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'e assamela (afrormosia) whose scientific name is “Pericopsis elata” (Harms), a large tree of great commercial value, is an
exploited species. It is considered “endangered” by the IUCN.” Trees ready for harvesting are scarce because the logging diameter,
which has been set at 100 cm, is very big. 'e studies recommended by the Cameroonian government as part of the ITTO/CITES
project activities should be carried out to determine a new minimum logging diameter as the diameter increases with age. No
credible solution is provided in the scientific literature to compensate for its scarcity of exploitation. Moreover, little or no
information is available for describing the variation of its mechanical properties over time in order to determine the age at which
its woodmechanical properties are good enough to be marketable. It is in this context that this work was undertaken. In this study,
we adopted an experimental approach to evaluate the mechanical properties of this species exploited in southeast Cameroon. We
then studied the variations in these properties as a function of tree age in order to propose leads for their exploitation. 'us, the
compression and bending tests allowed us to estimate the relationship between the mechanical properties in three main directions
of the log (MOE in compression and bending, failure stress in compression and bending, and creep in compression) and age (or
diameter). We also used the 10-hour creep under low axial compressive loading data to implement the theoretical fractional
Maxwell (MF) model, which was compared to the experimental data. For this purpose, after three months of natural drying in the
laboratory, we evaluated the above mechanical properties according to age. 'is study shows that the mechanical properties
change as the diameter increases and change very quickly from 70 cm diameter upwards. From the analysis of the experimental
data, we deduced that the minimum diameter of exploitable trees should be equal to 80 cm corresponding to the age of
about 200 years.

1. Introduction

'e forests of Central Africa are characterized by a signif-
icant specific wealth. Among the species they host, there are
large sun-loving trees exploited for their wood, such as the
assamela (afrormosia) whose scientific name is “Pericopsis
elata” (Harms), a large tree of great commercial value.
Pericopsis elata is a tree species of the Fabaceae family [1],
commercially known as Afrormosia or Assamela. 'is
exploited species is currently suffering from major regen-
eration problems in its natural area in the Congo Basin and,

therefore, considered “endangered” by IUCN (International
Union for the Conservation of Nature) [2].

In Cameroon, the Afrormosia reserves cover an area of
about 4,071,857 ha and are mainly limited in the eastern
region in the basins of the four rivers Dja, Boumba, Ngoko,
and Sangha. Forest units (UFA) cover forty-two percent of
this area.

For logging companies, the minimum exploitable di-
ameter (MED) generally depends on the age of the tree. 'is
diameter has been increased to 100 cm which is a serious
problem for logging companies as they cannot find enough
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good quality resources. Trees of Pericopsis elata with a di-
ameter of about 100 cm are rare and the few that exist have
many heartwood defects. 'is is a major loss of income for
the logging companies and the Cameroonian state, as Per-
icopsis elata wood is harvested almost dead and not alive.
'isminimum exploitable diameter needs to be redefined on
a scientific basis.

To this purpose, on August 26 and September 13, 2013,
the Government of Cameroon and OIBT (International
Organization for Tropical Wood) signed an agreement on
the implementation of two OIBT/CITES (Convention on
International Trade in Endangered Species) program ac-
tivities. Secondly, studies should be carried out to determine
a new minimum diameter to be logged with an average
growth diameter of 0.42± 0.14 cm per year in natural mixed
humid forest [3–5]. Botanical, physical, and mechanical
properties have been determined [5]. No credible solution is
provided in the scientific literature to reduce the scarcity of
exploitation. Moreover, little or no information is available
describing the variation of its mechanical properties over
time in order to determine the age at which its wood me-
chanical properties are good enough to be marketable.

'e objectives of our investigations are the evaluation of
the mechanical properties of Pericopsis elata wood at dif-
ferent stages of growth and the study of the variations of
these properties as a function of the age of the tree in order to
propose leads for their exploitation. In this study, we
adopted an experimental approach to evaluate the me-
chanical properties of this species logged in southeast
Cameroon.

2. Materials and Methods

2.1. Description of the Species. Afrormosia or kokrodua, a
large West African tree, is sometimes used as a substitute for
teak (Tectona grandis). 'e heartwood is fine-textured, with
a straight-to-interlaced grain. 'e wood is brownish yellow
with darker streaks, moderately hard and heavy, weighing
about 740 kg × m− 3 at 12% moisture [5], and has a per-
centage of heartwood of about 88.7% [6]. 'e wood dries
easily without degrading and has good dimensional stability.

Heartwood is highly resistant to fungal decay and ter-
mite attack and is extremely durable under adverse con-
ditions. Pericopsis elata is often used for shipbuilding,
joinery, flooring, furniture, interior trim, and decorative
veneers [7].

