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Steel-concrete composite beams with corrugated steel webs (CSWs) usually have concrete flanges that are prone to crack under
tension, and an innovative posttensioned composite beam (IPCB) with CSWs has been proposed previously to overcome this
shortcoming. Here, an IPCB with CSWs is manufactured and submitted to a flexural test to investigate its flexural behavior, based on
which finite element (FE) models with different parameters are developed and analyzed using the ANSYS software.-e effects of the
span-to-depth ratio, concrete compressive strength, initial effective prestress, width of the upper concrete flange, and yield strength of
the steel tubes on the flexural behavior of the IPCBs with CSWs are discussed. Numerical results show that the span-to-depth ratio
of the beam and the yield strength of the steel tube have a considerable effect on the ultimate load-carrying capacity of the IPCB,
which increases by 48.2% when the depth of the CSWs is increased from 240 to 400mm and by 21.8% when the yield strength of the
steel tubes is increased from 295 to 395MPa. -e plane-section assumption is unsuitable for IPCBs. Almost all the unbonded
posttensioning strands in the beams yield for the specimens at ultimate state. -e normal stress is distributed unevenly across the
width of the upper concrete flange, and the maximum shear lag coefficient is 1.17. Based on the numerical results, a calculation
method is established to evaluate the bending moment resistance of an IPCB with CSWs. Comparison shows that the theoretical
results in accordance with the proposed method agree well with the numerical results.

1. Introduction

Bridge engineering has seen the widespread use of steel-
concrete composite beams with corrugated steel webs
(CSWs), which have the advantages of low deadweight and
good load-carrying capacity. Moreover, compared with
steel-concrete composite beams with flat steel webs, those
with CSWs are more effective for transferring prestressing to
the concrete components because the longitudinal stiffness
of CSWs is significantly lower than that of flat steel webs.
-erefore, the flexural behavior of composite beam with
CSWs has been investigated worldwide. Elgaaly et al. [1, 2]
investigated experimentally and numerically the flexural
behavior of girders with CSWs and found that the contri-
bution of CSWs to the moment carrying capacity can be

neglected. Chan et al. [3] conducted finite element (FE)
analysis and found that beams with vertical corrugation
webs gave a significant enhancement in strength compared
with those applied horizontal corrugation and plane webs.
Kövesdi et al. [4] developed numerical models to investigate
the stress distribution and tendency of additional normal
stresses in the flanges of girders with CSWs, and they
proposed an enhanced design method to predict the max-
imal transverse bending moment in the most unfavorable
case. Inaam and Upadhyay [5] established an empirical
equation to determine the ultimate moment resistance of
slender flanges for corrugated girders based on numerical
results. Mo et al. [6] carried out cyclic flexural tests on
prestressed concrete (PC) bridges with CSWs, and their test
results showed that specimen failure initiated from crushing
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of the concrete of the upper flange in themidspan. Mori et al.
[7] studied numerically the stress distribution of CSWs in
PC bridges, and their results showed that stress concen-
tration occurred near the connections between the steel
flanges and webs. Liu et al. [8] investigated the flexural
behavior of PC girders with CSWs and proposed a way to
predict the strength and deformation of the beams. Chen
et al. [9] studied numerically and experimentally the be-
havior of PC bridges with CSWs and revealed that the lo-
calized flange plastic hinge is the dominant factor that
determines the full-range structural behavior of the bridge.
Chen et al. [10, 11] proposed a new type of composite box
girder with CSWs and trusses, and their experimental results
showed that this type of composite beam has higher yield
load and smaller deflection compared with those without
concrete-filled steel tubes. He et al. [12] investigated the
static and dynamic behavior of a prefabricated composite
box girder with CSWs and concrete-filled steel tube slabs,
and it is revealed that the girder possessed a sufficient safety
margin. Due to the accordion effect of CSWs, the classical
beam theory cannot be used to evaluate the behavior of
beams with CSWs properly. As a result, some researchers
have proposed different assessment methods for the me-
chanical performance of composite beams with CSWs. Kato
et al. [13, 14] considered the shear deformation of CSWs and
proposed a practical method for calculating the displace-
ment and section force of composite beam bridges with
CSWs. Machimdamrong et al. [15] established an elastic
shear deformable beam bending theory (G3 theory) for
composite PC girders with CSWs. Bariant et al. [16] pro-
posed the elasto-plastic G3 theory to predict the perfor-
mance of PC girders with CSWs by accounting for the
inelastic properties of the CSWs. Chen et al. [17] developed
an extended sandwich theory for PC bridges with CSWs that
considered the sectional characteristics as well as the effects
of diaphragms. -e finite element method proposed by Xin
et al. [18] could provide reference for the fatigue life eval-
uation of composite beams with CSWs also.

