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One of the failuremechanisms associated with asphalt paving layers, especially on steel deck bridges, is large permanent deformation,
which adversely affects its long-term performance in service. 'us, epoxy resin was introduced in asphalt paving industry to tackle
permanent deformation of asphalt mixtures due to its thermosetting nature. In this review, epoxy resin as a dominant component of
the epoxy-asphalt composite system was first considered, followed by a discussion on its curing methods and curing mechanism.
Furthermore, the physicochemical property and mechanical performance of epoxy asphalt and epoxy asphalt mixture were
thoroughly examined. Crosslink density of epoxy asphalt dictates its viscosity and thus the allowable construction time. Phase
separation and dispersion of asphalt particles in the epoxy matrix was observed for epoxy-asphalt composite, and it showed superior
elastic behavior and deformation resistance capability when compared with conventional asphalt materials. Furthermore, epoxy
asphalt mixture exhibited significantly higher compressive strength, much better rutting resistance, and superior durability and water
resistance properties. However, its low-temperature cracking resistance was slightly compromised.

1. Introduction

'e ER technology was initiated in the early 1900s but was
only further explored after the World War II [1]. 'e first
commercial product of epoxy resin (ER), which was a reaction
product of epichlorohydrin (ECH) and bisphenol A, was
introduced by Devoe and Raynolds in 1947 [2]. Epoxy resin
has gained increasing importance due to its extensive range of
applications such as paints and coatings, adhesives, electrical
insulation, electronics, aerospace industry, industrial tooling
and biomedical systems [3], and more recently, in asphalt
paving industry [4]. 'e rapid growth of ER application was
mainly caused by their advantages such as

Low cure shrinkage

High adhesive strength

High mechanical properties, particularly strength and
stiffness
Good chemical resistance
Low creep
High electrical resistance

As an alternative to conventional asphalt binder, epoxy
asphalt (EA) has been initially applied in the pavement industry
primarily due to its excellent rutting resistance since crosslinked
structures were formed during the curing process. EA, generally
a two-component composite system, often include ER as
component A, and asphalt, curing agent, diluents, fillers, and
toughening agents, as component B [5–7]. 'e final composite
made of components A and B was realized to possess great
resistance to fatigue loading, moisture damage, and oxidation
aging with the added polymeric structure of epoxy [5, 8, 9].
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'e successful incorporation of ER into asphalt materials
requires a clear understanding of ER, including each ma-
terial component and its curing process since behaviors of
epoxy-asphalt composite were mostly dominated by epoxy.
Pradhan et al. [10] pointed out that epoxy can be divided into
glycidyl epoxy and nonglycidyl epoxy based on the mo-
lecular structure and applications. 'e desired properties of
cured epoxy can be well controlled through careful selection
of ER, curing agent, modifier, component composition, and
curing conditions [1, 11]. For instance, a pothole patching
material was developed from TAF®-epoxy based fast curing
EAM to reduce the curing period [12] and brucite was added
to produce flame retardant EA for tunnel pavement [13]. For
cured epoxy-asphalt composite, phase separation and the
dispersion of asphalt particles in ER was often observed [14],
while secondary phase separation and phase inversion were
observed if asphalt content was increased up to 50 wt.% and
60 wt.% [15], respectively. 'is phase separation charac-
teristics of EA were also confirmed by other physicochemical
properties such as two-stage degradation of EA under
heating [16] and two-peak glass transition temperature (Tg)
[7]. Furthermore, a significantly higher complex modulus of
EA [17] and resilient modulus of epoxy asphalt mixture
(EAM) [18] than the corresponding conventional asphalt
and asphalt mixture, respectively, indicated an enhancement
towards deformation resistance. However, due to high
brittleness and thus reduced flexibility and toughness, its
cracking resistance might be a concern [15], especially in the
presence of cracks.

'is review mainly examines the physicochemical
characteristics and mechanical performance of EA. It can be
divided into five main parts: (1) overview of ER and its
curing; (2) application of EA in asphalt paving industry; (3)
physicochemical properties of EA; (4) rheological and
mechanical properties of EA and EAM; and (5) pavement
performance of EAM. 'e overall structure of this review is
presented in Figure 1.

2. Overview of Epoxy Resins and Its Curing

2.1. Classification of Epoxy Resin. Epoxy monomers have
been commonly synthesized from acidic hydroxyl groups
and ECH.'e ERs generated from such monomers are often
referred to as glycidyl-based epoxy. Epoxy monomers have
also been converted from aliphatic or cyclic aliphatic alkenes
with peracids. 'erefore, ERs can be categorized into gly-
cidyl epoxy and nonglycidyl epoxy based on the procedure of
their synthesis and the molecular structure [10, 19]. Glycidyl
epoxy can be further classified as glycidyl-ether, glycidyl-
ester, and glycidyl-amine, as shown in Figure 2. Nonglycidyl
epoxy can be further divided into aliphatic epoxy with a
linear structure and cyclic aliphatic epoxy with a closed
structure [19].

It should be noted that hydroxyl groups can be obtained
from phenols (e.g., bisphenol A and novolak), polyols (e.g.,
1,4-butanediol), aliphatic diols, or dicarboxylic acids (e.g.,
hexahydrophthalic acid). 'rough the reaction between
ECH and bisphenol A, the most frequently used ER, i.e.,
diglycidyl ether of bisphenol A (DGEBA), can be synthesized

[20]. Meanwhile, the reaction of ECH and novolak (the
reaction product of phenol and formaldehyde in the pres-
ence of acidic catalyst) leads to polyglycidyl ethers of phe-
nolic novolak resins [3]. In addition, the reaction of
dicarboxylic acids with caustic is generally used to produce
diglyceride ester type resins, which is normally less viscous
compared to bisphenol A epoxy resin. By reacting ECH with
the nitrogen atom of an amine instead of a hydroxyl group,
glycidyl amine resin can be obtained [10].

2.2. Curing Agents for Epoxy Resin. To overcome the poor
mechanical, chemical, and heat resistance performance of
uncured ERs, the linear ER can be crosslinked in the
presence of curing agents to achieve optimum performance
properties. 'e selection of curing agents depends on the
application and processing methods, curing conditions, and
the desired properties such as mechanical, chemical, ther-
mal, and environmental limitations and costs. Curing agents
are either catalytic or coreactive [11, 21]. 'e curing of ER
can be completed through epoxy-to-epoxy ring-opening
homopolymerization under catalytic curing agents or co-
polymerization under polyfunctional coreactive curing
agents [11].

Catalytic curing agents can be used as initiators for
epoxy-to-epoxy ring-opening homopolymerization, or as
supplemental curing agent with polyamines or polyamides,
or as an accelerator for anhydride-cured systems. Catalytic
curing agents are generally inert under ambient temperature
and indoor lighting, but they become active by heating or
photoirradiation [3]. 'e commonly used catalytic curing
agents include Lewis bases (e.g., tertiary amines), Lewis acids
(e.g., boron trifluoride monoethylamine), and photo-
initiators [21]. Once under UV irradiation, photoinitiators
produce a Lewis acid, which cures the ERs in the traditional
way.

On the contrary, coreactive curing agents function as
comonomers in the polymerization process. Furthermore,
due to its strained three-membered ring structure, the highly
reactive ER can react with compounds containing activated
hydrogen atoms, for instance, amines (both primary and
secondary), phenols, carboxylic acids, thiols, and anhydrides
[11]. Among those, primary and secondary amines are the
most commonly employed curing agents for epoxy. 'e
general reaction of ER with those compounds is illustrated in
Figure 3. 'e approximate reactivity of common hardeners
in the ascending order is phenol, anhydride, aromatic amine,
cycloaliphatic amine, aliphatic amine, and thiol [22]. Based
on the curing temperature range, they can also be divided
into low-temperature [23], ambient temperature [24, 25],
moderate temperature [26], and high temperature [27]
curing agents.

A yellow liquid state (60°C) curing agent, aliphatic di-
amine, was synthesized in the laboratory by Cong et al. [20]
to improve elongation and delay rapid viscosity growth.
Jiang et al. [28] synthesized adipamide through esterification
and ammonolysis (see Figure 4) to overcome the strong
volatilization, high toxicity, and skin irritation of the tra-
ditional amine-based curing agents. It was confirmed to have
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good thermal stability, mechanical performance, and good
compatibility with pristine ER. A new flexible curing agent,
decanediamide, was prepared from castor oil by esterization
with methanol and ammonolysis with ammonia to improve

the cracking resistance [29]. A flexible curing agent, poly-
merized fatty acid (PFA), was also successfully synthesized
through catalytic ring-opening polymerization and epoxy
fatty acid methyl ester [30].

A bio-based anhydride curing agent was prepared by the
addition of maleic anhydride (MAH) and methyl ester of
eleostearic acid from tung oil fatty acid [31]. MAH alone was
used as the curing agent to cure soybean oil based ER [32],
where hydroxyl groups react with anhydride molecules.
Compound curing agents, prepared by sebacic acid with
methyl-tetrahydrophthalic anhydride (MeTHPA) or sebacic
acid with tung oil anhydride (TOA) to create a bimodal
microstructure to ensure the low-temperature cracking re-
sistance and rutting resistance [33].

2.3. Modifiers. 'e properties and behavior of ER can be
adjusted with the addition of diluents, fillers, and toughening
agents [21]. Diluents can be used to modify the properties of
ER, especially lowering the viscosity to improve the handling
characteristics. For instance, epoxy propane butyl ether was
used as a diluent to lower the viscosity of the gel system [34].
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Figure 2: Classification of ER [10].
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Reactive diluents, 1,4-butanediol diglycidyl ether and 1,6-
hexanediol diglycidyl ether, have been added to DGEBA to
reduce the viscosity and improve the phase compatibility and
toughness [35]. Diluents are generally prepared by glycidy-
lation of aliphatic alcohols or polyols, which might be
monofunctional, difunctional, or with higher functionality.
Fillers are mainly employed to reduce the costs of ER while
reducing curing shrinkage and coefficient of expansion.
Toughening agents and flexibilizers are often used to mitigate
the brittleness and low elongation of ER after curing.

To ensure the fire safety and reduce the flammability of
its use on tunnel pavement, flame retardants like brucite

[13], the mixture of aluminum trihydroxide (ATH), and zinc
borate (ZB) [29], the combination of decabromodiphenyl
ethane and antimony trioxide (Sb2O3) [36], brominated
styrene-butadiene-styrene triblock copolymer (BrSBS) [37],
and reactive polymeric flame retardant (RPFR) [38] are
added.

It should be noted that the optimum combination of the
fractions of ER, curing agents, and modifiers should be de-
termined for each specific application. For instance, the
optimum combination of unsaturated polyester resin mod-
ified asphalt was determined to consist of bisphenol A, 3% of
compatibilizer (maleic anhydride), 4% of curing agent (tert-
butyl peroxybenzoate), and 1% of silence coupling agent [39].

2.4. Curing Methods of Epoxy Resin. Besides epoxy resin and
its hardener, the curing method also has a significant effect on
the properties of epoxy. 'e methods for curing ER control
the chemical reaction between epoxy groups and curing
agents and thus the subsequent properties of epoxy products.
Primary curing methods are chemical curing (under room or
increased temperature), microwave curing, and radiation
curing (electron-beam and ultraviolet curing) [40].

2.4.1. Chemical Curing. 'e ambient temperature curing of
ER can be attained using various curing agents. For instance,
modified aromatic amines, alicyclic polyamines, low mo-
lecular weight polyamide, and aliphatic polyamines can be
employed to activate the curing of ER at ambient temper-
atures. Epoxides cured at room temperatures often possess
low Tg values, high flexibility, and great impact resistance
[24, 41].

2.4.2. 4ermal Curing. 'e curing of ERs at elevated tem-
perature has often been referred to as thermal curing.
According to the previous study, the curing process is
generally separated into two stages, precuring at low tem-
perature and postcuring at high temperature. It has higher
degree of crosslinking and higher Tg and thus better per-
formance than those cured at room temperature [42].
'erefore, many researchers have focused on the heating
method, including induction heating curing, microwave
heating curing, and radiation curing.

(1) Induction Heating Curing. Induction heating technology
was first introduced by Garcia [43] in asphalt industry. It
refers to adding some metals to the asphalt mixture. When
these metals are exposed to high-frequency alternating
magnetic field generated by induction coils in the pavement
system, they will generate heat through the Joule effect, thus
heating the asphalt metals [44–46]. Based on the above
technology, Apostolidis et al. [47] employed induction
heating system to accelerate the crosslinking of steel fiber
modified epoxy-asphalt systems. 'e electromagnetic in-
duction was confirmed to stimulate the polymerization.
However, in practice, this will require a special vehicle
equipped with an induction coil passing over the pavement
after compaction.
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(2) Microwave Curing. Microwave heating technology is a
promising technology. 'e key of effective heating is that
microwave heating is a kind of direct energy conversion
within the material while heating [48, 49]. According to the
previous studies, the amount of curing time can be sub-
stantially reduced by using microwave curing due to largely
concentrated microwave energy [11], and it is very conve-
nient for large-scale commercial application. Microwave
curing was reported to uniformly penetrate deep into the
specimens [50]. Microwave curing was tried as a candidate
for bridge deck repair maintenance, and it was heated up to
200°C after 8min but with lower level of curing when
compared to conventional heating method [51]. Compared
to thermal curing, microwave curing can lead to higher
mechanical strength [34].