2.2. SampleCollection. 'e different logs are cut into boards.
Half of the boards come from live sawn and the other half
from quarter sawn.'is approachmakes it possible to obtain
the characteristics in the three main directions of orthotropy
of wood (Figure 1). On this basis, 20 boards were selected
and sent to the laboratory for the analysis phase.

2.3.Preparationof theSpecimens. 'emachiningmethod for
the 4-point bending specimens met the requirements of NF
B 51-008 [8] and NF B 51-016 [9] standards; compression
(longitudinal, radial, and tangential) specimens complied

with ASTM D143-94 [10]. After almost three months of
natural drying in the laboratory, the specimens were tested at
a relative air humidity of (65± 5)%, for a relative temper-
ature of (23± 2)°C for the entire duration of the tests. Apart
from the fact that the specimens were not tested at the
intended reference humidity (12%), the general test con-
ditions meet the requirements of French standard NF B 51-
003 [11].

2.4. Test Specimen

2.4.1. Test Specimen for Bending. 'e test specimen was
360mm long, had a span length of 320mm, and a cross
section of 20× 20mm2 (Figure 2). To quantify the bending
deflection, two strain gauges were bonded symmetrically to
the specimen and parallel to its axis. 'ey were cabled to
form a Wheatstone half-bridge, as shown in Figure 2(b).
Subsequently, twelve samples were selected for each series of
tests.

After gluing the gauges, we checked the value of the
resistances, reassuring the operation of the free contacts at
the welding points. 'e gauges resistance after cabling, close
to (120.0± 0.1) Ω, must be measured with a rather good
accuracy, compared to typical values (0.02%). 'e gluing of
these gauges was carried out with Alteco 110 glue of Japanese
manufacture. 'e deformations are measured directly by
means of a modern EI 616 DELTALAB strain gauge bridge.
'e use of this bridge allows us to reduce the calculation,
since it displays strains with an accuracy of 1mm/mm.

2.4.2. Test Specimen for Compression. According to ASTM
D143-94, the specimens are of straight prismatic shape, with
a square cross section of 30mm on each side and a length of
100mm in the considered direction of orthotropy (Figure 3).

2.5. Test Methods

2.5.1. Test Descriptions. 'e qualification tests were carried
out on the standardized specimens without defects.

Four-point-bending tests were conducted using a
bending press [12, 13] according to the diagram in Figure 4.
In order to remain within the elastic range, our specimens
were subjected to stresses which were lower than one-third
of the ultimate 4-point bending stress. In this case, our wood
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Figure 1: 'e main directions of orthotropy of wood material.
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Figure 2: (a) Position of the gauges; (b) Wheatstone half-bridge cabling diagram of the gauges.
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Figure 4: Standardized diagram of the experimental 4-point bending device [9].
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material has an elastic behavior in accordance with Hooke’s
law.

'e compression tests were carried out using a hydraulic
press in the three orthotropic directions: axial, radial, and
tangential. 'e specimens were also subjected to stresses in
the elastic range as well as in bending.

2.5.2. Failure Stress and Modulus of Elasticity in Bending.
'e bending stress at failure is the maximum load that a
material can momentarily endure before failure. 'e testing
method, described by the French standard NF B 51-008 [8],
allowed us to determine the 4-point bending strength of
small, flawless specimens.

To determine the flexural modulus of elasticity, the
adopted method consists of measuring the deformation in
the zone of maximum stress of the specimens by means of
resistive strain gauges as described in paragraph (2.4.1.). In
order to remain within the elastic range, we have subjected
our specimens to stresses less than or equal to one-third of
the 4-point bending failure stress. In this case, the modulus
of elasticity is calculated by linear stress (σ)/strain (ε) re-
gression, where the flexural modulus of elasticity (E) rep-
resents the slope of the straight line σ � f(ε), with the square
of the correlation coefficient greater than 0.99 according to
NF EN 408 [14] standard. Hooke’s law is thus applied:

σ � E · ε. (1)

2.5.3. Failure Stress in Axial Compression. 'e compressive
failure stress in one of the three orthotropic directions
expresses the resistance to compression of wood in the
loaded direction. Depending on the sensitivity of our hy-
draulic press, we have opted to conduct our tests with the
ASTM D143-94 standard [10].

2.5.4. Study of the Creep Behavior of Pericopsis elata. We
used Riemann–Liouville derivative and the fractional
Maxwell model to simulate the creep data of the specimen
subjected to a low stress and its parameters. Being a bio-
material, wood presents a variability of mechanical prop-
erties, reason for which we opted for MF modelling before
compared to the experimental data.