Although conventional composite beams with CSWs
have superior properties, their concrete flanges are still
prone to crack in the tension zone under bending moment,
thereby affecting adversely the safety and durability of the
structure. Given these problems, Chen et al. [19] proposed
an innovative posttensioned composite beam (IPCB) with
CSWs, in which concrete-filled steel tubes replace the lower
concrete flanges and unbonded posttensioning strands
(UPSs) are arranged in the steel tubes. -e IPCB with CSWs
is shown schematically in Figure 1. In the present study, a
reduced-scale IPCB was subjected to a flexural experiment,
and FE models were developed to investigate the flexural
behavior of IPCBs.

2. Flexural Experiment

2.1. Experimental Design. An IPCB with CSWs was
designed, fabricated, and subjected to a four-point bending
test under monotonic loading. Its dimensions are shown in
Figure 2. -e clear span was 6000mm, the upper concrete
flange was 900mmwide and 80mm thick, and the top flange

of the steel girder was 680mm wide and 6mm thick. -e
lower concrete-filled steel tube was 180mm wide and
100mm thick, and the wall thickness was 4mm. In each steel
tube was arranged a UPS with a diameter of 15.2mm. -e
ultimate strength fptk of the UPS was 1860MPa, and the
initial effective prestress was taken as 0.6fptk (1116MPa).
-e CSWs and the stiffeners were 4 and 8mm thick, re-
spectively, and the detailed dimensions of the corrugation
profile are shown in Figure 2(c). -e average compressive
strength of the concrete from three prism specimens
(100mm× 100mm× 300mm) was 49.8MPa. Meanwhile,
the material properties of the steel are listed in Table 1.

During the test, the load was applied by a hydraulic jack
with a maximum loading capacity of 1500 kN. Wedge-type
anchorages were used to anchor the UPSs, and load cells
were installed between the anchorages and the beam ends to
monitor the internal force variation of the strands. -e
arrangement of the strain measuring points and displace-
ment meters is shown in Figure 2(a). -e monotonic load
was distributed to two symmetrical points, and the test
ended once the applied load had decreased to being 0.85
times the ultimate load in the declining stage of the load-
carrying capacity.

2.2. Observations. During the initial loading stage, no
phenomena were observed. As the applied load was in-
creased from 200 to 240 kN, the tested beam was heard to
rattle. When the load reached 586.5 kN, the bottom of the
steel tube at the midspan section yielded. Afterward, mid-
span deflection increased rapidly with increasing load. At the
ultimate load of 962.3 kN, the upper concrete flange slab in
the midspan began to be crushed, and the top flange of the
steel girder near the crushed concrete flange buckled locally.
Finally, the test ended because of the severe damage to the
concrete flange. Figure 3 shows the final failure mode of the
specimen, which was typical flexural failure. Buckling failure
of the CSWs and tubes was not observed, nor was (i) fracture
of the UPSs or (ii) connection failure at the interface between
the CSWs and the flanges.

