposes using MODWT instead, which
is also considered an undefined discrete wavelet
transformation.

2.2. Maximal Overlap Discrete Wavelet Transform
(MODWT). �e MODWT [41] is constructed by changing
the size of the filters, in accordance with filter values for the
given low and high-frequency areas from equations (4a) and
(4b) to 􏽥gk � gk/

�
2

√
and 􏽥hk � hk/

�
2

√
. �en the value of

MODWTwavelet filters must meet the following properties:

􏽘

K− 1

k�0

􏽥hk � 0, (6a)

􏽘

K− 1

k�0

􏽥hk

2
�
1
2
,

􏽘

∞

k�− ∞

􏽥hk
􏽥hk+2r � 0,

(6b)

in which r is a nonzero integer and K denotes the length of
the wavelet wave filter. �e filter will be scaled by {􏽥gk}
proportions with a requirement similar to􏽐

K− 1
k�0 􏽥gk � 1. �e

boundary condition of the signal in the time domain is
c

(M)
0,n � xn(t). �e MODWT transformation will create an
approximate signal function {c(M)

j,n } and a detailed signal
function {d(M)

j,n } with the j resolution of the approximate
signal when the resolution is j − 1, which means {c(M)

j− 1,n}.

d
(M)
j− 1,n � 􏽘

K− 1

k�0

􏽥hkc
(M)

j− 1, n− 2j− 1k( )modN
, (7a)

d
(M)
j− 1,n � 􏽘

K− 1

k�0

􏽥hkc
(M)

j− 1, n− 2j− 1k( )modN
, (7b)

in which N is the width of the signal sample in the time
domain. Equations (7a) and (7b) can also be considered the
periodic filter of the {xn} original signal using the filter, as
shown in Figure 1. 􏽥hj,k � hj,k/2j/2􏽮 􏽯 and 􏽥gj,k � gj,k/2j/2􏽮 􏽯,
concretely as follows:

d
(M)
j,n � 􏽘

K− 1

k�0

􏽥hj,kxn− kmodN, (8a)

c
(M)
j,n � 􏽘

K− 1

k�0
􏽥gj,kxn− kmodN. (8b)

Figure 1 shows how the original signal can be recon-
structed by c

(M)
j,n and d

(M)
j,n as follows:

c
(M)
j− 1,n � 􏽘

K− 1

k�0

􏽥hkd
(M)

j, n+2j− 1k( )modN
+ 􏽘

K− 1

k�0
􏽥gkc

(M)

j, n+2j− 1k( )modN
, (9)

with n� 0, 1, 2, . . ., N − 1. Focusing on the j resolution, the
average value of the MODWT wavelet coefficient {d(M)

j,n } is
zero:

E d
(M)
j,n􏽮 􏽯 � 􏽘

k

􏽥hj,nE xn− lmodN􏼈 􏼉 � μx 􏽘
k

􏽥hj,k � 0, (10)

where k ∈ Z and μx is the average of the signal analyzed in
the time domain. And in fact, 􏽐k

􏽥hk � 0 in equation (10).
�e attribute defined in this paper is used in wavelet-based
signal change detection. Equation (10) can detect the
sudden hops in the average value of the received signal.
Generally, the MODWTmultiresolution analysis technique
presented in the paper helps to decompose an original
signal into approximate and detailed fields without sam-
pling down during such a filtering process, as well as not
affecting either quantity or quality of the received signal.
�erefore, the cases of decomposed data can be associated
so as to reconstruct the original signal by summing the
decomposed signals, as shown in Figure 2.

