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Achieving high detection accuracy of pavement cracks with complex textures under different lighting conditions is still chal-
lenging. In this context, an encoder-decoder network-based architecture named CrackResAttentionNet was proposed in this
study, and the position attention module and channel attention module were connected after each encoder to summarize remote
contextual information. *e experiment results demonstrated that, compared with other popular models (ENet, ExFuse, FCN,
LinkNet, SegNet, and UNet), for the public dataset, CrackResAttentionNet with BCE loss function and PRelu activation function
achieved the best performance in terms of precision (89.40), mean IoU (71.51), recall (81.09), and F1 (85.04). Meanwhile, for a self-
developed dataset (Yantai dataset), CrackResAttentionNet with BCE loss function and PRelu activation function also had better
performance in terms of precision (96.17), mean IoU (83.69), recall (93.44), and F1 (94.79). In particular, for the public dataset, the
precision of BCE loss and PRelu activation function was improved by 3.21. For the Yantai dataset, the results indicated that the
precision was improved by 0.99, the mean IoU was increased by 0.74, the recall was increased by 1.1, and the F1 for BCE loss and
PRelu activation function was increased by 1.24.

1. Introduction

Pavement cracks are a common symptom and an early sign
of potential damages and degradation in the pavements
[1–4]. However, due to heavy traffic and drastic environ-
mental changes, cracks can significantly affect the perfor-
mance and functionality of the asphalt pavement projects
and eventually lead to structural deterioration and a
shortened service time.

Early and frequent inspection can help collect asphalt
pavement condition data for in-depth analysis and strategic
decisions. Using this information, appropriate maintenance
measures can be arranged to prevent pavement failure at an
early stage. However, manual inspections of asphalt pave-
ment require massive time involvement and labor costs, and
the results are not accurate [5–9].

In this case, some automated vision-based techniques for
road damage detection have been investigated. Meanwhile,
the development of deep learning in computer vision [10, 11]

has significantly improved the crack detection accuracy of
camera-captured images [12–15]. Scholars have proposed
pixel-level methods with deep convolutional neural net-
works (CNN) to detect cracks. For crack segmentation,
UNet and DenseNet were performed. *e results showed
high performance and accuracy to a certain extent [16, 17].

In the past few decades, the crack detection technology
based on captured images has been widely studied and
applied [12, 18–20]. Compared with subjective and labor-
intensive manual approaches [19], image-based methodol-
ogies were consistent and objective, thus leading to reduced
labor costs and higher detection efficiency. In general, im-
age-based methodologies can be divided into different
categories, including rule-based methods, machine learning-
based methods, and deep learning-based methods. Rule-
based methods used a variety of filter algorithms and image
processing techniques [12–15]. S. Chambon et al. [20]
proposed a two-step multiscale method. *e first step was to
use adaptive filtering binarization, and the second step was
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to refine the binarization by segmentation based on Markov
model. James Tsai et al. [21] assessed the crack detection
performance in different lighting conditions with poor
contrast by emerging 3D laser technology. M. Salman et al.
[22] developed a novel technology for the automatic de-
tection and identification of cracks from digital pavement
images. Merazi-Meksen et al. [23] used a mathematical
method to extract the discontinuity-related pixels and used
pattern recognition technology to characterize the discon-
tinuity. Due to the complexity of the texture of pavement
surfaces, and the irregularity of the crack morphologies,
scholars tried to detect the cracks with machine learning-
based algorithms. Qin Zou et al. [24] developed CrackTree,
which was a fully automatic crack detection method using
pavement images. Ghada Moussa et al. [17] presented a
novel reliable method, which used flexible pavement images
acquired in the asphalt pavement surveys to automatically
detect, classify, and estimate the cracks. Miguel Gavilán et al.
[25] proposed a seed-based crack detection method for
asphalt pavement by combining Multiple Directional Non-
Minimum Suppression (MDNMS) and a symmetry check.