(3) Radiation Curing. Radiation curing or photocuring refers
to the curing of ER using electron beam, ultraviolet, or
infrared light accompanied by a photoinitiator. 'e poly-
merization and crosslinking of ER can also be greatly
accelerated under the high-energy electrons. As compared
with other curing methods, radiation curing provides a more
consistent and controlled process [52, 53].

2.5. Curing Kinetics. By using finite element modeling, the
degree of conversion/curing (see equation (1)) under in-
duction heating was found to increase with lower activation
energy and higher reaction rate [47]. 'is curing model was
simplified and expressed as the function of time for the
predefined temperature and activated energy [54]. A che-
morheological model (see equation (2)) was introduced
based on equation (1) to describe the polymerization process
of ER [55]. 'is model was incorporated in COMSOL
Multiphysics to evaluate the viscosity evolution during the
curing process as an indicator of reaction progress. It was
found that lower levels of activation energy can enhance the
curing process and its viscosity:

zα
zt

� k0 exp −
Ea

RT
  · (1 − α)

n
, (1)

where α� conversion rate; k0 � pre-exponential kinetic
factor (i.e., reaction rate); Ea � activation energy;
R � universal gas constant; T � temperature; and n � reaction
order of polymerization.

η∗(T, α) � η∗g · exp −
C1 T − Tg(α) 

C2 + T − Tg(α)
⎡⎣ ⎤⎦ ·

αg

αg − α
 

ηr

,

(2)

where η∗(T, α) � complex viscosity at temperature T and
curing degree α; αg � the extent of reaction at the gelation
point; Tg(α) � glass transition temperature of uncured
material; η∗g � complex viscosity at glass transition temper-
ature; C1 and C2 �material-dependent and temperature-
independent constants from WLF equation, respectively;
and ηr �material-dependent constant.

Based on the calculation of activation energy, the in-
troduction of asphalt to the cold-mixed ER system was

reported to have a negative effect on the curing reaction [56],
while the effect on the curing reaction of hot-mixed was
reported to be negligible [16]. However, Li et al. [30] re-
ported that the curing system has a lower activation energy
than the pure epoxy curing system if the epoxy-asphalt
composite system was properly optimized. In this regard, the
activation energy calculated from Kissinger model (see
equation (3)) and Flynn–Wall–Ozawa model (see equation
(3)) was found to be in close agreement based on dynamic
kinetic analysis [16]:

d ln β/T2
p  

d 1/Tp 
� −

Eα

R
,

log β � A − 0.457
Eα

RTp

,

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(3)

where Tp � peak exothermal temperature of differential
scanning calorimetry (DSC) curve; β� heating rate;
Eα � activation energy; and R � universal gas constant.

'e complete curing time of hydrogenated bisphenol A
epoxy resin (AL-3040) was found to increase with the in-
crease in flexibilizer (polypropylene glycol diglycidyl ether)
content because the large molecular weight and long mo-
lecular chain of the flexibilizer can reduce the crosslink
density of AL-3040 [57]. In addition, the degree of poly-
merization network is higher when higher modification level
is applied since the lower amount of the binder is available to
restrict the network formation. 'e reaction between the
oxirane group (C2H4O) and the carbonyl acid group
(RCOOH) was assumed to be responsible for the cross-
linking and the generation of ester (RCOOR′) and ether
(ROR′) compounds [58].

Radial distribution function results (see Figure 5) from
molecular dynamics simulation indicated that epoxy moved
closer to aromatics and saturates than asphaltenes during the
curing process. However, the covalent binding formed
during the curing process was the strongest between epoxy
and asphaltenes based on the first principle [59]. Further-
more, based on fluorescence microscopic analysis, it was
observed that particles of specific sizes (45 μm and 130 μm)
were mainly formed in the epoxy-asphalt composite system,
after it was chemically gelled [17], which was often referred
to as a bimodal network [60].

3. Epoxy Asphalt Materials

Based on its usage, EA has been mainly used as binders to
produce EAM and also as layer bonding materials, like tack
coat [61–63] or prime coat [64]. As compared with con-
ventional tack coat, superior bond strength has been
reported.

Besides conventional EA, EA was also successfully
prepared with tung oil maleic tribasic acid as the curing
agent [30], partially depolymerized lignin (PDL) as ER and
tung oil fatty acid-derived curing agent [31], epoxidized
soybean oil (ESO) as ER and MAH as the curing agent [32],
and waste cooking oil-based epoxy resin (WCO-EP) and
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kraft lignin-based polycarboxylic acid (KL-COOH) as cur-
ing agents [65]. When nadic methyl anhydride (NMA) was
added as the cocuring agent for processability adjustment,
WCO-EP cured with low KL-COOH/NMAmolar ratio (0 :1
and 1 :1) exhibited one glass transition and good thermal
stability than that with high KL-COOH/NMA ratio (2 :1 and
5 :1) [65], indicating the homogeneous phase structure at
low molar ratio and inhomogeneous crosslinked network at
high molar ratio.

3.1. Performance Enhanced Epoxy Asphalt Materials

3.1.1. Construction Temperature and Construction Time.
Despite many advantages of epoxy, its properties need to be
adjusted for its application in asphalt paving industry. 'e
main issues encountered during the construction of EAM
include short construction time, high construction tem-
perature, and low workability [66], which can eventually
affect EA pavement performances. Foamed epoxy asphalt
(FEA) [27, 67] was proposed to solve those difficulties since
it can reduce the mixing temperature and improve the
mixture workability. FEA can also increase the adhesion
between asphalt and aggregates since epoxy asphalt was
foamed to thin membranes.

It was also very attractive to reduce the construction
temperature of EAM since EA was normally cured at high
temperature (>170°C) [27]. Cold-mixed [5, 56, 68] and
warm-mixed [14, 69, 70] EA technologies have been
attempted to save energies and protect the environment and
construction staff. Compared to hot-mixed epoxy asphalt
(HMEA) and warm-mixed epoxy asphalt (WMEA), cold-
mixed epoxy asphalt (CEA) can be treated as a green ma-
terial for paving [68]. In addition, CEA was successfully used
to replace cold tar bearing emulsion on runways [5], which
was toxic and not allowed anymore. 'e compatibility be-
tween epoxy and asphalt binder within CEA was successfully
improved by incorporating ESO [71, 72] since both ER and
ESO contain epoxy groups.

To reduce the curing period after the compaction of
EAM on pavement, a polyetheramine with long chains and
polar ether groups was introduced as the curing agents [73],
which can optimize the curing conditions down to 1 h at
160°C and 3 d at 60°C. To accelerate the curing process of EA,
an accelerant of 2,4,6-tris(dimethylaminomethyl) phenol
can also be successfully capsulated withinmacroporous resin
[74], which has the encapsulation efficiency of over 50% and
facilitates the use of EA as the material for the long-term
asphalt pavement.

3.1.2. Compatibility and Mechanical Properties. 'e polar
ER and nonpolar asphalt will cause the compatibility
problems for epoxy-asphalt system [14, 75]. To improve the
certain drawbacks of EA, polymers (both elastomers and
plastomers) have been added to EA. For instance, ethylene
vinyl acetate copolymer (EVA) was added to increase the
compatibility between epoxy and asphalt [14]. 'e im-
provement of compatibility between ER and asphalt was
attempted by modifying the asphalt with MAH and it can
mitigate the asphalt bleeding from the epoxy-asphalt
composite system [76]. EA cured by PFA was also reported
to have excellent compatibility [30].

A new shape memory ER was synthesized by AL-3040,
curing agent, isophorone diamine, and flexibilizer, and
polypropylene glycol diglycidyl ether (JH-230), and the
deformation recovery performance of the asphalt mixture
prepared with this new ER was indeed improved [77]. Kang
et al. [78] successfully prepared a bimodal anhydrides-cured
rubber like EA through diglycidyl ether of bisphenol A (E-
51), MeHHPA, MAH, and adipic acid, which has good
flexibility and thus has the potential to prolong the pavement
service life. Styrene-butadiene-styrene (SBS) was employed
to improve the fracture toughness/ductility of EA
[15, 79, 80]. It is interesting to note that the addition of SBS
was reported to have little effect on the composition ratio of
ER and curing agents [79]. Crumb rubber was also reported
to increase the ductility of EA [81]. Due to its highly
branched structures, hyperbranched polyester (HBP) was a
strong candidate modifier for toughening EA. However,
high viscosity of ER was often observed during the curing
process due to the high reactivity between hydroxyl end
groups of HBP and ER. Xu et al. [82] modified the hydroxyl
groups of HBP with acetyl chloride to reduce this reactivity,
and it was also modified with stearic acid chloride to im-
prove the compatibility of EA (see Figure 6).

3.2. Repair Materials. For regular pavements, many repair
materials and field repair procedures have been developed.
For epoxy asphalt pavement on steel deck bridges, a fine-
grained EAM consisting of fast-curing EA, limestone filler,
and basalt aggregates [12] and epoxy-based crack-sealing
materials [83] were developed for pothole patching and
crack sealing, respectively. An epoxy repair material with 10
asphalt per hundred resin (phr) as a modifier was also in-
troduced for crack-sealing of concrete structures [84]. A
blend of room temperature curable epoxy and liquid sulfur
polymer was successfully fabricated by Kwon et al. [25] for
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pothole patching application. Cold patching material was
also prepared by using waterborne epoxy resin emulsified
asphalt (WEA) [85].

3.3. Waterborne Epoxy Resin (WER) Emulsified Asphalt.
WER, or water-based ER, can be prepared by surfactants or
attaching hydrophilic polar groups to it, where water is used
as a carrying medium rather than solvent [86]. WER has also
been used as fog seal when modified with nano-TiO2 to
degrade vehicle exhaust [87], microsurfacing to improve the
performance and durability [88], tack coat to mitigate
pavement shoving at bridge deck [89], performance en-
hanced tack coat when blended with styrene-butadiene
rubber (SBR) [63], prime coat for cement treated base (CTB
[64]), a high-performance cold binder for cold recycling or
cold-mix paving due to its superior adhesion, strength, and
fatigue life [90], and cold patch materials [91].

EA has been used as a strong waterproof bonding layer
for orthotropic steel bridge decks, and attapulgite (ATT) was
successfully added to increase its mechanical performances
[92]. Silane coupling agent surface-treated rubber particles
(ARP) were added to EA to increase the durability of tack
coat for orthotropic steel bridge in seasonal frozen areas [61].

3.4. Epoxy Asphalt Mixture. To increase the durability, es-
pecially due to raveling of open-grade friction course
(OGFC)/porous asphalt, ER was proposed to modify the
open-graded mixture due to its increased stiffness and
strength after curing [8, 93–95]. It is interesting to note that
mixtures with 4.75mm nominal maximum aggregate size
(NMAS) [93, 95] have increased resistance to raveling and
mixtures with 9.5mm NMAS [95] have increased perfor-
mance of surface friction at a high slip speed. With the
intention of increasing skidding resistance, the volume
design method (V-S method) [96] based EAM with a
skeleton-dense structure was designed for steel bridge deck
[97]; a design approach was proposed for the epoxy-mod-
ified binder suitable for the antiskid asphalt surface layer
[98]; a high friction treatment prepared with epoxy and
aggregate was successfully implemented in Virginia to
provide strong skidding resistance [99]; an epoxy-modified
binder was successfully used to replace the tar-containing
binder for the ultra-thin surface layer on asphalt runways,

which was determined to be toxic due to its high polycyclic
aromatic hydrocarbon content [100]. An epoxy resin-based
ultra-thin antiskid surface layer (UTASS) with
2.36mm–3mm basalt aggregates was developed for steel
bridge deck to enhance the skidding resistance of epoxy
asphalt pavement [101].

To reduce or eliminate problems related to chip seal, like
chip loss, flushing, and cracking, the performance of epoxy-
modified asphalt chip seal was comprehensively investigated
by Bagshaw et al. [102]. To ensure safety and prolong service
life of railway bridges, EAM was used as the waterproof
protective layer to mitigate water damage to bridge deck
[103]. One of the challenges for EA is the low elongation at
low temperatures and thus high cracking potentials due to its
high stiffness. Glass [104] and mineral [105] fibers have been
introduced to EA for their reinforcing and toughening ef-
fects. EAM prepared with ceramsite-based lightweight ag-
gregates was applied on bridge deck to reduce its deadweight
[106]. As an approach to consume waste glasses, glass ag-
gregates processed from sheet glasses were blended with
EAM and good performance was obtained for up to 50%
glass aggregates [107].

4. Physicochemical Characteristics of
Epoxy Asphalt

'e physicochemical characteristics of epoxy asphalt are
very critical for the understanding of macroscale properties
of epoxy asphalt binder, including rheological and me-
chanical performances. In this section, microscopic and
spectroscopic properties and thermal analytical and gravi-
metric properties are studied.