2.3. Load-Carrying Capacity and Deformability. Figure 4
shows the relationship between the applied load and the
midspan deflection of the specimen, where Py and Pu are the
yield and ultimate loads, respectively. As can be seen, the
deflection increased linearly with the applied load at the
initial loading stage. When the load approached 586.5 kN,
the bottom surface of the steel tubes near the midspan
yielded, and the composite beam gradually became less stiff
and entered the elastic-plastic working stage. -e ultimate
load was of the tested beam 962.3 kN, and the corresponding
midspan deflection was 76.1mm. At this time, the upper
concrete flange was crushed locally and the load-carrying
capacity dropped rapidly to 817.2 kN.

2.4. Internal Force of UPSs. Figure 4 also illustrates the
development of the average internal force of the UPSs in the
steel tubes. As can be seen, the internal force increased
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linearly with the midspan deflection in the initial loading
process. Afterward, the growth rate of the internal force
decreased after the internal force reached 210.0 kN. When

the ultimate load was reached, the internal force for the UPSs
was only 219.7 kN, which was less than the ultimate tensile
force of 260.4 kN.

3. Finite Element Modeling and Analysis

3.1. Details of FE Beam Model. -e commercial software
ANSYS was used to develop an FE model (hereinafter re-
ferred to as model S0) with the same design parameters as
those of the tested beam. -e eight-node solid element
SOLID65 was used to simulate the concrete, the SHELL181
element was used to simulate the steel webs, flange, tubes,
and stiffeners, and the LINK element was used to simulate

Unbonded posttensioning strands

Sway bracing

Concrete flange

Corrugated steel web

Concrete-filled steel tube

Figure 1: Schematic diagram of innovative posttensioned composite beam (IPCB) with corrugated steel webs (CSWs).
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Figure 2: Design of the test specimen. (a) Dimensions and geometry of beam. (b) Sections A-A and B-B. (c) Details of corrugation profile.

Table 1: Material properties of steel.

Material
Yield

strength
(MPa)

Ultimate tensile
strength (MPa)

Elongation
(%)

CSW 375 550 30.0
Top flange of
steel girder 380 540 31.0

Steel tube 396 535 30.0
Stiffener 365 545 30.5

Advances in Materials Science and Engineering 3



the reinforcement and UPSs. To avoid stress concentration,
steel plates were established at the supports and loading
points. Given the lack of bonding force between the UPSs
and the concrete, the adjacent element nodes of the strands
and concrete were coupled with each other in the beam
width and beam depth direction, while their movements in
the beam span direction retained freedom. -e effective
prestress was applied to the UPSs by setting the initial strain
as a constant.

3.2. Constitutive Laws. In the model, the concrete was treated
as an isotropic and homogeneous material, and its stress-strain
constitutive relationship (σ − ε) was given by equations (1)–(4)
in accordance with the Chinese code for the design of concrete
structures [20], where εc is the strain corresponding to the
concrete compressive strength fc, n and αc are the constants
defined by equations (2) and (4), respectively, and Ec is the
elastic modulus of the concrete. -e multilinear isotropic
(MISO) hardeningmodel was used to input the constitutive law
of concrete. Because the negative slope of the constitutive curve
can lead to calculation convergence difficulties, the descending
stage of the curve for concrete was substituted by a horizontal
line. -e ultimate compressive strain of concrete was taken as

0.0033. For the steel, the bilinear kinematic (BKIN) hardening
model was used to simulate the constitutive relationship. For the
first linear stage, the slopewas taken as elasticmodulusEs, while
for the second linear stage, the slope was taken as 0.01Es. -e
multilinear kinematic (MKIN) hardening model was used for
theUPSs, and the stress-strain relationship (σp − εp) is given by
equations (5) and (6) according to [21], where σ0.2 and Ep are
the nominal yield strength and the elastic modulus of the UPSs,
respectively:

σ �

nfcε
εc n − 1 + ε/εc( 􏼁

n
􏼂 􏼃

, ε≤ εc,

fcε
εc αc ε/εc − 1( 􏼁

2
+ ε/εc􏽨 􏽩

, ε> εc,

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(1)

n �
Ecεc

Ecεc − fc

, (2)