However, machine learning-based approaches are highly
dependent on input features and require the researchers to
have a broad knowledge of the features. In recent years, as a
branch of machine learning, deep learning, especially arti-
ficial neural network (ANN) [26, 27], has been rapidly
applied due to its superior performance in various fields
[28–33], including image classification and semantic seg-
mentation. In the report by Gopalakrishnan et al. [31], a
Deep Convolutional Neural Network (DCNN) was trained
on the “big data” ImageNet database and applied in their
study. Zhenqing Liu et al. [32] adopted UNet to detect the
concrete cracks. *e trained UNet can identify the location
of cracks from the input original images under various
conditions. Ankang Ji et al. [34] proposed an integrated
crack detection method based on the convolutional neural
network DeepLabv3+ and developed an algorithm to
quantify the cracks at the pixel level. Cao Vu Dung et al. [35]
proposed a crack detection method based on a deep full
convolutional network (FCN) and applied this method for
semantic segmentation of concrete crack images. Some other
semantic segmentation methods were also proposed.
However, none of the semantic segmentation methods were
employed in crack detection involving engineering appli-
cations. Adam Paszke et al. [36] developed a new deep neural
network architecture, i.e., efficient neural network (ENet) for
tasks requiring low latency operation. Zhenli Zhang et al.
[37] proposed a new framework called ExFuse to fill in the
gap between low-level and high-level features. *e devel-
oped framework leads to significant improvement of the
segmentation quality (by 4.0%). Abhishek Chaurasia et al.
[38] designed a novel neural network architecture from
scratch, which can be specifically applied for semantic
segmentation. Vijay Badrinarayanan et al. [39] designed an
encoder network architecture with the same topology as the
13 convolutional layers in the VGG16 network [40, 41].
Abhishek Chaurasia et al. [38] designed a novel deep neural
network architecture, namely, LinkNet, which can learn
without significantly increasing the number of parameters.

SegNet was designed by Vijay et al. [39]. It had a core
trainable segmentation engine and contained an encoder
network, a corresponding decoder network, and a pixel-wise
classification layer. However, due to impact from shadows,
uneven lighting conditions, or crack shape irregularity, it
was still not accurate enough for pixel-level crack
segmentation.

In this study, an encoder-decoder network-based ar-
chitecture named CrackResAttentionNet was proposed to
detect asphalt pavement cracks, as well as pixel-level image
segmentation. *e overall process of the CrackRe-
sAttentionNet training process is shown in Figure 1. In the
following sections, the structures of CrackResAttentionNet,
model evaluation method, and model optimization method
are described. From the structure of CrackResAttentionNet
itself, the encoder mainly used the convolutional layers of
ResNet-34 to extract image features, and another encoder
layer was added to better extract information. *e decoder
employed the deconvolutional layers to perform the se-
mantic segmentation of pixels with and without crack.
Additionally, the position attention module and channel
attention module were connected after each encoder to
summarize remote context information. *e two attention
modules were fused proportionally to emphasize more the
position information. *e output of each encoder layer was
fused with attention output and linked with the corre-
sponding decoder. In addition, the output of last decoder
was fed into the decoder as input. In this way, the decoder
and its upsampling operations can use spatial information to
help improve the accuracy of prediction.

*e organization of this paper is as follows. *e “In-
troduction” section reviews some related studies on image-
based crack detection and segmentation; the “Methodology”
section describes the methodologies related to technical
background, including Convolutional Neural Network
(CNN) and a group of layers, deconvolution, unpooling,
Position Attention, and Channel Attention, and encoder-
decoder network; the “Network Architecture” section ex-
plains the CrackResAttentionNet architecture in detail; the
“Experimental Program” section lists the details of data
acquisition, data generation, and experimental program; the
“Results and Discussion” section presents the experiment
results and the analysis results; the “Summary and Con-
clusions” section summarizes the conclusions and our
findings; and finally, the “Suggestions for Future Research”
section looks at the future research prospects and
suggestions.