(1) Integral and Fractional Riemann–Liouville Derivative.
For an arbitrary real or complex number α (α ∈ R∗+),
Re(α)> 0, the Riemann–Liouville fractional integral
(denoted by R-L) of order α of a function f(t) is defined by

I
α
t f(t) �

1
Γ(α)


t

0
(t − τ)

α− 1
f(τ)dτ, t> 0, α> 0, (2)

where Γ is the Gamma function:

Γ(α) � 
+∞

0
t
α− 1

e
− tdt. (3)

'e same definition can be used for the fractional de-
rivative of order:

D
α
t f(t) � D

n
I
α
t f(t) �

1
Γ(n − α)

dn

dt
n 

t

0
(t − τ)

n− α− 1
f(τ)dτ,

t> 0, α> 0, n − 1≤ α< n,

(4)

where Dn � dn/dtn

(2) Maxwell Fractional Rheological Model. 'e use of frac-
tional derivatives for the mathematical modelling of vis-
coelastic materials is quite normal. For solids, the
relationships between stress and strain are well known
through the Hooke relation:

σ(t) � E · ε(t). (5)

Viscous friction is governed by Newton’s relationship:

σ(t) � η · _ε(t) � η
dε(t)

dt
. (6)

where E and η are, respectively, the modulus of elasticity of
the spring and the viscosity of the viscous damper (Newton
dashpot); σ(t) and ε(t) are stress and strain.

Relations (5) and (6) are not universal laws; they are only
mathematical models for ideal solids and fluids, and they do
not exist in reality. Noting that the stress is proportional to
the zero-order derivative of strain for solids and to the first-
order derivative of strain for fluids, it is normal to assume
that, for intermediate materials, the stress can be propor-
tional to the intermediate-order derivative of strain [15].

Hooke’s elastic element is symbolized by a spring, while
Newton’s viscous element is designated by a damper (Fig-
ure 5). It is practical in rheology to operate with such
representations instead of the corresponding equations.

We call this constitutive relationship (see (7)) with the
fractional derivative and the Scott Blair element, or Abel
damper, as shown in Figure 5:

σ(t) � ηα
dαε(t)

dt
α , 0≤ α≤ 1, (7)

where ηα is the coefficient of viscosity of the spring pot or
Abel dashpot. When stress is a constant, σ(t) � σ, the Abel
dashpot can describe a creep process. According to Rie-
mann–Liouville theory, the relationship (7) can be trans-
formed into (8) by fractional integral [16]:

ε(t) �
σ
ηα

t
α

Γ(1 + α)
, 0≤ α≤ 1, (8)

where α can take different values, resulting in a set of creep
curves described by the Abel damper.

By replacing in the classical Maxwell model the viscous
damper by the spring-pot, we obtain a new fractional
constitutive rheological model (Figure 6), called fractional
Maxwell model (FMM).”

In Figure 6, the total deformation of the MF model is
given by

ε(t) � ε1 + ε2(t) �
σ
E

+
σ
ηα

t
α

Γ(1 + α)
, 0≤ α≤ 1, (9)
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where ε1 � σ/E and ε2(t) � (σ/ηα)(tα/Γ(1 + α)) are, re-
spectively, the deformations induced by the spring and the
spring-pot during a creep test.

In the case of the strain ε2(t), the order of the fractional
derivative can be considered to be a function of time; that is,
α � n(t), 0≤ n(t)≤ 1. 'e constitutive equation of the
spring-pot is written as

σ(t) � ηn(t)d
n(t)ε2(t)

dt
α , 0≤ n(t)≤ 1, tk−1 ≤ t< tk, (10)

where n(t) represents the order of the fractional derivative as
a function of time and ηn(t) the viscosity coefficient of the
corresponding spring pot. When the stress is a constant, we
obtain

ε2(t) � 

p

k�1

σ
ηnk

t − tk− 1( 
nk

Γ 1 + nk( 
, 0≤ n(t) � nk ≤ 1, tk−1 ≤ t< tk,

(11)

where nk represents the value of n(t) at a specific instant of
creep.

From the constitutive equation (9) of the MF model, the
relation (12) is deduced:

ε(t) � ε1 + ε2(t) �
σ
E

+ 

p

k�1

σ
ηnk

t − tk− 1( 
nk

Γ 1 + nk( 
,

0≤ n(t) � nk ≤ 1, tk−1 ≤ t< tk.

(12)

Equation (12) is that of the creep constitutive model,
based on the theory of fractional calculus.