εc � 700 + 172
��

fc

􏽱

􏼒 􏼓 × 10− 6
, (3)

αc � 0.157f
0.785
c − 0.905, (4)

εp �
σp

Ep

+ 0.002
σp

σ0.2
􏼠 􏼡

13.5

, (5)

σ0.2 � 0.85fptk. (6)

3.3. Loading Steps and Failure Criteria. -e load was applied
as a constant displacement on the two loading points during
the analysis. -e strain distribution and the vertical midspan
deflection of the beams were monitored. Once the total
normal strain on the top surface of the concrete flange slab
reached 0.0033, flexural failure was deemed to have
occurred.

3.4. Validation. Figure 5 shows the distribution of total
normal strain in the FE model S0 along the beam span at
final failure. As can be seen, the strain of the upper concrete
flange in the pure flexural region was larger than that in the
flexure-shear region. -e maximum strain appeared mainly
near the loading points, which withstood the combined
action of shear and flexure. Comparison of Figures 3 and 5
showed that the FE model S0 had the same failure mode as
the tested IPCB. Figures 6 and 7 illustrate the comparison of
the experimental curves and the numerical results. As can be
seen, the curves agree well with each other. In general, the
proposed modeling method can be used to evaluate the
flexural behavior of IPCBs.

3.5. Parametric Analysis. FE models were built to evaluate
how the flexural behavior of an IPCB is influenced by (i)
the span-to-depth ratio, (ii) the concrete compressive
strength, (iii) the initial effective prestress, (iv) the width

Concrete crushing

Figure 3: Failure mode of tested beam.
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Figure 4: Experimental results.
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of the upper concrete flange, and (v) the yield strength of
the steel tubes. -e designs of the FE models are listed in
Table 2, where b is the width of the upper concrete flange,
hw is the CSW depth, l is the total length of the beam, σpe is
the initial effective prestress of the UPSs, and fy is the
yield strength of the steel tubes.

-e models were established and analyzed using the
FE method proposed above, and the main numerical
results are listed in Table 3, where Py and Pu are the yield
and ultimate loads, respectively, of the beam, and Δy

and Δu are the midspan deflections corresponding to Py

and Pu, respectively. -e effects of different parameters
on the flexural behavior of the IPCBs were discussed as
follows.

Figure 8 shows the load versus the midspan deflection of
the IPCBs with different span-to-depth ratios. As shown in
Figure 8(a), the ultimate load-carrying capacity of S2 was
627.6 kN, and those of S1 and S3 were greater by 23.3% and
48.2%, respectively. -is indicates that the bending moment
resistance of the IPCBs increased with increasing CSW
depth when the beam span was kept constant. According to
Figure 8(b), the ultimate load-carrying capacity of S1 was
1.40 and 1.83 times those of S4 and S5, respectively. In
general, the ultimate load-carrying capacity of the IPCBs
tended to decrease with increasing span-to-depth ratio,
while the deformability presented the opposite trend.

According to Figure 9, the yield strength of the steel
tubes is one of the main factors affecting the ultimate load-
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Figure 5: Failure mode of FE model S0.
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carrying capacity of an IPCB. It can be found that the curves
of load versus midspan deflection for the three specimens
overlapped approximately at the initial loading stage. With
increasing load, the steel tubes of S12 yielded first, causing a

notable decrease in beam stiffness and a rapid increase in
midspan deflection. At the later loading stage, the curves of
load versus midspan deflection were parallel to each other.
-e ultimate load-carrying capacities of S13 and S1

Table 2: Details of FE models in parametric analysis.