2. Methodology

*is section briefly describes the methodologies related to
the technical background, including Convolutional Neural
Network (CNN) and a group of layers, deconvolution,
unpooling, Position Attention, and Channel Attention, and
encoder-decoder network.

*e convolution layer was a linear operation used to
process the product of a set of weights and the input. *e
multiplication was performed between the input data array
and a two-dimensional weight array, which was called filter
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or kernel. *e kernel had a smaller size than the input, and
the multiplication calculation between the kernel and the
input data was based on dot product. Dot product is an
element-wise multiplication operation between two 2D
arrays. *en, the products are added together, generating a
single value as the output. As the calculation progressed, the
kernel moved along the width and height of the image,
which produced a 2D image representation of the receptive
region. *e generated image representation indicated the
response of the kernel at each spatial position of the image.
*e kernel slid on the image with the step size of “stride” [8].
*e pooling layer helped reduce the spatial dimension of the
representation, which can lower the number of iterations,
computation size, and weight [8]. Several pooling options
are currently available, namely, the average of the rectan-
gular neighborhood, L2 norm of the rectangular neigh-
borhood, and max pooling, which can obtain the maximum
value from the subarrays of the input array.

A nonlinear function was employed as an activate
function. Dropout was used to process the overfitting
problem for neural networks. *e connections between
neurons were disconnected at a fixed dropout rate. During
training, as the training progressed, the parameters of the
preceding layers changed, which led to the change in the
distribution of inputs. *us, the current layer needed to be
updated to reflect the actual distribution. *e output from
the previous activation layer was normalized by Batch
normalization. In detail, the Batch mean was subtracted, and
the resulting value was divided by the Batch standard de-
viation. *en, the most likely classification was identified by
the softmax layer. In the most likely classification, the class
had the highest probability [8]. *e probability distribution
with a sum of one was output. Pooling in a convolution
network was used to abstract activations in a receptive field
with a single representative value, thus filtering the noisy
activations in the lower layer. Unpooling operation per-
formed the reverse operation of pooling and reconstructed
the original size of activations. *e unpooling can be
implemented using the approach proposed in References
[9, 25]. Briefly, unpooling recorded the positions of the
maximum activations obtained by the pooling operation,
performed the reverse operation of pooling, and recon-
structed the original size of the activations. As a result, each

activation was placed back to the original position before
pooling operation. *e deconvolution layer used operations
with multiple learned filters similar to convolution to make
the sparse activations much denser. A convolutional layer
connected multiple input activations within a filter window
to a single activation; in contrast, deconvolutional layers
associated a single input activation with multiple outputs.
*e deconvolutional layer then output an enlarged and
dense activation map. Encoder-decoder network was a
widely used form of semantic neural network for image
segmentation. *e encoder may consist of a few convolu-
tional layers to obtain the feature maps, and the decoder was
used to extend the features extracted by the encoder so that
the output probability map and the input image had
matching sizes.

3. Network Architecture

An encoder-decoder network-based architecture called
“CrackResAttentionNet” was proposed to segment crack
pixels. CrackResAttentionNet consisted of two parts: en-
coder and decoder. Between each encoder and decoder, an
attention module was added behind the encoder and linked
to the decoder. *e encoder network consisted of pretrained
ResNet-34 [41] as its main encoder layer, and the latter part
was connected with non-ResNet-34 encoders. Each encoder
included a corresponding decoder layer, and the final de-
coder output was fed into an output block containing a
deconvolution function to perform pixel prediction.

Attention was obtained for each ResNet-34 encoder
layer, and the output of the attention was added to the
original encoder output. *e outputs from the encoder layer
and the previous decoder layer were fed into the next de-
coder layer as input.