2.3. �e�eory for Setting up the Power Density Spectrum by
the Fast Fourier Transform. �e model-built paper trans-
forms the signal space from the time domain to the fre-
quency domain in order to accommodate the original signal
decay by the MODWTmethod. �e original signal obtained
is raw data with a lot of information incapable of being
exploited if used only in the time domain. �erefore, this
paper shows how signals are transferred from the time
domain to the frequency domain, which will have advan-
tages compared to utilizing them in the time domain only.
Signals that are mainly utilized in the frequency domain are
signals implemented through spectrum analysis, and we use
the power density spectra in this study. �e power density
spectra needed for the Fourier transform of the signal’s
correlation function in the t time domain at two time points
τ and T+ τ are found from

􏽢Rxy,biased(m) �
1
N

􏽢Rxy(m), (11)

with 􏽢Rxy(m) �
􏽘

N− m− 1

n�0
xn+my

∗
n , m≥ 0,

􏽢R
∗
xy(− m), m< 0,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(12)
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in which x is data corresponding to time τ and y is data
corresponding to time T+ τ. �us, equation (11) allows us to
correlate the two moments of the vibration signal. �e
correlation function will evaluate the signal randomness
through the difference between the two datasets. �is helps
to evaluate the stability of the measured vibration signals.
According to the theory, the Fourier can separate any
functions into many different subcomponents, so this paper
will apply the Fourier analysis method so as to separate the
synthesized signal into many subcomponent signals with
different corresponding frequencies. �is means that the
original signal in the time domain can be completely re-
written as the sum of the subfunctions generated from it.
�erefore, the signal’s Fourier transform f(t) ∈ L1(R) is
usually defined by the following formula:

F(ω) � 􏽚
+∞

− ∞
f(t)e

− iωtdt, ω ∈ R. (13)

If you want to make the reverse conversion from the
frequency domain to the time domain, do the following
according to equation

f(t) �
1
2π

􏽚
+∞

− ∞
F(ω)e

iωtdt, ω ∈ R. (14)

To solve equation (13), assuming that the numbers a and
b are large enough (a< 0, b> 0), equation (13) is imple-
mented as follows:

F(ω) � 􏽚
b

a
f(t)e

− iωtdt, ω ∈ R. (15)

Equation (15) is called a Fourier transform, and from
this, the paper will generate the concept of the transfor-
mation of discrete Fourier analysis. Accordingly, we divide
the segment [a, b] into a sequence with N elements so as to
calculate the approximate equation (15):

a � t0 < t1 < t2 < · · · < tN− 1 � b,

coiningΔt �
a − b

N
, tk � a + kΔt, k � 0, 1, 2, . . . , N.

(16)

�en the approximate function Φ(ω) of F(ω) is given by
the expression

Φ(ω) � 􏽘

N− 1

k�0
f tk( 􏼁e

− iωtΔ � 􏽘

N− 1

k�0
f tk( 􏼁e

− iωk(b− a)/NΔt, (17)

coining

ωn �
2πn

b − a
, n � 0, 1, 2, . . . , N − 1. (18)

Substituting equation (18) into equation (17) gives

Φ ωn( 􏼁 � e
− iaωn

b − a

N
􏽘

N− 1

k�0
f tk( 􏼁e

− i2πk(b− a)/N
. (19)

Equation (19) leads to the discrete Fourier
transformation:

Fn � FN[f](n) � 􏽘
N− 1

k�0
f tk( 􏼁e

− i2πkn/N
. (20)

�e FFT solver algorithm in this paper applies only to
the case N � 2s, s ∈ N. With even N, the sum equation (20)
can be analyzed into two sums of the subcomponents,
including even components of gi and odd components of
hI of the f(t) signal, in which the sequence gj is the se-
quence with even order, and hI is the sequence with odd
order. �e total components of each sequence have N/2
elements:

gi � f2i;

hi � f2i+1, i � 0, 1, 2, . . . ,
N

2
− 1􏼒 􏼓.

(21)

Applying the discrete Fourier from equation (20) to each
sequence in equation (21) gives

Gn � 􏽘

(N/2)− 1

k�0
g tk( 􏼁e

− i4πkn/N
, (22)

Hn � 􏽘

(N/2)− 1

k�0
h tk( 􏼁e

− i4πkn/N
, (23)

coining

W � e
− i2π/N

. (24)

Substituting equation (24) into equations (20)–(22), we
obtain

Fn � 􏽘

(N/2)− 1

k�0
gkW

2nk
+ hkW

(2k+1)n
􏽨 􏽩

� 􏽘

(N/2)− 1

k�0
gkW

2nk
+ Wn 􏽘

(N/2)− 1

k�0
hkW

2kn
Fn � Gn + W

n
Hn.