According to (12), the first creep phase has the consti-
tutive equation:

ε(t) � ε1 + ε2(t) �
σ
E

+
σ
ηn1

t
n1

Γ 1 + n1( 
,

0≤ n1 ≤ 1, t0 � 0≤ t< t1,

(13)

where ε1 � ε1(t0) � (σ/E) is the instantaneous elastic strain,
from which we have the constant E:

E �
σ

ε1 t0( 
. (14)

By introducing the decimal logarithm into the two
members of (13), relations (15) and (16) are obtained:

log ε(t) −
σ
E

  � log
σ
ηn1

t
n1

Γ 1 + n1( 
 , 0≤ n1 ≤ 1, 0≤ t< t1,

(15)

log ε(t) − ε t0( (  � n1log(t) − log
ηn1Γ 1 + n1( 

σ
 ,

0≤ n1 ≤ 1, 0≤ t< t1.

(16)

By setting
x � log(t),

y � log ε(t) − ε t0( ( ,
 (17)

(16) is a straight line of the form

y � a1x + b1. (18)

By graphically exploiting the experimental creep data
(Figure 7) in the interval 0≤ t< t1, we can determine the
constants a1 and b1 of (18):

a1 � n1

b1 � −log
ηn1Γ 1 + n1( 

σ
 

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

⇒

n1 � a1

ηn1 �
σ

Γ 1 + n1( 
10−b1

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(19)

By the same process in the interval t1 ≤ t≤ t2, relation
(12) allows to express the constitutive equation in the second
phase of creep:

ε(t) �
σ
E

+
σ
ηn1

t
n1
1

Γ 1 + n1( 
+

σ
ηn2

t − t1( 
n2

Γ 1 + n2( 
,

0≤ n2 ≤ 1, t1 ≤ t< t2.

(20)

By introducing the decimal logarithm into the two
members of (see (20)), one obtains

log ε(t) − ε t1( (  � n2log t − t1(  − log
ηn2Γ 1 + n2( 

σ
 ,

0≤ n2 ≤ 1, t1 ≤ t< t2,

(21)

where ε(t1) � (σ/E) + (σ/ηn1)(t
n1
1 /Γ(1 + n1)).

By considering

x � log t − t1( ,

y � log ε(t) − ε t1( ( ,
 (22)

σ σ

τE = η

(a)
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ταE = ηα

(b)

Figure 5: (a) Newton dashpot and (b) spring-pot or Abel dashpot.
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ε (t) = ε1 + ε2 (t)
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Figure 6: Fractional Maxwell rheological model (MF).
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(21) is a straight line of the form

y � a2x + b2. (23)

Experimental creep data in the interval t1 ≤ t< t2 (Fig-
ure 8) allows us to determine the constants a2 and b2 of (23):

n2 � a2,

ηn2 �
σ

Γ 1 + n2( 
10− b2 .

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(24)

3. Results and Discussion

3.1. Failure Stress in Bending. Tables 1 and 2 summarize the
failure stresses in 4-point bending for each diameter range.
'e hygroscopy of the wood material requires for a correct
interpretation of the different results, to always indicate the
humidity during the test. For this reason, in both tables, the
failure stress (σuH) of each specimen is accompanied by its
moisture content (H) during the test and the failure stress
(σu12) at 12% moisture content.

'e curve in Figure 9, which accompanies these two
tables, shows that the average failure stress is an increasing
function of the different diameter ranges. 'is curve in-
creases very quickly from the 70 cm diameter. Starting at
78 cm diameter, we note that our results are significantly
better than those in the literature from 93 to 103MPa
[17, 18].

3.2. Modulus of Elasticity. Table 3 summarizes the different
MOE (modulus of elasticity) in 4-point bending by diameter
range.

Figure 10 shows sample linear regression curves (stress/
strain) used for the calculation of the MOE.

'e curve in Figure 11 shows the evolution of the MOE
as a function of the different diameter. We can see here that
the MOE increases very quickly from diameter 70 cm.'is is
more justified by the results of the study of the physical
properties per diameter [6].

Looking at the results in Table 3, we see that, at 85 cm
diameter, for an average moisture content of 11.98% during
the test, the average value of theMOE found at 12%moisture
is 10,511.59MPa. Since this result is not very far from one of
the results in the literature, which is 10,600MPa at 12%
humidity [17], this result may be another strong argument

that could lead decision-makers to revise the logging di-
ameter downwards.

3.3. Compressive Failure Stress

3.3.1. Axial Compressive Failure Stress. Tables 4 and 5 show
the axial compressive failure stresses for the four diameter
classes under consideration. It is noted here that the stress
increases with diameter, which can be justified by the results
obtained at the end of the physical characterization of
Pericopsis elata by diameter [6].