Model ID b (mm) hw (mm) l (mm) fc (MPa) σpe (MPa) fy (MPa)

S1 900 320 6200 32.4 1116 345
S2 900 240 6200 32.4 1116 345
S3 900 400 6200 32.4 1116 345
S4 900 320 8080 32.4 1116 345
S5 900 320 9960 32.4 1116 345
S6 900 320 6200 29.6 1116 345
S7 900 320 6200 38.5 1116 345
S8 900 320 6200 32.4 930 345
S9 900 320 6200 32.4 1302 345
S10 1000 320 6200 32.4 1116 345
S11 1100 320 6200 32.4 1116 345
S12 900 320 6200 32.4 1116 295
S13 900 320 6200 32.4 1116 395

Table 3: Primary numerical results.

Model ID Py (kN) Δy (mm) Pu (kN) Δu (mm) Curvature (×10−5/mm)

S1 567.8 20.4 773.7 72.5 3.27
S2 428.4 22.8 627.6 78.2 3.82
S3 681.8 17.6 930.1 64.2 2.78
S4 378.4 30.0 552.3 99.6 3.02
S5 285.3 42.5 423.2 146.8 4.37
S6 554.7 20.4 748.4 61.2 2.67
S7 561.1 19.7 799.1 82.8 4.03
S8 552.3 19.9 778.5 71.9 3.18
S9 556.0 19.7 779.9 65.0 2.79
S10 533.4 18.6 796.8 73.8 3.58
S11 556.9 19.1 808.2 79.6 3.71
S12 483.3 17.1 696.0 79.3 3.67
S13 630.1 22.8 848.5 65.2 2.77
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Figure 8: Load vs. midspan deflection with different span-to-depth ratios. (a) Effect of CSW depth. (b) Effect of beam span.
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increased by 21.8% and 11.2%, respectively, compared with
S12, while the midspan deflections of S13 and S1 at ultimate
state decreased by 17.8% and 8.6%, respectively, compared
with S12. -erefore, using steel tubes with higher yield
strength would improve the IPCB load-carrying capacity.

Figure 10 shows the curves of load versus midspan
deflection for specimens S1, S6, and S7 with different
concrete compressive strengths. As can be seen, the ultimate
load-carrying capacity increased by only 6.8% when the
concrete compressive strength was increased from 29.6 to
38.5MPa. However, the midspan deflections of the speci-
mens at ultimate state increased obviously.

S1, S8, and S9 were designed to evaluate the effect of the
initial effective prestress of the UPSs. Figure 11 shows that
when the initial effective prestress was taken as 0.5fptk,
0.6fptk, and 0.7fptk, respectively, the ultimate load-carrying
capacity and deformability of the IPCBs were nearly the
same. It is concluded that the initial effective prestress of the
UPSs has little effect on the flexural behavior of an IPCBwith
CSWs.

S1, S10, and S11 were designed to evaluate the effect of
the width of the upper concrete flange. Figure 12 shows that
the ultimate load-carrying capacities of S10 and S11 were
1.03 and 1.04 times that of S1, and there was little difference
in the ultimate deformability. -erefore, the width of the
upper concrete flange affects the ultimate load-carrying
capacity and deformability of the IPCB slightly.

4. Flexural Characteristics of IPCBs

4.1. Strain Distribution of Beam Section. Based on the above
FE analysis, the characteristics of the strain distribution
through the depth of beam sections are summarized and the
representative curves are shown in Figure 13, taking S1 as an
example. As can be seen, the plane-section assumption is no
longer valid. -e normal strain of the CSWs approached
zero in the beam section except for the local zones con-
necting with the upper and lower flanges. In addition, the
normal strain was distributed almost linearly through the
depth of the upper and lower flanges. When the applied load

was less than 0.8Pu, the strain distribution curves of normal
strain in sections A-A and B-B, marked in Figure 2(a),
presented different characteristics, as shown in Figure 13.
For section A-A, the upper and lower flanges produced the
same rotation angles, and their normal strain distributions
were nearly collinear. Meanwhile, the normal strain dis-
tributions of the upper and lower flanges for section B-B
were parallel to each other. -e different strain distributions
for the two sections were due mainly to the shear force.
When the applied load reached the ultimate load-carrying
capacity, the two distribution curves in each section were
parallel to each other.