(25)

�us, the Sn value can be calculated according to the
known values as Gn and Hn. However, the above expression
is only correct if

n≤
N

2
− 1. (26)

Gn and Hn will not be determined when n is large. So for
n≥N/2, Sn can be calculated according to the periodic
properties of the discrete Fourier transform:

Fn � Gn− (N/2) + W
n
Hn− (N/2). (27)

We review

W
n

� W
(n− (N/2)+(N/2))

� W
(n− (N/2))

W
(N/2)

, (28)

W
n

� e
− i(2π/2)·(N/2)

� e
− iπ

� cos π − isinπ � − 1. (29)

From equations (28) and (29), we get
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W
n

� − W
(n− (N/2))

. (30)

So, when n≥N/2, the Fourier transform is calculated as
follows:

Fn � Gn− (N/2) − W
n− (N/2)

Hn− (N/2). (31)

�us, the FFT can process the signals’ autocorrelation
function so as to obtain the power density spectrum in the
frequency domain quicker than the conventional Fourier
transformation can. We can analyze the hidden components
in the signal, which would otherwise not be detected if
processed in the time domain, by converting signals from the
time domain to the frequency domain. �e signal variation
will also lead to a change in the power density spectrum.

3. Results and Discussion

3.1. Separating the Power Density Spectrum by the MODWT
Model. �e power density spectrum is a conversion of the
signal vibration from the time domain to the frequency
domain through the FFT transformation for the original
signal’s autocorrelation function. �us, the spectrum ob-
tained from the variation of the original signal will be a
spectrum with a constant frequency. �is frequency se-
quence may contain various discrete frequencies of distinct
signal types. Accordingly, this spectrum is a combination of
the power density spectra of the discrete signals that appear
when being obtained from some structure. Furthermore,
through analysis of maximum overlap discrete wavelets, the
discrete signals and the power density spectra of these
discrete signals from the typical spectrum can be separated
for the purpose of representing the overall signal form, as
shown in Figure 3.

It can be seen that power density spectra cover each
discrete vibration area. �is shows that the combination
analysis between MODWT and FFT as described in this
paper has helped separate the discrete signals from the total
received signal. As shown in Figure 3, the signal component
is decomposed at level 4, and at this level, the signal types are
almost decomposed to show the extraneous vibrations and
their influence on the overall signal cluster. �erefore, this
separation process also has the effect of filtering down the
values of interference or unwanted signals in the overall
signal. From this, we can easily find the types of signals
needed to be examined, as well as signals of specific impacts.
According to the signals from Figure 4, the separation study
from an overall spectrum will generate three component
spectra with the following characteristics: two spectra have a
much larger spectral amplitude than the others. Two spectra
with large amplitudes distributed into two different fre-
quency areas include a low-frequency area with a range of
5–15Hz and a high-frequency area distributed in the range
of 30–50Hz. However, the spectrum is covered in the range
10–40Hz with a very small amplitude, defined as the amount
of noise caused during the measurement and data pro-
cessing, or the signals are too small for us to observe and
research. �us, two spectra with large amplitudes, distrib-
uted in two different areas in the frequency sequence, are the

spectral forms formed by the original signal specifically
considered by us. �ese signals can directly affect the
subjects surveyed and evaluated in this study.

�us, the study has obtained two different types of vi-
bration spectra for the same original signal by using the
MODWT multiresolution analysis method, in which the
obtained spectra have shown two different causes of impacts
on the bearing structure. At the same time, the research
results show that the overall PSD is only the sum of the
component spectra, or, in other words, based on the
component spectra, we can evaluate the structure change
under each effecting agent.