Figure 12, which accompanies these tables, shows the
shape of the variation of the average failure stresses per
diameter. We note here that the axial failure stress increases
with the diameter and very quickly from 70 cm.

'e axial tensile stress for diameters 54, 70, 78, and
85 cm, at 12 % humidity, being, respectively, 66.81, 67.76,
70.15, and 81.67MPa. A comparison with the literature
(64MPa) [17, 18] reinforces the interest of this character-
ization by diameter.

3.3.2. Radial Compressive Failure Stress. Looking at the
results in Tables 6 and 7, it can also be seen that the radial
failure stress also increases with diameter. 'e average
values by diameter, of the various radial failure stresses are
much lower than those of the axial stresses. In his work,
Guitard (1987) [19] had already noted the significant
difference between fracture stresses in the two orthotropic
directions.

Here, we notice a clear difference between the shapes of
the curves in this radial direction (Figure 13) and those of the
axial direction. Between the diameters 70 cm and 80 cm, the
curve grows slower than in the axial direction.

3.3.3. Tangential Compressive Failure Stress. As in the
previous two directions, the results in the tangential di-
rection (Tables 8 and 9) also reveal that the failure stress
increases with the diameter.

In analyzing the results in the three orthotropic di-
rections, it can be seen that the order of magnitude of the
failure stresses corroborates that established by Guitard
(1987) [19].
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Figure 14 shows the variation in failure stresses in the
tangential direction as a function of diameter. Here, a
similarity between the radial (Figure 13) and tangential
(Figure 14) directions can be seen.

As in the case of bending, we note that in compression,
the literature underestimates the value of the breaking stress
of Pericopsis elata. 'is factor is related to the variation in
diameter not being taken into account during the various
characterizations. An overall analysis of these results in the
three orthotropy directions reveals that the order of mag-
nitude of the failure stresses corroborates that established by
the literature, illustrating the degree of anisotropy of the
woodmaterial. Nevertheless, it would be interesting to verify
the consistency of these mechanical results in other regions
in Cameroon.

3.4. Creep Behavior

3.4.1. Networks of Ten-Hour Creep Test Curves.
Figures 15 and 16 show the networks of curves for 10 hours
of creep for specimens Ø54 and Ø70 under a load of
16.1865MPa.

An analysis of these two networks of curves shows
that although the specimens in the same network are

Table 1: Failure stresses in 4-point bending, diameters 54 cm and 70 cm.

Specimen
AF(Ø54) AF(Ø70)

σuH (MPa) σu12 (MPa) H (%) σuH (MPa) σu12 (MPa) H (%)
1 81.25 80.29 11.70 88.38 89.40 12.29
2 71.27 68.14 10.90 85.53 80.88 10.64
3 78.40 74.15 10.64 92.66 91.20 11.61
4 71.27 71.49 12.08 99.78 96.47 11.17
5 71.27 67.37 10.63 99.78 102.60 12.71
6 85.53 91.80 13.83 92.66 88.60 10.91
7 88.38 79.65 11.61 92.66 88.96 11.00
8 85.53 77.96 10.58 92.66 89.86 11.24
9 69.85 76.05 10.74 85.53 50.96 12.41
10 78.40 90.86 11.92 92.66 91.44 11.67
11 82.68 85.63 11.86 89.81 97.29 11.61
12 65.57 66.73 11.40 98.36 84.68 11.80
Average 77.45 77.51 11.49 92.54 87.70 11.59
Standard deviation 7.43 8.62 0.92 4.88 12.91 0.64

Table 2: Failure stresses in 4-point bending, diameters 78 cm and 85 cm.

Specimen
AF(Ø78) AF(Ø85)

σuH (MPa) σu12 (MPa) H (%) σuH (MPa) σu12 (MPa) H (%)
1 106.91 108.62 12.40 128.29 123.24 11.01
2 114.04 119.36 13.17 121.17 117.51 11.25
3 106.91 104.37 11.41 121.17 126.41 13.08
4 111.19 107.24 11.11 136.85 138.81 12.36
5 114.04 110.31 11.18 128.29 128.07 11.96
6 99.78 97.18 11.35 121.17 117.15 11.17
7 99.78 103.69 12.98 128.29 135.70 13.44
8 114.04 116.36 12.51 121.17 114.61 10.65
9 99.78 99.76 11.99 145.40 142.21 11.45
10 99.78 96.47 11.17 135.42 132.34 11.43
11 112.61 112.51 11.98 128.29 132.67 12.85
12 114.04 112.70 11.71 118.32 123.49 13.09
Average 107.74 107.38 11.91 127.82 127.68 11.98
Standard deviation 6.39 7.34 0.72 8.07 8.89 0.95
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Figure 9: Variation curve of failure stress in 4-point bending per
diameter range.
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Table 3: Modulus of elasticity per diameter range.