4.1. Laser Scanning Confocal Microscope (LSCM) and Fluo-
rescence Microscopy (FM). LSCM has been widely used to
observe the morphology of EA since ER part will strongly
fluoresce under blue light (488 nm), which can reveal the size
and distribution of the epoxy part in the epoxy-asphalt
composite system [16]. For the epoxy-asphalt system, as-
phalt is dispersed in the continuous ER phase [14]. 'e
evolution of the phase-separated microstructure for EA
during curing process is illustrated in Figure 7. Polydis-
persity index results indicated poor asphalt dispersion at the
beginning followed by constant dispersion [108]. For EA,

(a) (b)

Figure 6: Synthesis of H102 with terminated acetyl end groups (H102-C2) (a) and H102 with terminated fatty alkyl end groups (H102-C18)
(b) [82].
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phase separation was often attributed to nucleation and
growth mechanism [109]. Liu et al. [14] pointed out that this
phase separation can only be observed after the curing re-
action started since the epoxy-asphalt composite system was
homogeneous at the beginning of curing reaction.'e phase
separation phenomenon was also observed for the polymer-
modified EA system, like EVA-modified EA [14], SBS-
modified EA [15, 80], crumb rubber-modified EA [69], and
BrSBS-modified EA [37]. As a matter of fact, double phase
separation [15, 110], i.e., phase separations occurred be-
tween epoxy and SBS-modified asphalt (SBA) and between
SBS and asphalt, was reported for epoxy SBS-modified as-
phalt (ESA), as shown in Figure 8. Double-phase separation
was also observed in RPFR-modified EA, i.e., spherical

brominated epoxy oligomer particles disperse in the asphalt
phase, which acts as the dispersed phase of the modified EA
[38]. Secondary phase separation, dispersed asphalt con-
taining some small yellow epoxy-rich particle, was observed
in the EA system with high asphalt concentration (e.g., 50
wt.%) [15]. If asphalt concentration increases up to 60 wt.%,
inversion phase separation will occur where epoxy is dis-
persed in the continuous asphalt phase. Phase inversion was
also observed when 6% WCO was added, and interestingly,
secondary phase separation in the dispersed epoxy phase,
i.e., asphalt particles dispersed in epoxy phase, was also
observed at this WCO concentration [70]. However, no
phase inversion was observed between BrSBS and asphalt
with over 6 wt.% BrSBS [37]. For epoxy asphalt rubber

Figure 7: LSCM images of EA during curing at 150°C: 0min (a), 3min (b), 5min (c), 10min (d), 15min (e), 20min (f), 30min (g), and
60min (h) [108].
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(EAR) with Sasobit, a double-phase separation micro-
structure was observed, i.e., phase separation between
rubber and ER, and phase separation between rubber and
asphalt [69]. In the polymer-modified epoxy system, this
phase separation was often attributed to the spinodal de-
composition mechanism [111].

Meanwhile, smaller EVA-asphalt particles and homo-
geneous distribution for low EVA concentration and larger
EVA-asphalt particles and inhomogeneous distribution for
high EVA concentration were observed [14]. As compared
with SBA in the ESA system, base asphalt in the epoxy-
asphalt composite system showed better dispersion and
compatibility characteristics [68]. Asphalt binders, in the
form of spherical particles in the epoxy-asphalt composite
system, will act as stress concentrators and cause localized
plastic shielding, which often lead to increase in toughness as
compared with the pure epoxy system [7, 16]. As a matter of
fact, the size of spherical asphalt particles will increase with
the increase of asphalt concentration (see Figure 9) [7],
which indicates lower compatibility between asphalt and
epoxy. As compared with ESA, EA has larger asphalt par-
ticles and wider distribution of asphalt domains [110].

FM has also been employed to study the morphology of
EA. A similar phenomenon has been observed as in LSCM;
for instance, ER was shown to be the continuous phase and
asphalt was the dispersion phase when low concentration of
asphalt was used [51, 56, 112]. Inversion phase separation (see
Figure 10) was also observed for CEA with ER to asphalt ratio
as 1 :1.5, epoxy-modified bitumen with more than 70 wt.%
asphalt [79], and epoxy-modified bitumen with more than 75
wt.% asphalt [113]. Double phase separation, yellow island-
shaped ER distributed in black asphalt while black rubber
particle spot distributed in ER, was observed as well [59].

No crosslinked structure was observed at the initial
curing stage [112], which can explain the poor mechanical
performance of uncured EA [20]. As the curing progresses,
crosslinking of ER is activated while asphalt aggregates into
larger particles. Larger dispersed asphalt particles were
observed in microwave cured EA than those in conventional
heating cured EA [51]. Asphalt particle size was reduced
with the increase of ESO concentration in blends of CEA and

ESO [71, 72], as shown in Figure 11, which indicated im-
proved compatibility between asphalt and epoxy. Com-
patibility of CEA can be further improved by incorporating
ESO-modified nanosilica and it increased with increased
ESO/nanosilica content [38]. 'e particle size of the asphalt
phase was also reduced with the increase of ESO-modified
nanosilica content. 'e addition of WCO was reported to
reduce the particle size of the dispersion phase due to the
decrease in stiff asphaltene component [70].

For foamed asphalt, the water content has a significant
effect on the morphology of EA with small particles of ER
uniformly dispersed in asphalt for less than 3 wt.% water but
the disappearance of epoxy phase for 3 wt.% water or more
[27]. ForWEA, a continuous crosslinked structure of ER can
be observed if more than 20% of WER was applied [89].
Additionally, FM has been used to confirm that appropriate
amount of H102-C2 or H102-C18 can effectively improve the
compatibility of EA [82].

4.2. Scanning Electron Microscope (SEM). SEM has been
often employed to observe the morphology of the fracture
surface of EA, generated by the brittle fracture in liquid
nitrogen [29, 30, 33]. A typical SEM image of ER and EA is
presented in Figure 12. Phase separation was again observed
with cured ER as the composite matrix and asphalt as the
dispersed phase [30, 33, 51, 84, 92] (see Figure 12). In the
cured epoxy-asphalt composite system, asphalt was more
evenly distributed with the increase of the PFA content,
which can enhance the compatibility between asphalt and
ER with PFA as a flexible curing agent [30]. On the other
hand, a large number of globular cavities were dispersed in
the MeTHPA-cured ER phase, which indicated the in-
compatibility between asphalt- and MeTHPA-cured ER. Liu
et al. [14] proposed to extract asphalt phase from EA first and
then observe the holes left in the epoxy phase on SEM
images.

Compared to single curing agent (sebacic acid), com-
pound curing agents (sebacic acid with MeTHPA or sebacic
with TOA) will cause uneven distribution of asphalt phase
(2–5 μm and 20–50 μm in size) but it still remain in the

(a) (b)

Figure 8: LSCM images of cured ESA: (a) ×100 and (b) ×400 [15].
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Figure 9: LSCM images in the reflection mode for cured neat epoxy (a), HMEAs :HMEA45 (b), HMEA50 (c), and HMEA55 (d) [7].
HMEA� hot-mixed epoxy asphalt; 45, 50, 55� asphalt content by weight of HMEA binders.

Figure 10: FM images of (a) CEA-0.4 blend, (b) cured CEA-0.4, (c) CEA-1.5 blend, and (d) cured CEA-1.5 [56]. Note: CEA� cold-mixed
epoxy asphalt; 0.4, 1.5� ratio of epoxy resin to asphalt� 1 : 0.4 and 1 :1.5, respectively.
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island-shaped two-phase structure [33]. In contrast to heat-
cured epoxy, asphalt was more uniformly distributed in the
microwave-cured epoxy-asphalt composite system and a
better compatibility system can be obtained [51]. In addi-
tion, cured ER was in a squeezed state due to the high energy
induced by microwave and thus fast crosslinking of ER.

CEA with a flame retardant, ATH, has more rough
fracture surfaces than CEA with a compound flame retardant,
ATH/ZB [29].'e larger quantities of rough fracture surfaces
in ATH were reflected in its increased tensile strength as
compared with those modified with ATH/ZB.'e addition of
asphalt into epoxy repair materials can create a “sea island
structure” in the epoxy matrix and asphalt can act as a stress
concentrator under external loading, which can dissipate
energy through large deformation in the asphalt [84].

4.3. Differential Scanning Calorimetry. DSC is a thermoa-
nalytical technique whichmeasures the dependency between
the temperature change and the corresponding flow of heat
introduced to a specimen. High heat absorption demon-
strates large amount materials experiencing phase change
during the heating process. Typical DSC curves for EA can
be seen in Figure 13, where EA undergoes phase change
during the sudden alternation section [68]. 'e peak of DSC
derivative signal is often taken as Tg, which has been
measured for shape memory hydrogenated epoxy resin (SM-
HER) [77], ESA [68], rubber-like thermosetting epoxy as-
phalt composite (REAC) [6], brucite-modified EA [13],
decabromodiphenyl ethane (DBDPE)/Sb2O3-modified EA
[36], ATH/ZB-retarded CEA [29], PDL-based EA [31], and
RPFR-modified EA [38].

Figure 11: FM of (a) CEA blend, (b) CEA-ESO10 blend, (c) CEA-ESO20 blend, (d) CEA-ESO30 blend, and (e) CEA-ESO40 blend [71].

Figure 12: SEM micrographs of ER (a, b) and EA (c, d). (a, c) 600× and (b, d) 2000× [84].
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Tg was noted to increase as the curing reaction prog-
resses, with faster crosslinking in neat epoxy polymer than in
EA and it indicated that the asphalt binder prohibits the
chemical curing process and the interaction between epoxy
and asphaltene was limited [58, 114]. It should be noted that
Tg has been reported to correlate mainly to nonpolar
maltene and the polar asphaltene-epoxy chain reaction
might lead to increased mobility of nonpolar maltene and
thus decreased Tg [115]. 'erefore, it seems logical to as-
sume that contact opportunities between unreacted epoxy
polymers were reduced by asphalt binder.

When compared with pure ER, lower Tg values were
reported for CEA [56, 68] and CEA with SBS [68], which was
probably due to the lower crosslink density after addition of
asphalt into ER and soft segments of SBS. Meanwhile, the Tg

value was reported to increase with the increase in the
maleated asphalt content [6], which will increase the crosslink
density. Good compatibility between ER and asphalt was
concluded based on the findings that addition of up to 55%
asphalt did not change the Tg value for HMEA [7]. No
significant effect of asphalt addition on theTg value of EAwas
also confirmed by Yin et al. [16]. As amatter of fact, typical Tg

values for asphalt are between −40°C and 0°C [68], whereas
typical Tg values for EA are between −8°C and 50°C [58].

Tg for SM-HER was found to decrease with the increase
in flexibilizer, JH-230 [77], which may be attributed to the
lower crosslink density by increasing JH-230 content and
thus increased segment mobility. Flame retardants, like
brucite [13] and DBDPE/Sb2O3 [36], have no significant
effect on Tg values of EA. It is interesting to note that the
flame retardant ATH/ZB slightly increased Tg value for CEA
[29]. Actually, effects of particle incorporation on Tg values
depend on two competing factors, i.e., rigid phase rein-
forcement and epoxy network disruption [29, 36]. ESO, a
compatibilizer and plasticizer, can improve the molecular
chain mobility of EA and thus reduce Tg value [71].

'e optimum content of SBR was determined to be
3.0%–3.5% for ER based on the peak value and peak width
on DSC curves [63], which manifests the materials stability.
Wider exothermic peak for PDL epoxy than commercial
epoxy DER332 indicated more complicated chemical
structure and more active epoxy groups for PDL than those
for DER332 [31]. It is worth noting that microwave-cured
EA exhibited smaller area than conventional hot-cured EA
under the DSC curve and thus lower degree of polymeri-
zation for microwave curing [51], which was probably due to
the rapidly formed rigid chain network in microwave-cured
EA and it mitigated the further reaction of unreacted groups.

4.4.4ermogravimetric Analysis (TGA). TGA is a method to
evaluate material thermal stability by measuring the weight
changes over time as a function of temperature. 'ere are
generally two stages involved in the TGA curves for EA
[14–16, 29, 36, 80], including minor volatilization of light
components of asphalt (i.e., saturates and polar aromatics)
and degrading of uncured epoxy from 200°C to 350°C, and
major decomposition of large asphalt molecules and epoxy
network from 350°C to 500°C, as illustrated in Figure 14.
'ree stages have also been reported if water loss is included
[92]. It should be noted that the characteristics of the TGA
curve for EA are a combined effect of neat ER and asphalt.
For pure ER, its two stages include minor degradation of
unreacted epoxy or impurities apart from cured ER at
around 325°C and major degradation of epoxy network at
above 400°C [116, 117]. One-stage decomposition of ER has
also been reported [16]. For asphalt, its TGA curve can also
be separated into two stages: breaking of weak chemical
bonds and generation of small gaseous molecules from
250°C to 400°C in the first stage and later decomposition of
large molecules into smaller molecules from 400°C to 550°C
[16, 36, 81, 118, 119] (see Figure 14). If modifiers like
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Figure 13: Nonisothermal DSC curves (a) and derivative of DSC curves of ER, EA, and ESA samples (b) [68]. Note: ER� epoxy resin;
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DBDPE/Sb2O3 [36] and brucite [13] are added, a third stage
often appeared (see also Figure 14).

When compared with neat ER, EA [15, 68, 120], ESA
[15, 68], and EAR [120] showed superior thermal stability, as
presented in Table 1. However, with the increase in the
asphalt content in EA, its thermal stability was reduced
[16, 121]. Also, reverse trends on the effect of asphalt content
on thermal stability for EA [15, 81], ESA [15], and EAR [81]
was reported. Addition of modifiers such as DBDPE/Sb2O3
[36], brucite [13], ATH/ZB [29], EVA [14], SBS [15, 80], and
ATT [92, 122] increased the thermal stability of EA based on
evaluation of parameters like initial decomposition tem-
perature (IDT), Tmax, and char at 550°C, 600°C, or 700°C. On
the other hand, the addition of crumb rubber [81] and
Sasobit [123] was reported to reduce the thermal stability of
EA.