3.2. Both PSD and MODWT Model in the Actual Result.
In reality, the signal’s power spectrum obtained from the
structure is quite diverse, in which the spectrum is also
influenced by a large amount of interference apart from the
impact of the main factors on the structure. It is an issue that
has received considerable interest from researchers for a
long time. In addition, in practical working conditions, such
as activities impacting bridges, roads, houses, and civil
constructions, structures will be simultaneously affected by
many different factors. �ese factors can be active agents,
whichmeans that various causes actively impact the building
of structures according to certain purposes and clear trends.
However, in addition to the factors causing direct effects,
indirect factors can also significantly affect a project’s op-
eration. Figure 5 shows an experiment of a vehicle with the
performance parameters as shown in Table 1, which is
running through a bridge span at an approximately constant
speed over the time interval being considered.

�e main impact on the bridge span is the crucial impact
of the wheels running along the bridge with its wheel system,
as shown in Figure 5. �e damping system has a direct
influence during the operation and causes the vibration on
the bridge under the impact of the spring system. Figure 5
shows that the vehicle creates many different vibrations
during its operation that impact the structure. At positions
in which the structure is in contact with the wheels, the main
vibration in the mechanical system (m1, C1, and k1 and m2,
C2, and k2) is generated, and also generated is a series of
noise signals.�ese types of noise signals include the amount
of noise from the measurement process, the noise generated
by the equipment as shown in Figure 6, and the amount of
noise generated during the data processing as shown in
Figure 7. In addition, the vehicle mass (m3), under the
impact of inertia, forms the vehicle’s third vibration affecting
the structure. From the two positions of the front and back
wheels and the vehicle mass itself, the study has obtained the
signals of vibration caused by the impact on the bridge span
through an analysis of the vehicle’s overall vibration
impacting the bridge. If only one object influences the
structure, as shown in Figure 5, the spectra obtained are as
shown in Figure 8.

As shown in Figure 8, for the case in which the structure
is under the impact of only one object, at different measuring
positions across the overall structure the results are similar,
and the comparison results are shown in Table 2. �is
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indicates that when the impact of the object on the structure
is sufficiently strong, the causative agents at close points will
be similar to each other. On the contrary, the amount of
noise generated at different positions is very different due to
the boundary condition constraints among objects, and they
are shown in Figure 8. However, although this amount of
noise exists directly in the measured data, it can be elimi-
nated during the data processing, as can be seen in the
manuscript’s research results, through the MODWT de-
composition model. �erefore, we can completely remove

the noise components, those components that do not di-
rectly affect the structure, and retain only the main
impacting components through the transformation wavelet
converter and power spectrum.

Taking the survey of the same object for the vehicle
model moving many times on the same structure, the results
are shown as Figures 9 and 10 in two cases (case 1: accel-
erating during movement and case 2: slowing down while
moving). For both cases, the same spectrum is obtained with
a value of representative power spectrum. However, the
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Figure 3: Spectral components analyzed by disaggregated signals.
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Table 1: Parameters of the vehicle model on the bridge.
Elastic modulus 207GPa
Mass per unit length 20.000 kg/m
Cross-sectional 4.94m2

Second moment of area 0.174m4

Shear coefficient 5/6
Beam viscous damping 1750N·s/m
Beam length 100m
Mass Meq 434.39 (kg)
Spring stiffness Keq 19097.32 (N·m− 1)
Damper coefficient Ceq 290.84 (N·s·m− 1)
Speed v 20 (m·s− 1)
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difference in the two cases is the influence of noise, the
amount of which often changes depending on the nature of
the vehicle’s movement.

In the first case, when the vehicle model crosses the bridge
beam with a large acceleration, the noise amount abruptly
changes at the end of the signal. �is can be explained by the
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Figure 8: Vibration spectrum of the signal.

Table 2: Results of the PSD obtained in different status.