Specimen Ø54 cm Ø70 cm Ø78 cm Ø85 cm
MOE (MPa) MOE (MPa) MOE (MPa) MOE (MPa)

1 7122.7 8120.4 9595.4 10087
2 6608 8489.1 8963.7 10970
3 6809.3 7969.2 8534.1 10244
4 6957.2 7219.5 8524.4 11033
5 5824 8029.6 8709.2 10187
6 7131.4 8231.5 9685.8 11046
7 7137.2 8532.9 9036.9 10210
8 6707.4 8059.6 8617.5 10303
9 6905.4 7306.7 8617.3 10581
10 7017.4 8136.5 8802.8 10380
11 5973.3 8306.5 8912.1 10693
12 7147.4 8231.8 9805.7 10443
Average 6778.39 8052.78 8983.74 10514.75
Standard deviation 447.96 406.69 461.29 346.27
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Figure 10: (a, b, c, and d): Samples of linear regression curves used to calculate the MOE.
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from the same log; there is a difference in the instan-
taneous elastic deformations for the same level of stress.
'is proves the complexity in the behavior of the wood
material. 'is difference may be due to the extraction
zone of the specimens on the log and the method of
loading the specimen which is not yet automated in the
laboratory.

3.4.2. Fractional Maxwell Model. We used the fractional
Maxwell model to simulate the creep data of the AF11(Ø54)
specimen subjected to a low stress of 16.1865MPa, for a
loading time of 10 hours (Figure 17).

On the strain speed curve (Figure 7), the time t1 corre-
sponds to the instant at which the deformation speed becomes
constant. For the specimen under consideration, t1 � 55min.

Table 4: Failure stresses in axial compression, diameter 54 cm and 70 cm.

Specimen
ACL(Ø54) ACL(Ø70)

σuH (MPa) σu12 (MPa) H (%) σuH (MPa) σu12 (MPa) H (%)
1 68.42 68.11 11.89 68.42 66.40 11.26
2 66.71 66.76 12.02 68.42 66.87 11.43
3 68.42 68.38 11.99 71.84 70.30 11.46
4 68.42 67.62 11.71 70.13 69.18 11.66
5 66.71 65.96 11.72 68.42 66.63 11.35
6 66.71 65.71 11.63 68.42 66.83 11.42
7 66.71 66.17 11.80 70.13 68.47 11.41
8 68.42 67.79 11.77 68.42 66.85 11.43
9 66.71 66.05 11.75 68.42 66.41 11.27
10 66.71 64.99 11.36 66.71 65.16 11.42
11 68.42 67.61 11.70 71.84 70.49 11.53
12 68.42 66.60 11.34 71.84 69.54 11.20
Average 67.56 66.81 11.72 69.41 67.76 11.40
Standard deviation 0.89 1.07 0.21 1.70 1.75 0.13

Table 5: Failure stresses in axial compression, diameter 78 cm and 85 cm.

Specimen
ACL(Ø78) ACL(Ø85)

σuH (MPa) σu12MPa) H (%) σuH (MPa) σu12 (MPa) H (%)
1 71.84 71.33 11.82 83.81 82.10 11.49
2 71.84 71.53 11.89 88.94 86.67 11.36
3 71.84 69.92 11.33 83.81 83.77 11.99
4 71.84 69.27 11.10 88.94 84.61 10.78
5 71.84 71.05 11.73 88.94 86.72 11.38
6 71.84 69.80 11.29 76.97 77.11 12.05
7 70.13 68.86 11.55 88.94 85.41 11.01
8 70.13 69.38 11.73 78.68 78.55 11.96
9 71.84 71.13 11.75 83.81 85.51 12.51
10 70.13 68.96 11.58 76.97 77.51 12.18
11 70.13 69.80 11.88 75.26 75.98 12.24
12 71.84 70.84 11.65 76.97 76.16 11.74
Average 71.27 70.15 11.61 82.67 81.67 11.72
Standard deviation 0.84 0.97 0.25 5.47 4.30 0.52
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Figure 11: Variation curve of the 4-point bending modulus of elasticity as a function of diameter.
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Table 6: Failure stresses in radial compression, diameter 54 cm and 70 cm.