TGA has also been used to evaluate the thermal stability
of flame retardants, synthetic brucite and natural brucite
[13]. Natural brucite contains much more impurities than
synthetic brucite since natural brucite has 5 decomposition
stages as compared with only one main decomposition stage
for synthetic brucite. 'e decomposition of crumb rubber
also involves two stages, including degradation of natural
rubber and degradation of SBR [120]. As an alternative to
commercial ERs such as bisphenol A, PDL-based ER was
found to have comparable thermal stability [31]. IDTfor EA,
defined as the temperature with 5% weight loss, was de-
termined to be above 250°C [13, 14, 29, 36, 37], which was
absolutely over the EA mixing temperature.

4.5. FourierTransformInfrared (FTIR). FTIR spectroscopy is
an analytical technique used to determine the presence of
certain functional groups in a molecule based on the ab-
sorption peaks in infrared spectrum. A typical FTIR curve
for EA is shown in Figure 15. Conversion rate (α) for the
epoxy group can be calculated based on equation (4). Ab-
sorption peak on the FTIR curve at 906 cm−1 [59, 79, 124],
908 cm−1 [31], 910 cm−1 [27, 84, 89], 917 cm−1

[8, 58, 90, 112], and 918 cm−1 [56] has generally been

attributed to oxirane ring. 'e disappearance of the ab-
sorption peak for the epoxy group indicated the complete
curing of ER [8, 84, 90, 112]. For WEA, the hydroxyl groups
at 3400 cm−1 indicated cohesion, hydrophilicity, and storage
stability [89]. 'e disappearance of the peak at around
1700 cm−1 indicated the reaction between ER and carboxylic
acid within asphalt besides its reaction with curing agents
[79].

α � 1 −
Aepoxy/Aref 

t

Aepoxy/Aref 0

, (4)

where α� conversion rate; Aepoxy � absorption peak area
for epoxy group; Aref � absorption peak area for reference
group; and 0 and t � reaction time 0 and reaction time t;

Esterification and etherification were assumed to take
place at the beginning of curing process based on the ob-
servation of increase of carbonyl ether and ester and de-
crease of carbonyl acid [58, 112]. More specifically, the
curing process involves two stages [112]: (a) generation of
carbonyl ester and hydroxyl groups after reaction between
carboxyl acid and epoxy and (b) generation of carbonyl ether
after further reaction between hydroxyl and epoxy groups
(see Figure 16). Sulfoxide compound contents were showed
to be the most effective parameter for the evaluation of
oxidative-controlled curing for EA [58]. In addition, a pe-
riod of rapid decrease of carbonyl and sulfoxide compounds
under isothermal oxidation conditioning indicated epoxy
curing, whereas a period of constant increase of both
compounds after curing indicated oxidative aging [125].

It has been observed that the curing efficiency was re-
duced with the increase of ER content based on the ratio of
absorption peak area between the epoxy functional group
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Table 1:'ermal stability analysis of ER, EA, and neat asphalt [15].

Sample IDT (°C) T1
max (°C) T2

max (°C) Residue at 600°C (wt.%)

ER 286.3 308.6 398.0 0.8
EA40 288.4 397.1 463.1 7.6
EA50 292.7 401.3 466.2 8.9
EA60 298.7 402.2 469.2 10.6
NA 341.6 352.6 473.1 19.9
Note: ER� epoxy resin; EA� epoxy asphalt; NA�neat asphalt.
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Figure 15: FTIR spectrum for WEA and asphalt [89].
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and the reference functional group [59]. 'e curing degree
was also reduced with the increase of asphalt content for
CEA based on the peak positions of the O-H bond [56].
Conversion rate was found to increase linearly with time in
the initial curing phase [124], and the curing reaction slows
down afterwards [20, 124]. For FEA, it can be concluded that
the higher water content leads to higher degree of reaction
between epoxy and curing agent since the absorption peak
area for the epoxy group was reduced with the increase of the
foaming water content [27].

FTIR has also been used to confirm the successful
synthesis of ER from PDL [31], flexible epoxy curing agent
from PFA [30], waterborne curing agent from bisphenol-A
type ER, triethylenetetramine, and glycidyl tertiary car-
boxylic ester [90], and modification of hydroxyl end groups
of second-generation aliphatic hyperbranched polyester
with 12-end hydroxyl groups (H102) into alkyl groups [82].

5. Rheological and Mechanical
Characteristics of Epoxy Asphalt

As the most crucial component of the epoxy asphalt mixture,
rheological and mechanical properties of epoxy asphalt are
reviewed in this section to give some insight into the per-
formances of epoxy asphalt concrete.

5.1. Needle Penetration. Penetration test, one of the oldest
tests on asphalt binders, measures the depth to which a
standard needle penetrates the asphalt sample under spec-
ified standard conditions. Compared with EA with sebacic
alone, compound curing agents like sebacic acid with
MeTHPA or sebacic acid with TOA were reported to reduce
the needle penetration from 31.8 dmm to 10.1 dmm and
16.0 dmm at 25°C [33], respectively. 'is reduction in
penetration depth was attributed to the shorter molecular
chain of MeTHPA and TOA and thus high crosslink density
and rigid network as compared with the long linear chain of

sebacic acid. For WEA, less than 2% dosage of resin has no
significant effect on the penetration since no three-dimen-
sional crosslinked skeleton was formed [63]. When WEA
was used as the prime coat on cement treated base, the
penetration depth needs to be greater than 78 at 110°C [64].
Similar to the effects of WER on viscosity, increasing the
WER content will also reduce the penetration depth of EA
[91].

'e processability of liquid state sulfur polymer (LSP)
modified EA was evaluated based on American Society for
Testing and Materials (ASTM) C 1611. It was found that 50
wt.% of epoxy will produce a mixture with 12 cm flow value
[25], which was the boundary for workability.

5.2. Viscosity. As a thermosetting material, the viscosity of
EA will increase with the progression of curing reaction due
to the increment of the molecular weight for ER
[7, 14, 37, 69, 79, 80, 104, 122, 124], which is totally different
from conventional asphalt as a thermoplastic material. 'is
indicates that the degree of curing reaction, mixing time, and
mixing temperature should be carefully controlled to ensure
the operation time. Due to the higher curing rate at higher
temperatures, EA showed higher viscosity at higher curing
temperature [32, 124]. It has been generally agreed that the
optimum viscosity of EA has to be between 2 Pa·s and 3 Pa·s
when it comes to the pavement compaction [20, 36, 79, 122].
Viscosity ranging from 100 Pa·s to 200 Pa·s·for epoxy asphalt
mastic was recommended for compaction of warm-mixed
EAM based on the compactability analysis [126]. 'erefore,
pot life or working life, defined as the length of time for
viscosity of EA to increase up to 3 Pa·s [56, 68], has been
widely used in the EA pavement construction practices since
the viscosity of EA has a significant effect on its workability
[79]. For instance, pot life has been determined to be around
35min for CEA with SBS [68], 55min for EA [17] and ATT-
modified EA [122], 55min for CEA with 40% asphalt [56],
58–64min for Sasobit-modified EAR [69], around
65–69min for EA with DBDPE and Sb2O3 as flame retar-
dants [36], 102min for CEA asphalt with 20 wt.% flame
retardant ATH/ZB [29], and increased from 40min to
66min when 30% ESO was added to CEA [71]. It should be
noted that EAM can be divided into cold-mix, warm-mix,
and hot-mix based on its mix temperatures and hot-mix
EAM can have pot-life as long as 200min even at 145°C [20].
On the other hand, warm-mix and cold-mix have consid-
erably shorter allowable construction time [56, 68, 69]. 'e
short pot life of ESA might be attributed to the poor
compatibility between SBA and ER [68]. A shorter allowable
construction time was also observed with the decreasing
rubber particle size for EAR due to increased specific area
[61]. For EAM to be paved on bridge deck, the time duration
for the viscosity to reach 1000mPa·s was recommended to be
no less than 55min at 120°C [4, 14].When 2%–6%WCOwas
added to WMEA, the allowable construction time was in-
creased to 52∼58min [70]. In addition, allowable con-
struction time was determined following evolutions of both
viscosity of EA and Marshall stability of EAM (see
Figure 17), which were described by Arrhenius model [127].
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It indicated that high mechanical strength and long reserved
time for EAM should be well balanced and curing tem-
perature also has a significant effect.

It is interesting to note that the addition of ATTslightly
reduced the viscosity of EA, which is attributed to its
thixotropic behavior under rotational shearing [122] or
hindrance effect of ATT on molecular movement [92].
RPFR was also observed to reduce the viscosity of EA due to
its hindrance effect on chemical curing [38]. 'is is con-
trary to the general observation that the viscosity of EA will
increase with the addition of modifiers like brucite [13] and
ATH/ZB [29] as flame retardants, industrial SBS [15],
styrenic polymers [80], crumb rubber [69, 81], EVA [14],
glass fiber [104], mineral fiber [105], silane coupling agent
for EAR [61], and BrSBS [37]. Viscosity of EA modified
with epoxidized SBS was found to increase with epoxi-
dation degree [128], which was due to the reaction between
epoxide groups of reactive epoxidized SBS and curing
agents. Warm-mix additive, like Sasobit, can reduce the
viscosity of EA since Sasobit has a long-chain aliphatic
hydrocarbon [123] and thus much lower viscosity than
rubberized asphalt at liquid state [69].

Viscosity of EA was reported to increase with increasing
asphalt content in the initial curing stage due to the high
viscosity of asphalt [7, 81, 113], as illustrated in Figure 18. It
should be noted that asphalt content was also reported to
have negligible effect on the curing reaction in the initial
stage [15]. However, as the curing reaction progresses, the
viscosity of EA decreases with increasing asphalt content
[7, 15, 32, 56, 79, 81, 113], which indicates that asphalt binder
can delay the curing reaction of EA in the later stage by
diluting ER and curing agents [56]. On the other hand,
viscosity of EA was reported to decrease with increasing
penetration grade in the initial curing stage and it was lower
than that of pure ER [129]. Afterwards, viscosity of EA

increased with the increasing penetration grade and it was
higher than that of pure ER.

For EA, the chemical composition characteristics, in-
cluding oil content, polymer content, and crosslink density,
have a significant effect on its viscosity [4]. EA with higher
crosslinking density and polymer content has a higher
viscosity. It is well known that the viscosity of polymer-
modified asphalt depends on the polymer solubility, which
in turn relies on its molecular weight [130]. 'e ranking
order of ESA agrees well with the molecular weight of SBS
with different styrene to butadiene ratios as modifier [80].
Xu et al. [82] also reported that by modifying the hydroxyl
end groups of HBP to inert alkyl end groups, the viscosity of
EA can be greatly reduced due to the low molecular en-
tanglement level within the hyperbranched structure.

Increase of WER will obviously increase the viscosity of
EA [63, 91]. FEA has considerably lower viscosity than
nonfoamed EA, since the foaming process can promote the
expansion ratio of the system [27]. Carreau model [131]
instead of extrapolating frequency sweep test was employed
to determine the zero shear viscosity for EA, and it was again
found that the higher foaming water content will lead to
lower zero shear viscosity at 60°C, which demonstrated the
compromised rutting resistance at higher foaming water
content.

Viscosity-Temperature Susceptibility (VTS) index as
defined in equation (5) was proposed to evaluate the tem-
perature susceptibility of EA. It was found that temperature
susceptibility of EA increases with the increase of curing
time [20]:

VTS �
log logVT2 − log logVT1

logT2 − logT1
, (5)

where T � the absolute temperature (K) and VT � viscosity
(mPa s).
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5.3. Viscoelasticity

5.3.1. Static Viscoelasticity. Relaxation tests were conducted
using the direct tension test [5, 100], and the dynamic shear
rheometer (DSR) [98] test to evaluate the stress release
behavior of EA. Relaxation percentage (see equation (6)) was
employed to estimate the stress relaxation potentials. Re-
laxation percentage was found to be 55.46% [98] and 23.1%
[5] even at −10°C and more than 70% at 0°C [100]. It should
be pointed out that aging can reduce the relaxation capability
of EA at low temperatures [98] and thus low temperature
cracking resistance will be compromised:

R �
1 − Fremain

Fapplied
  × 100, (6)

where R � relaxation percentage (%); Fremain � retained force
after relaxation at a certain time (N); and Fapplied �maximum
applied force (N).

Tensile-recovery shape memory test was performed on
dumbbell-shaped samples prepared with SM-HER [77]. It
was found that recovery time increased with the increase in
the flexibilizer JH-230 content, since crosslink density was
decreased and thus less strain energy was stored, which was
reflected in the decreased storage modulus.

'e strong elastic behavior of EA was further confirmed
by its extremely low creep compliance as compared with
neat asphalt and SBA (see Figure 19).