3.1. Encoder. *e architecture of CrackResAttentionNet is
shown in Figure 2. From the figure, the encoder starts with
the pretrained ResNet-34 in the block layer and performs
convolution, Batch normalization, Relu activation, and max
pooling. *e next layers include layer 1, layer 2, layer 3, and
layer 4 of ResNet-34.

*e last part of the encoder is a diverse encoder block, as
shown in Figure 3. *e diverse encoder block performed
convolution, in which the kernel size was 2× 2, the stride was
2, and the padding was 0. *e size of the output matrix was
divided by 2. After the convolution, Dropout, Batch nor-
malization, and PRelu activation were connected.

3.2. Decoder. *e last encoder block was directly fed into
decoder 5. As shown in Figure 4, decoder 5 contains con-
volution 1 module and convolution 2 module, deconvolu-
tion module, and convolution 3 modules. Each convolution
module performed convolution. *e kernel size was set to
1× 1, the stride was 1, and the padding was 0. *en, the
matrix with the same size can be obtained as the input.
Dropout, Batch normalization, and PRelu activation were
after the convolution. *e deconvolution module first
performed deconvolution by function ConvTranspose2d,

New imagesLabeled images

Training dataset Validation dataset

CrackResAttentionNet

Trained CrackResAttentionNet

Segmentation results

Figure 1: Process for detecting asphalt pavement crack segmen-
tation by CrackResAttentionNet.
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with a kernel size of 2× 2 and a stride of 2. As a result, the
size of the input matrix was multiplied by 2. *en, the next
step was the Batch normalization and PRelu.

As shown in Figure 5, the four decoders, i.e., decoder 4,
decoder 3, decoder 2, and decoder 1, have the same
structure. *ey contain convolution 1 module, deconvolu-
tion module, and convolution 2 module. Both convolution
modules performed convolution with a kernel size of 1× 1, a
stride of 1, and a padding of 0. *en, the matrix with the
same size was produced as the input. Dropout, Batch
normalization, and PRelu activation were connected. *e
deconvolution module performed deconvolution by func-
tion ConvTranspose2d, in which the kernel size was 3× 3
and the stride was 2. As a result, the input size was multiplied
by 2. *en, the next step was the Batch normalization and
PRelu.

As shown in Figure 6, the out block contains the
deconvolution module 1, the convolution modules 1 and 2,
and the deconvolution module 2. *e first deconvolution
module performed deconvolution through the function

ConvTranspose2d, in which the kernel size was 3× 3 and the
stride was 2. As a result, the size of the input matrix was
multiplied by 2. *en, the next step was the Batch nor-
malization and PRelu.*e two convolution modules had the
same structure and performed convolution with a kernel size
of 3× 3, a stride of 1, and a padding of 0. Both the output
matrix and the input matrix had the same size. Dropout,
Batch normalization, and PRelu activation were connected.
*e last deconvolution module simply performed a
deconvolution by function ConvTranspose2d, in which the
kernel size was set to 2× 2 and the stride was 2. *is op-
eration caused the size of the input matrix to be multiplied
by 2. *e output was the predicted image, which had the
same size as the input image.

3.3. Attention. Cracks are different in scales, lighting, and
views, which can affect the segmentation effect. Since the
convolution operations would result in local reception, the
pixels with the same label may have different features [42].

+

+

+

+

Image

In block
112 × 112 × 64

ResNet-1
112 × 112 × 64

ResNet-2
56 × 56 × 128

ResNet-3
28 × 28 × 256

ResNet-4
14 × 14 × 512

Encoder 5
7 × 7 × 1024

Attention-1
112 × 112 × 64

Attention-2
56 × 56 × 128

Attention-3
28 × 28 × 256

Attention-4
14 × 14 × 512

Out block
448 × 448 × 2

Decoder1
112 × 112 × 64

Decoder2
112 × 112 × 64

Decoder3
56 × 56 × 128

Decoder4
28 × 28 × 256

Decoder5
14 × 14 × 512

Prediction

Figure 2: An illustration of the CrackResAttentionNet architecture.
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*e differences can cause inconsistency across classes and
influence the accuracy. *erefore, the attention mechanism
was used to establish associations between features, thus
extracting global context information. Paying more atten-
tion to crack segmentation can aggregate remote context
information and enhance the feature representation
capability.