4.2. Stress Development of UPSs. Figure 14 illustrates the
stress development of the UPSs. -e curves can be divided
into two stages. In the first stage, the UPS stress increased
linearly with the midspan deflection until the total UPS
stress reached 0.8fptk, i.e., 1488MPa, after which the slope
of the curves decreased obviously. It can be seen from
Figure 13 that using higher CSWs and shorter beam spans
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led to a rapid increase in UPS stress. However, the UPS stress
increment was affected only slightly by the concrete com-
pressive strength and the initial effective prestress of the
UPSs. In general, the total UPS stress at ultimate state was
between 1509.8 and 1588.6MPa based on the numerical
analysis. Because the nominal UPS yield strength was
1581MPa, in all the FE models the UPSs were about to yield
at ultimate state.

4.3. Distribution of Shear Lag Coefficient along Transverse
Direction. Steel-concrete composite beams are usually
subjected to shear lag; i.e., the normal stress along the width
of the flanges is distributed unevenly. To assess this char-
acteristic, the shear lag coefficient λ � σ/σE is defined by

σE �
􏽒

b

0 σ dz

b
, (7)

where σE is the average normal stress along the width of the
upper concrete flange.

Numerical results indicated that the shear lag coefficients
of all the IPCBs had similar distribution characteristics.
-erefore, S1 and S11 were chosen as examples to illustrate
the distribution law of the shear lag coefficient, as shown in
Figure 15. It can be seen that when the applied load was less
than 0.8Pu, the shear lag in section B-B was more evident
than that in section A-A. When the applied load reached
1.0Pu, the shear lag in both sections became conspicuous.
-e maximum shear lag coefficient of section B-B was 9.8%
higher than that of section A-A at final failure, and this was
because of the shear force. Because the maximum shear lag
coefficient of the calculated IPCBs was 1.17, the adverse
influence of the stress concentration near the connections of
the CSWs and concrete flanges should be considered in the
flexural design.

4.4. Moment-Curvature Curves. Numerical results showed
that the curves of bending moment versus curvature for the
FE model beams were similar, and the typical moment-
curvature curves at section A-A are shown in Figure 16. As
can be seen, the sectional deformability was closely con-
nected with the CSWdepth and the yield strength of the steel
tubes. -e sectional curvatures of section A-A at final failure
are listed in Table 2, where it can be seen that the sectional
curvature varied between 2.67×10−5/mm and 4.37×10−5/
mm.

-e degeneration law of the sectional rigidity for the
IPCBs can be obtained from the moment-curvature curves.
-e normalized moment-sectional rigidity curves are shown
in Figure 17(a), where K0 and K are the equivalent initial
flexural rigidity and the secant flexural rigidity, respectively,
of the composite beam section, and Mu and M are the
ultimate bending moment resistance and the actual moment
at any section, respectively. Because the normalized curves
presented similar trends, a mathematical model of the
sectional rigidity degeneration is proposed as shown in
Figure 17(b) and expressed by equation (8).

K

K0
�

1, 0≤
M

Mu

≤ 0.75,

1.00 −
M

Mu

− 0.75􏼠 􏼡, 0.75<
M

Mu

≤ 0.85,

0.85 − 4
M

Mu

− 0.85􏼠 􏼡, 0.85<
M

Mu

≤ 1.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(8)