5.3.2. Dynamic Viscoelasticity

(1) Oscillatory Shear Using Dynamic Shear Rheometer.
Higher complex modulus (G∗) and lower phase angle (δ) for
EA than that of neat asphalt was observed
[5, 17, 59, 89, 90, 100, 132] as illustrated in Figure 20, which
indicated that ER can significantly increase the elastic be-
havior of asphalt. Meanwhile, higher rutting factor for cured
EA [31, 32, 59] and lower fatigue factor [32] than that of neat
asphalt was also observed. Bioepoxy based on waste cooking
oil and lignin showed comparable high-temperature per-
formance enhancement as commercial DGEBA based on
rutting factor analysis [65]. It is worth noting that storage
modulus (G′) for CEA was much higher than that of neat
asphalt due to macromolecular asphaltene and resin in the
neat asphalt [56]. Asphalt binder became less temperature
sensitive after the addition of ER since a decreased slope for
complex modulus-temperature curve was observed [132].
'e temperature sensitivity of FEA was improved at higher
water content attributed to more effective curing reaction
[27]. G∗ for oven-aged EA was higher than that for
weatherometer-aged EA, which was higher than that for
unaged EA [98]. One possible explanation might be that
large molecules were disintegrated into smaller molecules
under weatherometer aging, which will lead to less interlock
in binders and thus lower stiffness than oven-aged binders.

As contrary to the continuous increase of phase angle as
temperature was increased [90] or shear loading frequency
was reduced [5, 100], there was a peak value of phase angle
for EA during the temperature or frequency sweep process.

At low temperature or high-frequency end, asphalt binder
played a dominant role on its viscoelastic characteristics.
However, at high temperature or low-frequency end, the
viscoelastic behavior of EA mainly depends on the epoxy
network structure [90]. Sulfoxide formation during the
curing process was found to correlate well with the increased
complex modulus G∗ and phase angle [58], as shown in
Figure 21.

'e value of G∗ for PDL epoxy increased continuously
with ER content, and it has comparable G∗ value as DER332
EA [31]. EA with 5% of accelerator has significantly higher
G∗ than that with 2% of accelerator [102]. Mixing tem-
perature has little effect on G∗ up to 5 hours after which
higher mixing temperature yields higher G∗ [102]. For FEA,
G′ and G″ were lower than that of nonfoamed EA, which
also decrease with the increase of water content [27].

(2) Oscillatory Tension Using Dynamic Mechanical Analysis
(DMA). Dynamic mechanical properties of EA, including
storage modulus (E′), loss modulus (E″), loss tangent
(tan δ), and Tg, can be effectively determined by DMA. A
typical DMA versus temperature curve is presented in
Figure 22. Tg was often defined as the temperature range
where the material changes from a glassy state to a soft but
not melted state. 'e temperature corresponding to a
maximum value of tan δ on tan δ-temperature curve from
DMA was commonly identified as Tg for EA. It should be
noted that there are two peaks for tan δ: one at low tem-
perature range (identified as β transition temperature, Tβ)
and one at higher temperature (identified as Tg) [17, 70].
'is two-peak glass transition indicated that phase sepa-
ration existed in the EA [7, 16, 30, 71, 72, 80, 113], as
exhibited by the broad peak at −22°C for asphalt-rich
phase, and a larger peak at 28°C for epoxy-rich phase (see
also Figure 22). 'is two-peak glass transition phenome-
non was consistent with the “bimodal network” assump-
tion for cured EA [60]. With the increase in the content of
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the flexible curing agent PFA, wider and lower peaks were
observed, which indicated that flexible long-chain struc-
ture of PFA can enhance the chain mobility of cured EA
[30]. Higher tan δ for EA and ESA than that of ER was
observed in the glassy region, which indicated better en-
ergy dissipation capability for EA and ESA [68]. It should
be pointed out that, for EA with high mass fraction of
asphalt (>65 wt %), a single tan δ peak was observed [113],
which indicates good compatibility between epoxy and
asphalt. For CEA-ESO30 [71] and CEA-ESO20 [72] sys-
tem, one Tg value for EA was also observed, indicating
excellent compatibility between asphalt and ER after ad-
dition of ESO.

As compared with ER, Tg was significantly reduced for
EA, especially at high asphalt content [113]. However, very
limited effect of asphalt content on Tg for EA was also
reported [7, 16] (see Table 2). 'e addition of Sasobit into
EAR slightly reduced Tg value, which might be attributed to
the reduction of crosslink density within epoxy [69]. Higher
content of Sasobit within WMEA can also lead to lower Tg

values [123]. For EA modified with polyethylene glycol,
higher molecular weight can reduce its Tg values [133].
Meanwhile, addition of SBS increased Tg as compared with
neat EA [80]. As compared with unmodified EA, Tg was
reduced with the addition of reinforced nanofiller ATT
[122]. 'e substantial increase in Tg was observed for

1.E+02
1.E-08 1.E-05 1.E-02 1.E+01 1.E+04 1.E+07

Co
m

pl
ex

 sh
ea

r m
od

ul
us

 [P
a]

1.E+10 80

70

60

50

Ph
as

e a
ng

le
 [°

]

40

30

20

10

0

1.E+09

1.E+08

1.E+07

1.E+06

1.E+05

1.E+04

1.E+03

Frequency [Hz]

Bitumen-Phase angle
EMB-phase angleEMB-Modulus

Bitumen-Modulus

Figure 20: Complex modulus and phase angle for binders [100]. Note: EMB� epoxy-modified bitumen.

0.0E+00
0 0.005 0.01 0.015 0.02 0.030.025

S-O

Co
m

pl
ex

 m
od

ul
us

 at
 1

0 
H

z (
Pa

)

5.0E+05

1.0E+06

1.5E+06

2.0E+06

2.5E+06

3.0E+06

3.5E+06
PAV-EB50

PAV-EB0

PAV-EB20

4.0E+06

4.5E+06

EB0 R2=0.866
EB20 R2=0.646
EB50 R2=0.7601

(a)

0 0.005 0.01 0.015 0.02 0.030.025
S-O

Ph
as

e a
ng

le
 at

 1
0 

H
z (

de
g)

PAV-EB20

PAV-EB0

PAV-EB50

8.E+01

8.E+01

7.E+01

7.E+01

6.E+01

6.E+01

5.E+01

EB0 R2=0.923
EB20 R2=0.637
EB50 R2=0.969

(b)

Figure 21: Relationship between sulfoxide compounds and complex modulus (a) and phase angle (b) during oxidative controlled curing
[58].

Advances in Materials Science and Engineering 17



compound curing agents (MeTHPA with sebacic acid or
TOA with sebacic) cured EA compared with sebacic acid
cured EA [33], which was attributed to the formation of
small crosslinked grids and high rigidity of the ER network.
Both Tg and Tβ were reduced with the presence of WCO
[70], indicating improved low-temperature cracking resis-
tance for WMEA. 'e modifier BrSBS can significantly
increase the Tg value [37], which was ascribed to nucleo-
philic substitution reaction between BrSBS and amine
groups of curing agents and thus interpenetrating polymer
network was created.

'e values of Tg obtained from DMA were consistent
with those from DSC analysis [77]. As compared with Tg

from DSC, around 15°C [7] to 20°C [16] increase was re-
ported for Tg determined from DMA (see Table 2).

E′ was found to decrease with the increase of PFA
content for EA, indicating the increase of flexible long-chain
structure proportion in the cured EA system [30]. ESO-
modified CEA exhibited lower E′ than unmodified CEA due
to the flexible long chains of ESO [72]. E′ of Sasobit-
modified EAR was higher than that of unmodified EAR
other than the glass transition range [69], which was due to
the wax crystallization of Sasobit [134, 135]. Lower E′ value
for CEA with SBS than that of EA and ER in the glassy to
rubbery transition region was reported [68], which was
probably due to the plasticizing effect of SBS. On the other
hand, stronger asphalt-polymer intermolecular interaction
often leads to higher E′ of ESA as compared with that of neat

asphalt if it was prepared through conventional hot mixing
[80].

'e damping properties of EA correlated well with noise
and vibration reduction capability, which have often been
characterized by tanδ at room temperature ((tan δ)RT)
[7, 69] or maximum tan δ ((tan δ)max) [7, 16, 72, 129],
temperature range (ΔT) for effective damping (tan δ > 0.3),
and the area under tan δ versus temperature curve (TA)
[7, 16, 72, 129] (see Table 2). Large values of (tan δ)RT,
(tan δ)max, TA, and ΔT indicate better damping properties
for EA [69]. Addition of Sasobit to EAR can improve the
damping properties, which was associated with the better
dispersion of asphalt rubber in the epoxy matrix [69]. With
the increase in the asphalt content, superior damping
properties were reported due to improved flexibility of EA
[7, 16]. For EA, damping properties were also found to
increase with increasing asphalt penetration grade [129]. As
compared with styrenic polymer-modified EA, neat EA
showed superior damping properties [80]. However, better
damping was reported for EAR with the WMA additive
Sasobit [69], WMEA with less than 4% WCO [70], and EA
with SBS [110]. Better damping properties were reported for
the compound curing agent MeTHPA with sebacic acid than
those of the compound curing agent TOA with sebacic acid
and sebacic acid alone [33]. Damping properties of EAM
have also been determined by using the impact resonance
test, which was verified through a comparison between
theoretical and tested natural frequency [136]. Damping
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Table 2: Tg and damping properties of the neat EP and HMEA [7].

Sample DSC Tg (°C)
DMA

Tg (°C) Tβ (°C) (tan δ)max (tan δ)RT (ΔT) at tan δ> 0.3 TA (K)

EP 11.3 27.4 — 0.99 0.95 41.1 (9.8∼50.9) 26.9
HMEA45 13.1 27.6 −10.6 1.09 0.99 74.1 (−1.6∼72.5) 44.0
HMEA50 13.2 31.2 −11.3 1.16 1.03 85.3 (1.8∼87.1) 56.8
HMEA55 12.5 29.9 −11.4 1.18 1.08 82.4 (−5.6∼76.8) 58.8
Note: EP� epoxy resin; HMEA� hot-mixed epoxy asphalt.
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parameters were found to be largely dependent on testing
temperature.

Crosslink density (ve) of cured ER can be defined using
equation (7). Higher ve for PDL-epoxy than DER332 sig-
nificantly contributed to its much higher Tg than that of
DER 332 resin [31]. 'e ve value significantly increased after
the addition of styrenic polymers into EA [80], which was
caused by the physical interaction between SBS and virgin
binder and thus higher viscosity and lower mobility of SBA
within the epoxy phase:

ve �
E

3RT
, (7)

where E� elastic modulus of cured epoxy in the rubbery
state; R� gas constant; and T�absolute temperature.

(3) Creep and Recovery. To further understand the delayed
elasticity and recovery behavior of EA, creep and recovery
tests were performed under 1 s loading and 9 s rest for 100
cycles [17], which can better characterize the rutting per-
formance of binders than the rutting factor [137]. As can be
seen in Figure 23, EA showed excellent elastic behavior and
rutting resistance than neat asphalt and SBA.

'e recoverable part from multiple stress creep recovery
tests was increased while the nonrecoverable part was de-
creased with the increase of waterborne epoxy concentra-
tion, which indicated that the elastic performance of asphalt
can be strengthened by the epoxy network [90]. 'is con-
firmed the strong rutting resistance of EA over conventional
asphalt. EA with 15% of WCO-EP (KL-COOH/NMA� 1/1)
showed the highest percentage recovery and lowest Jnr [65],
which was comparable with commercial epoxy.

Linear amplitude sweep tests performed on WEA resi-
due demonstrated the fatigue life improvement effects of ER
as compared with the conventional binder [90], as shown in
Table 3. Results from DSR time sweep tests confirmed the
superior fatigue performance of EA over the conventional
binder [58]. As compared with SBA, EA also showed sig-
nificantly better fatigue resistance, since complexmodulus of
EA was still much higher than 50% after 60,000 loading
cycles, while SBA was in the flow state under high shear
frequency and shear stress [17].

5.3.3. Viscoelastic Behavior. 'e linear viscoelastic range for
REAC under dynamic shear loading was determined to be
0.1% shear strain [78]. To characterize the viscoelastic be-
havior of flowable asphalt binders, generalized Maxwell
model has often been used with quite a number of me-
chanical elements [138]. To reduce the number of elements
in the Maxwell model, fractional 2S2P1D model (see
equation (8)) was generally used. It should be noted that this
2S2P1Dmodel can be obtained by attaching a linear dashpot
in line to the two fractional dashpots and spring in the
Huet–Sayegh model (see Figure 24). As a matter of fact, the
fractional 2S2P1D model will degrade into Huet–Sayegh
model for weak-crossing anhydrides cured EA binder [139],
which is equal to combining the linear dashpot into the two
fractional dashpots under high asphalt binder content:

G
∗
(ω) � G0 +

Gg − G0

1 + α(iωτ)
−k

+(iωτ)
−h

+(iωβτ)
−1, (8)

where G∗(ω) � complex modulus; G0 � static modulus; and
Gg � glass modulus.

To understand the correlation between the viscoelastic
properties (e.g., complex modulus) of EA and its cross-
linking characteristics (e.g., degree of polymerization), a
kinetic viscoelasticity model (see equation (9)) was proposed
to confirm the onset of mechanical response [140]. It was
found that the degree of conversion has a significant effect
on the viscoelastic behavior, which will eventually affect the
stress build-up in the EA:

G(t, T, x) � G∞ + 
n

i�1
Gi exp −

t

aT,xτi

 , (9)

where G(t, T, x) � complex modulus at time t, temperature
T, and degree of conversion x; G∞ � equilibrium complex
modulus; Gi � complex modulus for i-th element;
τi � relaxation time; and aT, ax � temperature shift factor
and conversion shift factor.