As shown in Figure 7, in order to get the global context of
local features from the network, two types of attention
modules are added. Given the output from the ResNet-34
decoder layer, a convolution layer was firstly applied to
obtain features through different layers, which would not
change the shape of the input.

In the first attention module, i.e., position attention
module [42], a wider range of context information was
extracted into local features. *e feature maps A, B, and C
were generated from the convolution layer. *e following
condition was satisfied: {A, B, C, D} ∈RC×H×W. *en, A, B,
and C were reshaped to RC×N, where N was the number of
pixels and can be calculated by N�H×W. B was transposed
to RN×C, and amatrix multiplication was conducted between
the transpose of C and B. *e shape of the resulting matrix
was RN×N. *en, the softmax layer was used to calculate the
spatial attention map S ∈RN×N [42]:

sji �
exp Bi · Cj􏼐 􏼑

􏽐
N
i�1 exp Bi · Cj􏼐 􏼑

, (1)

where sji is the influence of the ith position on jth position.
When the feature representations of two locations were
more similar to each other, the correlation between them
was higher [42].

*en, S was transposed into the same shape RN×N, but
the dimension was different. Matrix multiplication between
A and the transposed S was performed, and the result was
RN×C. *is result was reshaped to be RC×H×W. Finally, the
result was multiplied by a scale parameter α, an element-wise
sum operation was conducted with the original convolu-
tional features D, and the final output H ∈RC×H×W was
obtained as follows [42]:

Hj � α􏽘
N

i�1
sjiAi􏼐 􏼑 + Dj, (2)

where α had the initial value of 0 and gradually learned to
assign more weights [42].

Similarly, the channel attention module shown in
Figure 7(b) can emphasize interdependent feature maps and
improve the representation of specific semantic features.

A convolution firstly was performed to extract the
feature maps E, F, G, H, and {E, F, G, H} ∈RC×H×W.

*en, the E, F,Gwere reshaped to RC×N, whereNwas the
number of pixels and can be calculated by N�H×W. F was
transposed to RN×C, and a matrix multiplication of trans-
posed F and E with the matrix was performed [42]. *e
resulting matrix with the shape of RN×N was obtained, and a
softmax layer was applied to calculate the spatial attention
map X ∈RN×N:

PRelu

BatchNorm

Dropout

Conv2d
(512, 1024), 2 × 2, 2, 0, /2

Figure 3: Encoder5 block.

Conv-3

ConvTranspose

Conv-2

Conv-1

PRelu

BatchNorm

ConvTranspose2d
2 × 2, 2, 0, ×2

PRelu

BatchNorm

Dropout

Conv2d 1 × 1, 1, 0, ×1
ConvTranspose

Conv-1, 2, 3

Figure 4: Decoder 5.

Conv-2

PRelu
PRelu

ConvTranspose

BatchNorm
BatchNorm

Conv-1
ConvTranspose2d

3 × 3, 2, 1 × 2 Conv2d 1 × 1, 1, 0, ×1

ConvTranspose Conv-1, 2

Figure 5: Decoders 4, 3, 2, and 1.
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xji �
exp Ei · Fj􏼐 􏼑

􏽐
C
i�1 exp Ei · Fj􏼐 􏼑

, (3)

where xji is the impact of the ith position on jth position.
*en, a matrix multiplication between the softmax result

X and reshaped G was conducted, and the result of RC×N was
obtained. *is result was reshaped to RC×H×W. Finally, the
result was multiplied by a scale parameter β, an element-wise
sum operation was conducted with the original convolu-
tional features H, and the final output I ∈RC×H×W was ob-
tained as follows [42]:

Ij � β􏽘
C

i�1
XjiGi􏼐 􏼑 + Hj, (4)

where β had the initial value of 0 and gradually learned to
assign more weights [42].