Case Parameters of the vehicle model Value
frequencies

Noise
(%)

Car

Overall dimensions: D×W×H (mm)
4,425×1,730×1,475

Overall internal dimensions: (D×W×C) (mm)
1,895×1,420×1,205

Wheelbase (mm) 2,550
Wheelbase (front/rear) 1,475/1,460

v � 50 km/
h 32.5 (Hz) 10

v � 65 km/
h 33.3 (Hz) 6.5

v � 70 km/
h 33.2 (Hz) 6

2.5-ton Hyundai mighty
truck

Overall dimensions: D×W×H (mm)
6.715× 2.170× 2.355

Dimensions inside the vehicle: 4,900× 2,050× 380 (mm)
Wheelbase: 3,735 (mm)

Tread Front/rear: 1.650/1.495 (mm)

v � 50 km/
h 25.7 (Hz) 7

v � 65 km/
h 24.3 (Hz) 8

v � 70 km/
h 24.7 (Hz) 5

5-ton truck Hyundai

Dimensions D×W×H (mm)
6175× 2050× 2260

Dimensions of the vehicle D×R×C (mm)
4340×1920× 390

Size of ground clearance: 220 (mm)
Weight without load: 3 205 kg

Gross weight: 8 440 kg
Load capacity: 5 tons

v � 50 km/
h 12.5 (Hz) 8

v � 65 km/
h 11.4 (Hz) 6

v � 70 km/
h 11.6 (Hz) 6

20-ton truck

Iron cylinder model: ZZ1317M3861V
Full allowable load (kg): 31000

Load type (kg): 17800
Overall dimensions D×W×H (mm)

11182× 2496× 4735
Barrel size D×W×H (mm)

10300× 2726× 800
Wheelbase (mm): 1800 + 3800 + 1350

Front/rear wheel track (mm): 2022 (2041)/1830

v � 30 km/
h 8.5 (Hz) 6

v � 40 km/
h 7.9 (Hz) 5

v � 50 km/
h 7.8 (Hz) 5
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fact that the amount of inertia decreases during acceleration,
the noise goes to the negative part of the countershaft axle,
and then the structure operates in a compressed status. On the

contrary, inertia increases in the case of deceleration due to
the increase in noise in the positive part of the countershaft
axle, which results in most of the system being under tension
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Figure 9: Signal of vehicle model carrying out multiple vibrations on the structure in case 1.
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Figure 10: Signal of vehicle model carrying out multiple vibrations on the structure in case 2.
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during the operation. �e amount of noise increases and
becomes more complicated when putting the model into
practice. Apart from the surveyed object, many other types of
impacts are shown in Figure 11.

�e results from Figure 11 show that each group of
different objects impacting the structure will form a different
type of signal. �is indicates that the bridge structure is
consistently influenced bymany different impacts of vehicles
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Figure 11: Actual signal obtained from the model.
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Figure 12: Actual vehicle model running on bridge in case 1.
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and human activities. However, the cause of the structure’s
major vibrations must be assessed in order to accurately
evaluate and forecast its lifetime as well as its operating
process. For the survey above, vehicles, whether small trucks
or heavier vehicles, are the main factors causing the vi-
brations at the bridge span structure. Small vehicles and
other human activities do not affect the structure’s operation
but carry a considerable amount of noise in the bridge’s
vibration signal. Surveys of some actual models of vehicles
running on bridges are shown in Figures 12 and 13. Fig-
ure 10 shows the vibration signal of the bridge span in actual
circulation status with the load impacting on it being ran-
dom.�e second case is carried out in the status of the bridge
span at rush hour when the vehicles are passing. By sepa-
rating the MODWTcombined with the FFT transformation
method as presented in this manuscript, it can be shown that
the main reciprocal impact on the bridge span is still the load
amount supplied by the vehicles with significant weights.
Despite being surveyed at rush hour, the spectral form di-
vided into two cases remains nearly unchanged. �is shows
that, in spite of either traffic jams or crowded traffic moving
across the bridge at rush hour, changes in traffic flow have
little effect and the operating process remains much as usual.