Strongly distorted ellipse of Lissajous curves for EA
indicated its nonlinear characteristics especially between
25°C and 45°C [141], as shown in Figure 25. Besides strain
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Table 3: Fatigue life based on linear amplitude tests [90].

Binder type 2.5% Nf 5% Nf Fatigue model
WEA-0 6516 676 1.303 × 105(cmax)

− 3.269

WEA-1 7162 766 1.374 × 105(cmax)
− 3.244

WEA-3 14067 836 5.875 × 105(cmax)
− 4.073

WEA-5 59717 1231 1.011 × 107(cmax)
− 5.601

Note: Nf � fatigue life; WEA-1, -3, and -5� percentages of total weight of
epoxy and waterborne curing agent by weight of raw asphalt binder� 1%,
3%, and 5%; cmax � applied strain level.
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amplitude, it can be seen that temperature has a significant
effect on nonlinearity of EA. For instance, intracycle yielding
and strain stiffening were observed under the strain am-
plitude of 2.4% at 25°C, whereas these nonlinear responses
were only observed under strain amplitude higher than 12%
at 45°C.

5.4.Tensile Performance. As compared with neat asphalt, EA
was reported to have higher tensile strength [58, 79], which
increased with the increase of epoxy content, especially when
the ER content was more than 30% [79]. 'e elongation, a
ductility measurement, was significantly reduced with the
increase of the ER content [79]. 'e failure strain of 30% for
EA indicated that it can be used for antiskid surfaces under

heavy loading [100]. On the other hand, the tensile strength
of EA was decreased as compared with ER, whereas the
elongation was increased [7, 15, 16, 56, 68, 81], as shown in
Figure 26. Tensile strength will be significantly reduced if
phase inversion occurred at high asphalt content [15]. 'e
tensile strength was increased, and the elongation was de-
creased while the asphalt content was reduced
[16, 73, 81, 113] (see also Figure 26) or curing time was
increased in EA [5, 20, 113, 124]. With the increase of
penetration grade, tensile strength and elongation for EA
were both increased [129] and this increase might be at-
tributed to better dispersion of asphalt particles within the
epoxy matrix for softer binder. A peak tensile strength value
of epoxy repair materials was obtained when 10 phr asphalt
was added to ER [84]. Higher level of plasticization from
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saturated oil and lower level of crosslinking was proved to
exhibit better flexibility [4]. With the increase of curing
agent PFA content, tensile strength was observed to increase
while elongation was observed to decrease [30], which in-
dicated that the cured EA has higher flexibility. As compared
with conventional heat-cured EA, both slightly lower [51]
and slightly higher [34] tensile strength have been reported
for microwave-cured EA.

For REAC, the high tensile strength and elongation was
due to the formation of the interpenetrating biomodal
network, which consisted of short-chain maleated asphalt
and long-chain dicarboxylic acid [6, 78]. Stress-strain be-
havior of REAC can be described with Mooney–Rivlin
model (see equation (10)), which was often plotted as
σeng/(λ − 1/λ2) against 1/λ:

σeng
λ − 1/λ2 

�
2C1 + 2C2

λ
, (10)

where σeng � nominal tensile stress; λ� ratio of deformed
length over initial length; and C1, C2 � adjustable
parameters.

ATT [92, 122] has showed to improve the tensile per-
formance of EA due to the reinforcement effect from well
dispersion of ATTand strong interfacial interaction between
ATT and EA matrix. 'e elongation at break was also in-
creased after addition of ATT into EA [122], which was also
attributed to the reinforcement effect provided by well
dispersion of ATTwithin EA. However, tensile strength and
elongation will be compromised if high concentration of
ATT is added, which will act as flaws or defects due to its
agglomeration [142].

'e compound curing agent MeTHPA with sebacic acid
or TOA with sebacic acid was confirmed to significantly
increase the tensile strength of EA, and MeTHPA is more
effective than TOA [33]. Addition of low contents of EVA
(in the mass fraction of 0.95 wt.% to 1.90 wt.%) into EA can
increase its tensile strength and elongation [14], which was

attributed to the well distribution of EVA particles in EVA-
modified EA, as confirmed in LSCM images and the im-
proved compatibility [143]. It should be noted that the
flexible and tough nature of EVA probably contributed to
the increased elongation of EA [144]. As compared with neat
EA, the tensile strength increased for hot-mixed ESA [15, 80]
and it was reduced for CEA with SBS [68]. However, both
positive [15, 68] and negative [80] effect of SBS on elongation
was reported. With the decrease of rubber particle size, the
tensile strength of EAR was reduced while its elongation was
increased [61]. 'e elongation improvement effect of crumb
rubber on EA was attributed to its flexibility [81]. ARP-
modified EA showed higher tensile strength and shorter
elongation due to increased crosslink density and thus more
brittle behavior [61]. For flame retardants, negligible effects
on tensile strength were reported for DBDPE/Sb2O3 [36]
and natural brucite [13]. However, slight increase in tensile
strength was reported for synthetic brucite [13], which was
probably due to large interface contact area and uniform
dispersion of brucites in EA. Furthermore, significant in-
crease in tensile strength of ATH/ZB was also reported [29].
Shorter elongation was also reported for all three flame
retardants. However, BrSBS modified EA was reported to
have lower tensile strength and elongation due to its brit-
tleness [37]. 'e introduction of both glass fiber [104]
and mineral fiber [105] can increase the tensile strength
and elongation due to the formation of three-dimensional
network.

'e introduction of H102-C2 or H102-C18 can signifi-
cantly increase the elongation of EA, while the tensile
strength was reduced [82]. It should be noted that H102-C18
can provide more toughening effect than H102-C2, since
H102-C2 has only inert short-chain end groups from re-
activity elimination, while its toughening effect comes from
hyperbranched structures. Meanwhile, only long-chain end
groups were terminated for H102-C18 and flexible end
groups remained. Decreased tensile strength and increased
elongation at breaking reflect the improved compatibility
between EA for CEA after the addition of ESO [71, 72].
Similar observation was also made for WMEA after the
addition of WSO [70]. Both tensile strength and elongation
at break for CEA modified with ESO/nanosilica was im-
proved as the compatibility between asphalt and ER im-
proved [38].

'e fatigue cracking resistance for EA was reported to be
better than neat asphalt [58]. Fracture energy of REAC
showed to be 8 times that of epoxy-unmaleated asphalt
composite [6]. Toughness, defined as the area under stress-
strain curve, was also employed to evaluate the cracking
resistance of EA. As compared with ER, the addition of
asphalt and SBS increases the toughness value if no phase
inversion occurred at high asphalt content [15]. 'is
toughness enhancement was probably caused by the soft
segment structure [121] and ductility [15] of asphalt binder.
EA exhibited significantly lower fracture energy density than
conventional asphalt based on the binder fracture energy test
according to American Association of State Highway and
Transportation Officials (AASHTO) TP 127-17 [145], as
presented in Figure 27. Slightly lower toughness value was
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also reported for EA after the addition of SBS [80]. Low
content of Sasobit (<3 wt.%) can increase the toughness of
warm-mixed EAR [69] and WMEA [123]. 'is different
effect of SBS on cracking resistance of EA was probably due
to the dispersion of SBS within the EA. 'e lower tensile
strength for EA after addition of crumb rubber was again
attributed to the poor distribution of continuous phase-
separated structure of asphalt rubber within the epoxy
matrix [81]. With the addition of core-shell rubber, 29%
increment in tensile strength, 60% increase in elongation at
break, and double toughness were reported for EA [108]. As
compared with conventional EA, its elongation was in-
creased by 198% while toughness was increased by 65% for
EA with 2 wt.% SBS at 31% epoxidation degree [128].

5.5. Bond Strength. Adhesive strength on steel plates was
evaluated using pull-out testing, and ER exhibited sig-
nificantly higher adhesion strength than EA [56]. 'e
descending order for pull-off strength of three tack coats
between steel bridge deck and EAMwas determined, which
was ARP-modified EA, EAR, and EA [61]. Cohesive energy
was measured by separating two steel blocks glued by EA,
and it was found that proprietary accelerator modified EA
has a significantly higher cohesive energy than base asphalt
or asphalt binder diluted EA [102], which indicated ex-
cellent adhesion to sealing chips. Adhesion strength be-
tween the antiskid layer and the underlying structural layer
was determined with a Pull test, and the failure occurred
below the interface in the underlying asphalt mixture (see
Figure 28), which indicated the superior adhesion per-
formance of EA used for the antiskid layer [98]. Leutner
shear test again confirmed the higher shear strength be-
tween EA-based antiskid surface and underlying mixture
than that between tar-containing binder based antiskid
surface and underlying mixture [100], and also higher
shear strength for EA than conventional tack coat [62]. EA
with higher crosslink density and polymer content was
proved to have higher adhesion strength on the steel
substrate, EAM substrate, and cement mortar substrate
with steel tab [4]. Lower Cantabro loss of WEA-based

microsurfacing mixture than that of SBR-based mixture
confirmed the better adhesive performance of ER [88].

'e steel-concrete interface shear test indicated that EA
has superior shear strength than polymermodified asphalt as
a tack coat materials [146]. EA with higher concentration of
ATTexhibited higher adhesive strength based on the single-
lap shear test [92].

Waterborne epoxy resin as the interlayer material
showed to have higher adhesion strength and direct shear
strength than matrix asphalt and 4% SBA emulsion by
pullout test and direct shear test [89], respectively. Curing
agents that can improve the compatibility of the epoxy
system were proved to have higher adhesion strength and
direct shear strength. Before curing was completed, the
adhesive bond strength increased with curing time [90]. As
compared with the common prime coat, water-soluble ER
again showed to have much higher adhesive strength and
shear strength [64], and the failure surfaces of which can be
seen in Figure 29. 'e embedded surface mixture in EA-
based prime coat indicated superior bonding strength than
the common prime coat. Nano-TiO2 (up to 3%) can improve
the adhesive shear strength of WER [87], which can po-
tentially increase the service life of fog seal. Maximum
adhesive shear strength was obtained with 3% water-based
resin content by using the 45° oblique shear test [63]. Besides
the higher strength than polyurethane and SBA, ER also
exhibited longer shear fatigue life [147]. 'e addition of
rubber into EA was confirmed to enhance the bond strength
in terms of increased interface shear fracture energy [61].

6. Mechanical Characteristics of Epoxy
Asphalt Mixture

6.1. Viscoelasticity. A static compressive creep test was
conducted on cylindrical specimens with 100 kPa loading
and significantly lower creep deformation was observed for
EAM than that of the conventional asphalt mixture [148],
which was also reduced with the increase of the ER content.
To accurately describe creep behavior of EAM from −10°C to
60°C, a modified second-order extensive Kelvin model (see
Figure 30 and equation (11)) was employed to include the
delayed viscoelastic deformation at the two ends of the
temperature range [149], which was further verified with
experimental creep data on beam specimens.
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Figure 27: Fracture energy density for PAV-aged binders [145].
Note: NA� neat asphalt; SBS� SBS-modified asphalt; CRA� -
crumb rubber modified asphalt; HVA� high viscosity asphalt;
EA� epoxy asphalt.

Figure 28: Failure in underlying asphalt mixture during the Pull
test [98].
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where ε(t)/σ0 � creep compliance; E0 � instantaneous
modulus; Ei � stiffness of spring in the ith Kelvin unit;
ηi � dashpot viscosity; and n � number of Kelvin units and
order of extensive Kelvin model.

For cylindrical EAM samples, the linear viscoelastic limit
was determined to be 150×10−6 strain under various
temperatures and frequencies [150]. Huet–Sayegh rheo-
logical model (see equation (12)) was successfully used to
characterize the linear viscoelastic behavior for EAM
[150, 151]:

E
∗
(ωτ) � Ee +

Eg − Ee

1 + δE iωτE( 
−kE + iωτE( 

−hE
, (12)

whereω � 2πf � angular frequency; τE � characteristic time;
Eg � glass modulus; Ee � equilibrium modulus; and δE, kE,
and hE � dimensionless model parameters.

For cylindrical EAM specimens under cyclic loading, it
exhibits elastic-plastic behavior in the first few cycles with
dominant elastic behavior thereafter [152].With the increase
in confining pressure, the dissipated energy can be reduced
from 25% for unconfined specimens to less than 15% for
confined specimens. With the increase of dynamic modulus
difference between EA patching materials and existing as-
phalt materials, larger tensile and shear stresses will be in-
duced at the patching interface based on numerical analysis
of composite beams [12], which indicates shorter service life
of patching materials. Deformation recovery test was also
conducted on rectangular specimens under three-point
bending test to confirm the superior deformation recovery
performance of asphalt mixture with SM-HER as compared

with the conventional asphalt mixture [77], which can
mitigate the accumulation of plastic deformation.

6.2. Resilient Modulus and Compressive Strength. Indirect
tension modulus was evaluated under the testing condition
of 0.04 s loading and 3.0 s rest and modulus of open-graded
EAM was found to increase with the increase of oxidation
time [8, 18], which might be attributed to both continued
curing and oxidation. Open-graded EAM also exhibited
significant higher indirect tension modulus than that of
mixtures with base binder and SBA [18], see Figure 31.
Open-graded EAM also showed faster increase rate of in-
direct tension modulus than base asphalt and SBA.