Specimen
ACR(Ø54) ACR(Ø70)

σuH (MPa) σu12 (MPa) H (%) σuH (MPa) σu12 (MPa) H (%)
1 23.09 23.61 12.56 23.52 24.04 12.55
2 21.38 21.89 12.59 24.37 24.99 12.63
3 23.09 24.06 13.05 23.26 23.56 12.32
4 23.09 22.89 11.79 23.69 24.10 12.44
5 23.09 23.54 12.48 24.80 25.59 12.79
6 23.09 23.41 12.35 24.54 25.19 12.65
7 22.24 22.96 12.82 24.80 24.47 11.67
8 23.09 23.28 12.21 24.80 25.43 12.63
9 22.24 22.79 12.62 24.72 25.28 12.57
10 22.24 22.60 12.40 23.95 23.70 11.75
11 23.52 24.36 12.89 24.80 24.47 11.67
12 23.09 23.67 12.63 24.80 25.11 12.31
Average 22.77 23.25 12.53 24.34 24.66 12.33
Standard deviation 0.61 0.67 0.33 0.58 0.69 0.41

Table 7: Failure stresses in radial compression, diameter 78 cm and 85 cm.

Specimen
ACR(Ø78) ACR(Ø85)

σuH (MPa) σu12 (MPa) H (%) σuH (MPa) σu12 (MPa) H (%)
1 27.16 26.82 11.69 31.64 32.41 12.60
2 27.20 27.24 12.04 28.22 28.96 12.66
3 26.43 26.42 12.00 29.93 30.78 12.70
4 26.77 27.48 12.67 31.81 32.46 12.51
5 26.34 26.74 12.38 29.93 32.52 14.16
6 27.02 26.79 11.78 28.51 29.26 12.65
7 25.74 26.44 12.68 31.64 32.30 12.52
8 26.25 26.71 12.44 28.74 28.74 12.01
9 25.91 26.33 12.40 29.08 29.44 12.31
10 27.02 26.82 11.81 28.65 29.23 12.51
11 26.94 26.77 11.84 28.82 29.67 12.74
12 27.20 27.91 12.66 29.93 30.74 12.68
Average 26.67 26.87 12.20 29.74 30.54 12.67
Standard deviation 0.51 0.46 0.38 1.31 1.52 0.51
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Figure 12: Curve of mean compressive failure stresses as a function of diameter in axial direction.
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Table 8: Tangential compressive failure stresses, diameters 54 cm and 70 cm.

Specimen
ACT(Ø54) ACT(Ø70)

σuH (MPa) σu12 (MPa) H (%) σuH (MPa) σu12 (MPa) H (%)
1 18.81 19.95 13.51 22.24 24.08 14.07
2 20.10 21.50 13.74 20.53 21.69 13.42
3 18.81 19.68 13.15 21.38 22.57 13.39
4 18.81 19.99 13.56 20.53 21.49 13.18
5 20.10 21.13 13.28 23.09 24.48 13.50
6 17.45 18.39 13.36 20.10 21.15 13.31
7 17.96 19.12 13.62 22.24 23.49 13.41
8 17.10 18.14 13.51 21.38 22.55 13.37
9 17.62 18.85 13.75 20.95 22.47 13.81
10 17.96 18.93 13.36 20.10 21.42 13.65
11 19.79 21.01 13.54 20.53 21.90 13.68
12 17.10 17.92 13.20 20.53 21.65 13.37
Average 18.47 19.55 13.47 21.13 22.41 13.51
Standard deviation 1.10 1.20 0.20 0.96 1.09 0.25

Table 9: Tangential compressive failure stresses, diameters 78 cm and 85 cm.

Specimen
ACT(Ø78) ACT(Ø85)

σuH (MPa) σu12 (MPa) H (%) σuH (MPa) σu12 (MPa) H (%)
1 23.52 24.94 13.51 29.93 30.88 12.80
2 23.95 24.47 12.55 29.08 29.82 12.64
3 23.95 25.22 13.33 28.22 29.01 12.70
4 24.80 25.85 13.06 28.22 29.12 12.80
5 23.95 25.44 13.56 26.51 28.36 13.74
6 24.37 25.62 13.28 27.37 28.17 12.73
7 23.52 24.79 13.36 25.66 26.13 12.46
8 23.95 25.30 13.41 28.22 28.58 12.31
9 24.37 25.63 13.29 25.66 26.24 12.57
10 23.52 25.16 13.75 26.94 27.30 12.33
11 22.24 23.44 13.36 28.22 28.79 12.51
12 23.95 24.67 12.76 26.51 27.31 12.76
Average 23.84 25.05 13.27 27.54 28.31 12.70
Standard deviation 0.63 0.65 0.34 1.33 1.40 0.37
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Figure 13: 'e curve of mean compressive failure stresses as a function of diameter in radial direction.
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It can be deduced from the linear regression in (Fig-
ure 18) and (19) that the values of the constants n1 and ηn1

can be easily determined.
From the linear regression in Figure 8 and (24), one can

easily deduce the values of the constants n2 and ηn2 .
Table 10 summarizes the MF parameters used to plot the

creep prediction curve.
Figure 19 shows the theoretical (MF) creep curve

according to the parameters in Table 10. As shown in this
figure, the fractional order variable of the Maxwell consti-
tutive model has good compatibility with the experimental
data. 'e divergence observed from time t � 335min be-
tween the experimental curve and the MF prediction curve
reflects the nonlinearity in the behavior of the AF11(Ø54)
specimen from this instant.