5. Simplified Method for Calculating Bending
Moment Resistance for IPCBs

5.1. Basic Assumptions. From the experimental and nu-
merical results, the following assumptions were used in
evaluating the bending moment resistance of the IPCBs. (1)
-e assumption that the plane beam section remains plane
after loading is discarded. -e normal strain distribution
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through the depth of the upper and lower flanges remains
linear, and the upper concrete flange and the lower concrete-
filled steel tube have similar sectional rotation around their
own centroid axes. (2) -e CSWs work in coordination with

the upper and lower flanges, and the possible tiny relative
slip and shear connection failure at the interface between the
CSWs and the flanges are neglected. (3) -e influence of the
tensile strength of the concrete and CSWs on the bending
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Figure 13: Strain distributions through beam sections of S1: (a) section A-A; (b) section B-B.
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Figure 14: Stress development of UPSs. (a) Effect of CSW depth. (b) Effect of beam span. (c) Effect of concrete compressive strength.
(d) Effect of initial effective prestress.
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Figure 16: Typical moment-curvature curves. (a) Effect of CSW depth. (b) Effect of yield strength of steel tubes.
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moment resistance is neglected. (4) -e constitutive rela-
tionship of the UPSs is described by equations (5) and (6).
(5)-e enhanced strength of the steel tubes from being filled
with concrete is not considered. (6) Shear deformation is not
considered when calculating the UPS strain increment.

5.2. 9eoretical Models. To evaluate the bending moment
resistance of an IPCB, the first step is to determine the UPS
stress under the bending moment. According to [22], the
UPS strain increment can be expressed as

Δεp �
Δlp
lp

�
􏽒

l0

0 e(x)f″(x) dx

lp
, (9)

where Δlp is the total UPS elongation, lp is the total UPS
length, l0 is the clear span of the beam, f(x) is the beam
deflected shape, and e(x) is the UPS eccentricity relative to
the neutral axis of the beam section.

For flexural members, the curvature ϕ(x) can be given
approximately by

f″(x) ≈ ϕ(x) �
M(x)

B(x)
, (10)

where M(x) is the bending moment at any section and B(x)

is the corresponding secant flexural rigidity of the section.
For the IPCBs studied herein, e(x) is a constant em

because the UPSs are arranged in a straight line along the
beam. -erefore, Δεp can be expressed as follows by com-
bining equations (9) and (10):

Δεp ≈
em

lp
􏽚

l0

0

M(x)

B(x)
dx. (11)

-e bending moment diagram for a simply supported
IPCB under ultimate load Pu is shown in Figure 18.
According to equations (8) and (11), the composite beam
can be divided into parts 1–4 to calculate Δεp at ultimate
state:where B1(x), B2(x), B3(x), and B4(x) are the secant
flexural rigidity in each part. To simplify equation (12), the
average secant flexural rigidity is introduced to substitute the
varying secant flexural rigidity in each part. -us, the secant
flexural rigidity in each part can be expressed conveniently
as

Δεp �
em

lp
􏽚

l0

0

M(x)

B(x)
dx

�
2em

lp
􏽚
0.75a

0
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dx + 􏽚
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dx + 􏽚
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B3(x)
dx + 􏽚

0.5l0

a

M(x)

B4(x)
dx􏼢 􏼣,

(12)

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.5

1.0

1.5

2.0

S1

S4

S2

S5

S3
S7

S10

S8

S6

S9

S11
S12
S13
Mathematical
model

K/
K 0

M/Mu

(a)

K/
K 0

M/Mu

0.00 0.50 1.000.25 0.75 0.85
0.00

0.25

0.50

0.75

1.00

0.85

(b)

Figure 17: Relationship between moment and sectional rigidity. (a) Normalized curves. (b) Mathematical model.
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B1(x) � K0, 0≤M(x)≤ 0.75Mu,

B2(x) � 0.925K0, 0.75Mu <M(x) ≤ 0.85Mu,

B3(x) � 0.55K0, 0.85Mu < M(x)<Mu,

B4(x) � 0.25K0, M(x) � Mu.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(13)

Combining equations (12) and (13) gives Δεp, where-
upon the total UPS strain εp at ultimate state is given as

εp � εpe + Δεp, (14)

where εpe is the initial effective UPS strain. -us, the total
UPS stress σp at ultimate state can be obtained.