Compressive strength of EAM was observed to be only
10MPa less than C50 cement concrete [103]. However, it
was significantly higher than stone matrix asphalt (SMA)
and conventional dense-graded asphalt mixture. Com-
pressive strength of EAM repair materials was found to
increase as asphalt content increased up to 10 phr [84],
which was probably attributed to elevated cohesion and
formation of the microphased structure in EAM materials
[6, 124]. However, a part of the ER network will be disrupted
once the asphalt content was over 10 phr and compressive
strength will be reduced. It is interesting to note that the
compressive strength will increase with more freeze-thaw
cycles due to better energy absorption capability of asphalt
phase within the EA system. Microwave curing can slightly
increase the compressive strength of EAM as compared with
conventional thermal curing due to its more evenly cured gel
system under microwave curing [34]. When it comes to
effects of curing time, rapid increase in compressive strength
was observed in the first 3 days and growth rate of com-
pressive strength was observed to increase with increasing
binder-aggregate ratio in the first 3 days [153].

7. Pavement Performances of Epoxy
Asphalt Mixture

How the properties of epoxy asphalt can be translated to the
properties of epoxy asphalt mixture in the field still needs to
be checked by evaluation on the pavement performances of
epoxy asphalt mixtures, which are reviewed in this section.

(a) (b) (c)

Figure 29: Interlaminar shear failure surface for EA-based prime coat (a, b) and common prime coat (c) [64].

η1 η2
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Figure 30: Modified second-order extensive Kelvin model [149].
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7.1. Permeability. For open-graded asphalt mixture pre-
pared with EA, its permeability was slightly compromised as
compared with the conventional asphalt binder [94, 154].
Under a laminar flow condition, there exists a linear rela-
tionship between permeability and air void for porous EAM
[93]. In addition, the permeability of porous asphalt mix-
tures with smaller aggregate sizes was slightly reduced if air
void content was kept constant. Glass fiber [104] or mineral
fiber [105], which was often added for toughness en-
hancement and draindown prevention, showed negligible
effect on the permeability of EAM.'e impermeability of the
underlying pavement layer can be significantly improved
after WER was used as either prime coat [64] or fog seal
modified with nano-TiO2 [87], which can prevent water
from penetrating down into the pavement. Impermeability
of the tack coat layer has been evaluated by using the water
tightness test, and no seepage was observed for EAR, ARP-
modified EAR, and EA under pressure up to 300 kPa [61].

7.2. Skidding Resistance. British pendulum number (BPN)
from British pendulum tester and mean texture depth
(MTD) from the sand patch method have been widely used
to evaluate the friction performance of asphalt mixture,
which reflects the friction at low and high vehicle speeds,
respectively. MTD of epoxy resin-based UTASS was found
to be almost 10 times that of composite structures with an
EAM surfacing structure [101]. Small particle porous epoxy
asphalt (SPPEA) was found to have superior friction than
SMA and dense-graded mixture, but inferior friction than
open-graded mixture based on both BPN and MTD data
[93], as shown in Table 4. BPN was also observed to further
deteriorate under repeated traffic loading and higher vehicle
loading [93, 155]. For EAM with glass aggregates, mixtures
with etched glass were found to have significantly lower BPN
friction value than that of mixtures with unetched glass due

to the horizontal position of etched glass in mixture [107].
'e BPN value of nano-TiO2 modified EAM was compro-
mised and it was attributed to decreased fluidity of WER,
leading to more macrotexture covered and thus lower BPN
value [87]. Open-graded mixture with EA had lower BPN
value than that of open-graded mixture with conventional
PG 64-16 [94], which was consistent with friction coefficient
results from dynamic friction tester at low slip speeds
[94, 154]. But at high slip speeds, contrary friction coefficient
results were obtained, probably attributed to the high
stiffness of open-graded mixture with EA, which will thus
dissipate more energies from spinning rubber blocks and
thus higher friction coefficient. EAM designed based on the
V-S method showed to have better friction resistance than
that of SMA and dense-graded mixture with same NMAS
[97].

Glass fiber [104] or mineral fiber [105] was reported to
have negligible improvement on MTD of EAM. Antiskid
surface with MTD as high as 1.93mm was designed by Xiao
et al. [98, 100], but it needs further long-term field vali-
dation. Microsurfacing prepared with WEA was determined
to have almost the same friction in terms of both BPN and
MTD as that prepared with SBR [88]. Mass loss during
accelerated loading test was determined for prime coat
applied on CTB and WEA as prime coat was found to have
significantly lower mass loss than that of the common prime
coat [64], which indicated better abrasion resistance to
construction vehicles for EA due to strong penetrating
ability. A GA-BP neural network model was successfully
developed for the prediction of long-term skidding resis-
tance of EAM, which was reduced with the increase of binder
content and aggregate gradation shape parameter [155].

7.3. Durability. After long-term freeze-thaw conditioning,
degraded rheological and mechanical performances were
observed for EAR with and without ARP modification [61],
including increased creep stiffness, decreased m-value, de-
creased tensile strength, and shorter elongation, as shown in
Table 5.

As compared with asphalt mixture prepared with con-
ventional binder and SBA, open-graded mixture prepared
with EA showed significantly less Cantabro mass loss even
after 7 days aging at 60°C [94], 194 days aging at 85°C [18],
and 909 hours oxidation conditioning [8], which indicated
superior durability for EAM. Longer fatigue life again
confirmed superior durability of open-graded mixture over
base asphalt and SBA mixture after long-term aging, even if
it is diluted [18]. Lower wet track abrasion loss values also
validated the stronger durability of WEA-prepared
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Figure 31: Resilient modulus for open-graded mixture with neat
asphalt, SBA, and EA [18].

Table 4: BPN from British pendulum tester and MTD from sand
patch test [93].

Mixtures Air-void content (vol. %) BPN MTD (mm)
SPPEA 20 76.0 1.58
SMA-5 3 72.3 1.21
OGFC-13 20 78.8 1.77
AC-13 3 62.0 0.42
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microsurface over SBR-modified asphalt [88], which was
also consistent with Cantabro mass loss results.

Raveling resistance of EAM can be determined by
Cantabro tests and it was found that 9% glass fiber [104] or
mineral fiber [105] can reduce the Cantabro weight loss by
29%, which indicated a strong bond between aggregate and
EA with the addition of glass fiber or mineral fiber. Weight
loss for cold-patching mixture prepared with WEA was
reduced by 66% as compared with the conventional
emulsified asphalt mixture [85], indicating improved rav-
eling resistance. To evaluate the strength of CTB with prime
coat consisting of WEA, the uniaxial penetration test was
conducted on cylindrical specimens and a peak value of
penetration strength was found with the increase of pene-
tration depth [64].

7.4. Noise Absorption. Sound absorption coefficient test
results, measured according to ASTM E 1050, indicated that
EA can enhance the noise reduction performance of asphalt
mixture [94, 154]. In addition, open-graded gradation and
large nominal maximum size will benefit noise absorption
attributed to their pore structure.

7.5. Rutting Resistance

7.5.1. Marshall Stability. Marshall stability for cold patch
EAM was improved as compared with conventional cold
patch mixture [91]. As compared with epoxy resin concrete,
around 1/3 reduction of Marshall stability was observed for
EAM with 45% asphalt [7]. With the increase of asphalt
content, the Marshall stability was slightly increased and the
flow value was slightly reduced, see Table 6. As compared with
commercial net asphalt mixture, mixture of sand, EA, and
LSP exhibited twice Marshall stability value [25]. Only 2.45%
drop of Marshall stability was observed for EAM with 50%
glass aggregates as compared with those without glass ag-
gregates, whereas 34.33% drop was observed for SBA mixture
[107]. EAMwith snow-melting agents exhibited slightly better
Marshall stability than those without snow-melting agents
[156]. Bio-based EAM also exhibited better rutting resistance
than the conventional asphalt mixture based on the increased
Marshall stability value [32]. EAM with higher crosslink
density, higher polymer content, and lower oil content possess
higher Marshall stability [4]. However, EAM modified by
polyethylene glycol with high molecular weight exhibited
significantly compromised Marshall stability [133].

7.5.2. Dynamic Stability. 'e progression of rutting depth
versus wheel passes was obtained from wheel tracking tests
for a mixture of sand, EA, and LSP [25], and an optimum
mixture composition was determined (see Figure 32). Dy-
namic stability of EAM was reported to be 6.3 to 9.5 times
and 2.5 to 3.8 times of neat asphalt mixture and SBAmixture
[7], respectively. With the increase of ER content, dynamic
stability and maximum deflection for EAM exhibited higher
and lower values [91, 148], respectively.

Addition of the snow-melting agent slightly increased
the dynamic stability of EAM [156]. Meanwhile, addition of
glass fiber [104] or mineral fiber [105] exhibited negligible
improvement on both rutting depth and dynamic stability
for EAM.

'e dynamic stability of EAM was slightly reduced by
3.18% with up to 50% glass aggregates, but it was reduced by
40.87% with only 16% glass aggregates for asphalt mixture
with SBS modification [107]. SPPEA mixture showed con-
siderably lower dynamic stability than OGFC-13, which has
larger aggregate size and thus better interlocking skeleton
structure [93]. However, dynamic stability EAMwas slightly
increased with the increase of lightweight aggregate per-
centage [106]. EAM prepared using the V-S design method
showed slightly higher dynamic stability than conventional
EAM but significantly higher dynamic stability than SMA
due to its skeleton structure [97] and the thermosetting
nature of EA [97, 103]. Cold patch EAM showed signifi-
cantly low dynamic stability and high rutting depth than the
conventional asphalt mixture, and it was probably attributed
to the existence of residual diluents and thus low binder
viscosity [91]. 'e descending order of dynamic stability for
double-layered bridge deck surfacing is EA-EA, EA-SMA,
Gussasphalt-EA, and Gussasphalt-SMA [157], which again
confirmed the strong rutting resistance of EA.

Repeated simple shear test at constant height was also
employed to evaluate the rutting resistance of open-graded
EAM, and it exhibited considerably better resistance to
permanent shear deformation than the conventional open-
graded mixture despite its lower initial shear modulus [94].
'is was consistent with the rutting depth progression
curves from Hamburg wheel tracking tests. In addition,
pavement lateral deformation and pavement vertical de-
formation results confirmed the superior rutting resistance
of microsurfacing mixture with WEA over SBR-modified
mixture [88], especially the shearing deformation resistance
due to crosslinking in the EA system. Consistent rutting
resistance fromMarshall stability and dynamic stability were
confirmed [7, 25, 91, 107, 156].

Table 5: Properties of EA, EAR, and EAAR before and after long-term F-T cycles [61].

Properties Temperature
Before F-T cycles After 18 F-T cycles

EA EAR EAAR EA EAR EAAR
Creep stiffness, MPa −12°C 247.6 225.1 230.4 319.4 270.1 266.3
m-value −12°C 0.333 0.387 0.371 0.213 0.292 0.301
Tensile strength, MPa 23°C 6.13 6.79 6.98 4.48 5.69 5.85
Fracture elongation, % 23°C 257 Bes 332 131 236 242
Note: EA� epoxy asphalt; EAR� epoxy asphalt rubber; EAAR�ARP-modified EAR; F-T�freeze-thaw.
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7.6. Low-Temperature Cracking. 'ree-point flexural beam
at −10°C was often conducted to determine flexural strength,
flexural strain, and flexural stiffness for low-temperature
cracking resistance evaluation [93, 107]. SPPEA and small
particle porous asphalt with common polymer modified
asphalt has comparable cracking performance since ER has
almost no effect on the already brittle asphalt binder [93].
Low-temperature cracking resistance of EAM with up to
50% glass aggregates was only slightly compromised in terms
of reduced flexural strength and flexural strain [107]. Ad-
dition of ATTslightly increased the flexural strength, flexural
strain, and bending strain energy density (see Table 7),
indicating better flexibility at low temperature [122].'eV-S
method based EAM showed slightly higher flexural strength
but considerably lower flexural strain than conventional
EAM [97]. Glass fiber [104] or mineral fiber [105] can
significantly improve low-temperature cracking resistance of
EAM based on increased flexural strength, flexural strain,
and flexural stiffness, and optimum content was determined
to be 9%. EAM prepared with polyethylene glycol was also
reported to have improved low-temperature cracking re-
sistance and toughness by introducing long molecular
chains within the crosslinked network for EA [133]. After 30
freeze-thaw cycles (18 h freezing at −5°C and 6 h soaking in
4°C water), flexural stiffness from three-point bending tests

at −14°C was reduced by 60.3% [158], which is a significant
damage to EAM. Double-layered bridge deck surfacing,
Gussasphalt-EA, exhibited superior low-temperature
cracking resistance than other SMA, Gussasphalt, EA
combinations (see Figure 33), due to the high strain energy
density of Gussasphalt, followed by EA and SMA [157].