4. Conclusion

In summary, the MODWT method combined with the
transform method of FFT was used in this study to deter-
mine the actual power density spectra during signal sepa-
ration. Power density spectra corresponding to discrete
vibrations separated from the overall original spectrum can
effectively reveal the factors causing the main impact on the
structure during operating time. �e process of signal

separation using the technique of multiresolution analysis by
the MODWTallows the capture of necessary signals and the
elimination of noise signals, those signals having little effect
on the structure. �e main results obtained from this paper
are summarized as follows:

(1) �e signal of overall vibration measurement is in fact
an overall signal combined with various discrete
vibrations that exist as considerable noise. We can
separate the original signal received into signals of
discrete vibration by using the MODWT analysis
technique while simultaneously eliminating the
noise component in the signal. �is makes the in-
formation extracted from this signal more effective
with higher sensitivity than the unseparated signals.

(2) �e power density spectrum obtained from the
conversion of the overall vibration signal from the
structure is in fact also a synthesis of the power
density spectra of the discrete vibrations and the
induced noise. Consequently, the survey of power
spectral change will not be able to fully accommodate
the signal change. Instead, we just need to examine
the discrete spectra of each agent so as to find the
cause of the structure change. �is makes the pa-
rameters obtained from the theory presented in this
paper muchmore sensitive than those surveyed from
the overall signal.

(3) �e high validity and applicability of this research
have been demonstrated in this paper, showing re-
sults from the data extraction process of real
structures. �e study has successfully simplified the
process of data extraction from the MODWT
method combined with the transformation method

Wavelet analysis

–100

0

100

2000 25001000 1500
A

m
pl

itu
de

 (m
m

/s
2 )

Time (second)/512

3000

Wavelet analysis

1000 1500

–100

0

100

2000 2500

A
m

pl
itu

de
 (m

m
/s

2 )

Time (second)/512

3000

Wavelet analysis

–100

0

100

2000 250015001000

A
m

pl
itu

de
 (m

m
/s

2 )

Time (second)/512

3000

Wavelet analysis

1000

–200

0

200

20001500

A
m

pl
itu

de
 (m

m
/s

2 )

Time (second)/512

2500 3000

Autocorrelation analysis

–200

0

200

3500

A
m

pl
itu

de
 (m

m
/s

2 )

Time (second)/512

4000 4500 5000

Autocorrelation analysis

–200

0

200

3000 3500

A
m

pl
itu

de
 (m

m
/s

2 )

Time (second)/512

4000 4500 5000

Autocorrelation analysis

–200
0

200
400

3000 3500

A
m

pl
itu

de
 (m

m
/s

2 )

Time (second)/512

4000 50004500

Autocorrelation analysis

–1000

0

1000

3000

A
m

pl
itu

de
 (m

m
/s

2 )

Time (second)/512

3500 4000 4500 5000

The frequency spectrum

1
2
3
4

302010

A
m

pl
itu

de
 (m

m
/s

2 )

Frequency (Hz)

40 50 60

The frequency spectrum

10
0

2

6

4

20 30 40
A

m
pl

itu
de

 (m
m

/s
2 )

Frequency (Hz)

50 60

The frequency spectrum

0

2

4

20 3010 40 50

A
m

pl
itu

de
 (m

m
/s

2 )

Frequency (Hz)

60

The frequency spectrum

10
0
2
4
6

3020 40

A
m

pl
itu

de
 (m

m
/s

2 )

Frequency (Hz)

50 60

Original signal

–100

0

100

1000 1500

A
m

pl
itu

de
 (m

m
/s

2 )

Time (second)/512

2000 2500 3000

Original signal

1000 1500

–100

0

100

2000 2500

A
m

pl
itu

de
 (m

m
/s

2 )

Time (second)/512

3000

Original signal

–200
0

200

2000 25001000 1500

A
m

pl
itu

de
 (m

m
/s

2 )

Time (second)/512

3000

Original signal

15001000500

–200

0

200

2000 2500

A
m

pl
itu

de
 (m

m
/s

2 )

Time (second)/512

3000

Figure 13: Actual vehicle model running on bridge in case 2.
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of FFT. �e data can be reused many times and
evaluated for many different cases. �e measured
signals are thoroughly and effectively utilized so as to
meet the demand for using big data in the world
today.
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