Table 11 summarizes the set of 10-hour creep param-
eters per diameter of the MF model,
under σ � 16.1865MPa of stress. Overall, we note that the
MF model’s MOE is an increasing function of the diameter
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Figure 16: Network of 10-hour creep curves of Ø70 specimens
under a load of 16.1865MPa.
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Figure 18: Logarithmic linear regression curve of creep in the
interval 0≤ t< t1.

Table 10: MF parameters for specimen creep AF11(Ø54) under
σ � 16.1865MPa.

E (MPa)
Interval 0≤ t< t1 Interval t1 ≤ t≤ t2

n1 ηn1(MPa · minn1 ) n2 ηn2(MPa · minn2 )

5695.461 0.311 4.538 × 105 0.785 1.943 × 107
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Figure 14: 'e curve of mean compressive failure stresses as a
function of diameter in radial direction.
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Figure 15: Network of 10-hour creep curves of Ø54 specimens
under a load of 16.1865MPa.
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Figure 17: 10-hour creep curves of Ø54 specimens under a load of
16.1865MPa.
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of Pericopsis elata. 'e other parameters, however, do not
obey this behavioral logic.

4. Conclusion

'is work was focused on the “variation of the mechanical
properties of Pericopsis elata with respect to the age (di-
ameter).” 'e general objective of this work was to study
the mechanical characteristics of Pericopsis elata wood at
different stages of growth in production forests. 'e results
of the mechanical properties of this wood as a function of
diameter (age), which to date had not yet been the subject
of a specific study, proved to be very edifying and followed
the same evolution logic as the physical properties [6].
Indeed, in both 4-point bending and compression tests, the
results of failure stresses and moduli of elasticity revealed
that these could lead decision-makers to revise the Mini-
mum Operating Diameter downwards. An overall analysis

of these results in the three orthotropic directions reveals
that the orders of magnitude of the ultimate stresses and
modulus of elasticity corroborate with those established in
the literature, proving that the tests went well. Being a
biomaterial, this wood presents a variability of mechanical
properties, reason for which we opted for MF. 'e mod-
elling of creep by the MF rheological model is in agreement
with the experimental data; this is for stresses less than or
equal to σ0 � 10.5MPa. In general, we noticed an in-
creasing evolution of these different properties with the
diameter of the logs. From the 78 cm diameter, the studied
properties increase strongly with the diameter (age). 'is
allows us to confirm that this species can be exploited for
diameters close to 80 cm or for trees approximately
200 years old [6]. Given the importance and scope of our
study, there could be a problem of overexploitation of
Pericopsis elata. To limit this new problem, we recommend
that logging companies ensure the perennity of this species

Table 11: Summary of 10-hour MF creep parameters per diameter.

Diameter (cm) Specimen E (MPa)
Interval 0≤ t< t1 Interval t1 ≤ t≤ t2

n1 ηn1(MPa × minn1 ) × 105 n2 ηn2(MPa × minn2 ) × 107

AF(Ø54)

3 6758.455 0.293 5.463 0.732 1.792
4 6325.322 0.283 3.997 0.757 1.927
7 6175.696 0.293 5.112 0.743 1.467
10 6511.062 0.334 8.836 0.705 1.559
11 5695.461 0.311 4.538 0.785 1.943

AF(Ø70)

1 7472.992 0.338 9.811 0.886 5.714
2 8288.018 0.293 7.710 0.811 4.164
6 7442.069 0.135 3.492 0.592 3.491
8 6769.762 0.310 7.786 0.745 2.245
12 7528.605 0.264 5.429 0.834 4.656

AF(Ø78)
5 8903.465 0.318 9.363 0.651 2.207
17 7802.354 0.225 7.243 0.771 2.243
19 8712.340 0.327 8.205 0.642 3.408

AF(Ø85)
13 9394.370 0.215 9.255 0.869 6.669
21 8784.541 0.301 8.354 0.757 5.437
22 9496.481 0.241 7.865 0.845 5.417
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Figure 19: Experimental and MF prediction creep curves of specimen AF11(Ø54).
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by strictly adhering to Cameroon’s forestry code, which
recommends that they replant woody species with high
commercial value.
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