A bilinear cohesive-softening model was incorporated
into three-dimensional discrete element model to investigate
the fracture behavior of quasi-brittle materials, like EAM
[159]. 'e cracking process was successfully characterized,
and it was in good agreement with digital image correlation
results. Single-edge notched EAM composite beam was
assumed to be composed of linear elastic materials, and the
effects of freeze-thaw on fracture toughness were numeri-
cally determined [158]. It is interesting to note that fracture
toughness was decreasing in the first 15 freeze-thaw cycles
and fracture toughness was increasing in the following 15
freeze-thaw cycles, which was probably due to stress ab-
sorption of bonding layer.

Addition of WCO-EP and KL-COOH/NMA slightly
reduced the low-temperature cracking resistance of asphalt
binder based on slightly increased stiffness, reduced
m-value, and increased cracking temperature from bending
beam rheometer tests [65].

7.7. Water Damage. To investigate the moisture damage
resistance of EAM, the contact angle of EA was determined
by using the sessile drop method, which was further used to
determine the surface free energy. It was found that the
contact angle between EA and water was higher than 90°
[145], indicating its hydrophobic nature; the contact angle
was found to increase with the increase of ER content and
curing time [112, 113]. In addition, the surface energy was
also found to increase with the increase of ER content
[113, 160] and curing time up to 120min [112].

Tensile strength ratio (TSR) based on either ASTM
D4867 [104–107] or AASHTOT283 [93, 94] was widely used
to evaluate moisture resistance of asphalt mixture. Superior
moisture resistance for EAM than conventional asphalt
mixture has generally been reported [91, 94, 148], probably
due to the strong adhesion between EA and aggregates [151].
For mixtures with limestone aggregates, the enhanced
moisture resistance was attributed to the increased adhesion
between bitumen and aggregates while it was attributed to
improved adhesion between aggregates and bitumen as well
as the increased wetting of bitumen on aggregates surfaces
for mixtures with siliceous aggregates [160]. Moisture

Table 6: Marshall of epoxy resin concrete and epoxy asphalt
concrete [7].

Sample Marshall stability (kN) Flow value (0.1mm)
EPC >90 NA
EAC45 63.1 53.3
EAC50 64.1 49.5
EAC55 64.4 44.6
Note: EPC� epoxy resin concrete; EAC� epoxy asphalt concrete; EAC45,
50, and 55� asphalt content 45%, 50%, and 55%.
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Table 7: 'ree-point bending results of EAM and EAM with ATT
[122].

ATT (wt.% of EAM) σc (MPa) εc (με) Gc
f (J/m3)

0 29.2 εc2159 2508
0.5 31.7 2348 3020
1 31.6 2027 2586
3 31.1 2314 2779
5 29.5 2383 2741
Note: σc � critical stress; εc � critical strain.
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resistance was also reported to increase with the increase of
ER content [91]. SPPEA exhibited around 10% increase of
TSR than small particle porous asphalt with common
polymer modifier [93]. 'e V-S method based EAM pre-
sented inferior moisture resistance than conventional EAM
[97], which was probably attributed to the voids and cracks
in V-S type mixture. 'e addition of 12% glass fiber [104]
and mineral fiber [105] can increase TSR value to 98.0%,
indicating great moisture resistance. For EAM with up to
70% lightweight aggregates, it still has the TSR value close to
90% [106], which was above the 80% TSR requirement.
Snow-melting agent slightly improved the moisture resis-
tance of EAM [156]. 'e TSR value for EAM with up to 50%
glass aggregates was still higher than 80%, whereas the TSR
value for SBA mixture dropped below 80% with even only
16% glass aggregates [107]. 'e decrease in TSR for poly-
ethylene glycol modified EAM was due to its inability to
accommodate volume expansion caused by water freezing
[133], which was hard and brittle at low temperatures.

Weight loss before and after freeze-thaw cycles was also
employed to evaluate the moisture resistance of epoxy repair
materials, and weight loss decreased with the increase of
asphalt content and freeze-thaw cycles [84]. 'e reduced
weight loss was probably attributed to the water repellent
nature of asphalt and enhanced crosslink density and net-
work structure from freeze-thaw cycles. In addition, the
Vialit adhesion plate test was employed to evaluate water-
induced stripping of aggregates for chip seals and EA
showed excellent adhesion to chip sealing surfaces [102]. In
addition, boiling water tests based on ASTMD3625 was used
to visually inspect the moisture resistance between WEA
emulsion and aggregates (see Figure 34), which indicated
good adhesion and confirmed its feasibility as a potential
high-performance cold binder [90].

7.8. Fatigue Cracking. Superior fatigue resistance of EAM
over conventional asphalt mixture [62, 148, 161] and high-
strength asphalt concrete [162] was reported, especially at
high ER content [18, 62], which was probably attributed to
the brittle failure nature of EAM.'is brittle failure behavior
can be illustrated by the fact that no cracking was observed
during the first 7×106 loading cycles while it was completely

broken in another 1× 106 loading cycles [162]. It presented a
higher fatigue cracking resistance at higher temperature
[161, 163] or lower loading level [97, 157, 161, 164]. Con-
siderable fatigue life reduction was also observed after
moisture damage was induced in the EAM [161]. Addition of
glass fiber [104] or mineral fiber [105] can greatly enhance
the fatigue resistance of EAM.

To evaluate the fatigue cracking performance of a fine-
graded EAM patching pavement material, three types of
composite beams (see Figure 35) were tested [12]. 'e ex-
cellent fatigue cracking performance of fine-graded EAM
patching pavement material was reflected in the longer
fatigue life of beam II than beam I, whereas a significantly
lower fatigue life of beam III was probably caused by the
stress concentration at the vertical patching interface.
Double-layered bridge deck surfacing, Gussasphalt-EA, and
EA-EA showed excellent fatigue cracking resistance as
compared with Gussasphalt-SMA or EA-SMA due to the
low fatigue cracking resistance of SMA [157]. EAM based on
the V-S design method exhibited inferior fatigue resistance
than conventional EAM [97], probably due to its skeleton
structure and thus lower asphalt content.

'e bending strain energy density of EAM decreased
with the increase of asphalt content, which was significantly
lower than that of epoxy resin concrete [7]. Fracture energy
of EAM decreased after the addition of lightweight aggre-
gates, and epoxy asphalt mastic was the main bearing
structure of EAM [165].

Flexural beam fatigue tests on composite beams (grit-
blasted steel plate and EAM) indicated that mixtures with
stiffer binder had lower deflection and thus better fatigue
resistance [4]. It has also been reported that oxidized and
stiffer binder often leads to lower fatigue resistance due to
loss of lower molecular weight and volatile components
[166]. It should be noted that this contradiction might be
attributed to different aging conditions and applied loading
levels. Both open-graded EAM and dense-graded EAM
exhibited excellent reflective cracking resistance than con-
ventional open-gradedmixture based on Texas overlay tester
[94].

As compared with the yield point of Weibull plot, 50%
stiffness ratio point, and complete sample failure point, the
peak phase angle point was determined to be a better cri-
terion for fatigue life determination for EAM based on four-
point fatigue bending tests [161].

Digital image correlation was employed to observe the
crack initiation, crack propagation, and unstable fracture in
three-point bending beam [167], which was verified by
numerical analysis (see Figure 36). Crack tip opening dis-
placement was found to be a reliable parameter to describe
the cracking process, and crack can propagate through most
of aggregates at −10°C.

To overcome the discontinuous element intersecting
problems during cracking process modeling in classical fi-
nite element method, the extended finite element method
was employed to investigate the cracking behavior of EAM
[163, 164]. Strain response from extended finite element
analysis at different locations of steel plate and EAM
composite beam was verified with optical fiber sensing
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(a)

(b)

Figure 34: EAM after 10min boiling (red circles� stripped aggregates) [90]: (a) 1-day bitumen emulsion mixture (from left to right: WEA-
0, WEA-1, WEA-3, and WEA-5); (b) 3-day bitumen emulsion mixture (from left to right: WEA-0, WEA-1, WEA-3, and WEA-5). Note:
WEA-1, -3, -5�weight of epoxy and waterborne curing agents.

Figure 35: Fatigue failure forms of composite beams [12]. Note: EAC� epoxy asphalt concrete; EAPP� fine-graded epoxy asphalt pavement
patching material.

(a) (b)

Figure 36: Comparison of cracking path in numerical simulation (a) and bending beam (b) [167].
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measurements [164]. Temperature was found to have a
significant impact on the fracture path morphology, and
EAM fracture behavior can be separated into brittle fracture
(below 5°C) [162, 163] and viscoelastic plastic fracture
(above 5°C) [163].

Heavy traffic loading and extreme environmental con-
ditions were found to be mainly responsible for the cracking
of EAM surfacing on long-span bridge deck [83]. Tensile
strength from the indirect tensile test has also been used to
evaluate the cracking resistance of EAM [62, 103, 106, 151].
EAM was reported to have higher indirect tensile strength
value than conventional asphalt mixture [62] and even
higher than C50 cement concrete [103]. For EAM, granular
lightweight aggregates exhibited higher tensile strength than
that of rounded lightweight aggregates [106].

It should be recognized that EAM showed strong de-
formation resistance due to its thermosetting nature, which
was exactly the reason why epoxy was introduced into as-
phalt mixture for pavement engineering. However, EAM
showed lower fracture resistance in terms of low fracture
energy, while EA and EAM showed better fatigue cracking
resistance under cyclic loading. 'is seemingly contradic-
tion has to do with failure mode of brittle materials, like
EAM. It also exhibited significantly improved strength and
stiffness, and it has changed asphalt material into a brittle
material from the original ductile material.

8. Summary, Conclusions, and Future Work

In this work, components of epoxy-asphalt composite, in-
cluding ER, curing agent, and modifier, were first studied,
followed by a review on curing system and curing mecha-
nism. Physicochemical, rheological, and mechanical prop-
erties of the epoxy-asphalt composite system were
thoroughly studied as well. In this epoxy-asphalt composite
system, the two-component phase separated microstructure
was manifested not only on microscopic morphology and
DSC and TGA curves but also on the rheological and
mechanical behavior of EAM. However, ER played a
dominant role on the performance of EA, which completely
changed the behavior of the asphalt binder from being
thermoplastic to be a thermosetting material for EA. In
terms of mechanical behavior, EAM exhibited dominant
elastic rather than generally observed viscoelastic or visco-
elastic-plastic response for asphalt mixture. 'erefore, EAM
showed strong deformation resistance and brittle failure,
especially at low temperatures. Some detailed conclusions
are as follows:

(1) Properties of EA can be adjusted by carefully
selecting ER, curing agent, asphalt binder, modifier,
and each component proportion

(2) Curing method and curing time have a significant
effect on the chemical reaction within the epoxy-
asphalt composite system, and mixed effects of
asphalt on epoxy curing reaction were reported

(3) Lower activation energy and higher reaction rate
will lead to higher degree of curing, and sulfoxide

compounds are effective indicators for evaluation of
oxidative curing of epoxy-asphalt composite

(4) Phase separation, dispersion of asphalt in contin-
uous epoxy matrix, occurred in epoxy-asphalt
composite after curing reaction and EA will exhibit
phase inversion, dispersion of epoxy in asphalt
matrix, at high asphalt content

(5) Crosslink density of EA dictates its viscosity and
thus the allowable construction time

(6) EA exhibited strong elastic behavior as compared
with conventional neat asphalt and SBA

(7) Glass transition temperature of epoxy-asphalt
composite was closely related to its crosslink density
and thus EA showed lower Tg than ER due to
asphalt mitigation effect on chemical curing

(8) 'e two-stage thermal degradation process of EA
involves minor volatilization of light components of
asphalt and degrading of uncured epoxy, and major
decomposition of large asphalt molecules and epoxy
network

(9) As compared with ER, better damping property,
lower tensile strength, and larger elongation of EA
were attributed to improved flexibility from asphalt

(10) EAM exhibited significantly higher compressive
strength, much better rutting resistance, superior
durability and water resistance, improved noise
reduction, slightly compromised permeability, and
low temperature cracking resistance as compared
conventional asphalt mixture;

(11) Superior fatigue cracking resistance of EAM was
probably due to its brittle fracture nature

Due to the high strength but low elongation for EA, and
high stiffness but low fracture resistance for EAM, it is
recommended to conduct more research on the fracture
behavior of EA and EAM in the future to further understand
its cracking mechanism. Measures to increase its ductility
and thus fracture resistance need to be taken. Meanwhile,
more efforts should be made to develop bio-based EA for
sustainable development and EA that can adapt to con-
struction conditions of asphalt paving and deformation
behavior under loading conditions on pavement layers,
especially on bridge decks. Also, correlation between
microproperties of EA, e.g., curing characteristics and
morphology, and macroproperties of EA and EAM, e.g.,
tensile strength and fracture behavior, need to be estab-
lished. Proper application of EA in paving industry has been
the focus of pavement engineers without paying much at-
tention to the curing mechanism and how the curing be-
havior can be adjusted. 'is needs interdisciplinary
cooperation between pavement engineers and chemical
engineers to retain the high strength of epoxy without
compromising its cracking resistance. Furthermore, nu-
merical experiments/analysis, which can complement tra-
ditional experiments, need to be conducted to understand
the behavior of EA and EAMwithout the tremendous efforts
normally needed for conventional tests. Lastly, EA as a
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composite material, compatibility characterization, factors
affecting compatibility, and effects of compatibility on
rheological and mechanical strength need to be well studied
to produce EA that can be easily adapted to asphalt paving
industry.
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