-e diagram for calculating the bending moment re-
sistance of the IPCB with CSWs is shown in Figure 19, and
the force equilibrium at ultimate state is given as

σpAp + fyAtu � α1fcbx + σfAf + fryAr, (15)

where σf is the total stress of the top flange of the steel girder,
fry is the yield strength of the reinforcement, Ap, Atu, Af,
and Ary are the areas of the UPSs, steel tubes, steel flange,
and reinforcement, respectively, α1 is the reduction factor of
concrete compressive strength (taken here as 1.0), b is the
width of the upper concrete flange, and x is the depth of the
stress block.

Meanwhile, the bending moment resistance Mu can be
expressed as

Mu � σpAp hp −
x

2
􏼒 􏼓 + fyAtu htu −

x

2
􏼒 􏼓

− σfAf hf −
x

2
􏼒 􏼓 − fryAr hr −

x

2
􏼒 􏼓,

(16)

where hp, htu, hf, and hr are the distances from the resultant
forces of the UPSs, steel tubes, top steel flange, and rein-
forcement, respectively, to the concrete extreme fiber in
compression. Because the reinforcement and the steel flange
are very close to the centroid axis of the compression zone,
the contribution to the bending moment resistance is
neglected in the following calculation.

According to equations (12) and (13), Mu should be
calculated first to determine Δεp. However, it is difficult to
obtain Mu directly by equations (5), (6), and (12) through
(16). To increase the applicability of the proposed method,
Mu is computed iteratively. First, assuming σp � σpe, the first
bending moment resistance Mu1

is obtained according to
equations (15) and (16). Second, σp is recalculated by
substituting Mu1

into equation (12), and the second bending
moment resistance Mu2

is obtained. -ese steps are repeated
until the two adjacent values of the bending moment re-
sistance satisfy the required error tolerance. Based on the
proposed simplified calculation method, the iterative op-
eration was performed only twice before satisfactory cal-
culation results were obtained for the FEmodels investigated
herein. Table 4 lists the results Mu1

and Mu2
of the two

iterations and the numerical results of the bending moment
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1 2 3 1234
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Figure 18: Bending moment diagram.
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Figure 19: Calculation model for analyzing flexural performance.
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resistance Me. Comparison shows that the theoretical results
Mu2

agree well with the numerical results Me, with the
maximum error being less than 10.3%.

6. Conclusions

Herein, the flexural behavior of IPCBs with CSWs was in-
vestigated experimentally and numerically, and the fol-
lowing conclusions are drawn.

(1) An IPCB with CSWs was subjected to a flexural test,
and the experimental results showed that flexural
failure occurred eventually, with the IPCB presenting
excellent flexural behavior. Fracture of the UPSs and
connection failure at the interface between the CSWs
and the flanges were not observed.

(2) Numerical results showed that the span-to-depth
ratio and the yield strength of the steel tubes had a
significant effect on the ultimate load-carrying ca-
pacity of the IPCB with CSWs, which improved by
48.2% when the CSW depth was increased from 240
to 400mm and by 21.8% when the yield strength of
the steel tubes was increased from 295 to 395MPa.
-e effective prestress had little effect on the load-
carrying capacity of the IPCB with CSWs at the
specific UPSs ratio.

(3) -e plane-section assumption was unsuitable for the
IPCBs with CSWs, but the normal strain distribution
through the depth of the upper and lower flanges
remained linear. -e stress of UPSs increased line-
arly with increasing midspan deflection at different
loading stages, and the UPSs nearly all yielded at final
failure of the beam. Shear lag existed in the concrete
flanges of the IPCBs with CSWs, and the maximum
shear lag coefficient was 1.17. Stress concentration
near the connections of the CSWs and concrete
flanges should be considered in the flexural design.

(4) A simplified method was proposed for calculating
the bending moment resistance of an IPCB with
CSWs. -e theoretical results Mu2

so obtained

agreed well with the numerical results Me, with the
maximum error being less than 10.3%.
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