*erefore, the output feature of each channel was a
weighted sum of the features in all channels and the original
features. *e output feature of each channel can model the
remote semantic dependencies between feature maps.

After obtaining the results from both the position at-
tention H and the channel attention with the shape

ConvTranspose-2

Conv-2

Conv-1

ConvTranspose-1

PRelu

BatchNorm

PRelu

BatchNorm

Conv2d 3 × 3, 1, 1 × 1

Dropout

ConvTranspose2d
3 × 3, 2, 1 × 2

ConvTranspose2d
2 × 2, 2, 0, ×2

Conv-1, 2 ConvTranspose-1 ConvTranspose-2

Figure 6: Out block.
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S
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H

J

D

H

C × W × H

Conv2d-1
C × H × W

Conv2d-2
C × H × W

Reshape
C × (H × W)

Reshape
C × (H × W)

Reshape
C × (H × W)

Reshape
C × (H × W)

Reshape
C × (H × W)

Reshape
C × (H × W)

Transpoose
(H × W) × C

Multiply
(H × W) × (H × W)

Softmax
(H × W) × (H × W)

Multiply
C × (H × W)

Transpoose
(H × W) × (H × W)

Reshape
C × H × W

Sum
C × H × W

Transpoose
(H × W) × C

Multiply
C × C

Softmax
C × C

Multiply
C × (H × W)

Reshape
C × H × W

Sum
C × H × W

Ratio fusion
C × H × W

(a)

(b)

Figure 7: Attention modules. (a) Position attention module. (b) Channel attention module.
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C×H×W, they can be fused. *e position attention had a
proportion of Ø, and correspondingly, the channel attention
had a proportion of (1−Ø). *e element-wise sum pro-
portional operation can be calculated using equation (5):

J � ∅∗H +(1 −∅)∗ I, (5)

where Ø is a hyperparameter, and 0.8 can be used to em-
phasize position attention for crack segmentation.

3.4. Encoder and Decoder Bridge. From Figure 2, each en-
coder layer is bridged with a decoder. *is was done by
fusing the output of each encoder layer, the results of at-
tention are indicated in Section 4.3, and the output is from
the previous decoder layer. By feeding this fusion output into
the decoder, the information of the encoder layer and
corresponding attention can be captured.

4. Experiment Setup

4.1. Data Preparation and Preprocessing. In this study, two
datasets were used in the experiments. One was the public
crack data set [43], which was an annotated dataset to train
and validate machine learning-based crack detection and
segmentation algorithms. It consisted of 2000 samples. *e
dimension of each image was 448× 448 pixels. *e dataset
was divided into three datasets, i.e., training dataset, vali-
dation dataset, and test dataset. Among them, the images in
the training dataset were used to fit the neural network
model. In the training process, the fitted model repeatedly
made predictions on the validation dataset, which evaluated
the effect of the model and indicated whether overfitting
occurred. After the training process was completed, the test
dataset was used to assess the performance of different
networks.

*e second crack image dataset was denoted as “Yantai
dataset,” which was manually collected by a camera on
Yantai highway. *is dataset consisted of images with
complex textures under different light conditions. *e
dataset consisted of 5000 samples. *e images were firstly
cropped to obtain the central part of the image, which was
square. *en, the cropped images were resized to have
448× 448 pixels. No other data preprocessing techniques
were applied to the collected data, such as noise removal and
crack enhancement. *e dataset was also divided into three
datasets, i.e., training dataset, validation dataset, and test
dataset. *e purpose of introducing this dataset was to
further evaluate the performance of the proposed model in
this work. *e details are listed in Table 1.

4.2.DataLabeling. For training and validation purposes, the
Yantai dataset was required to be annotated. *e software of
LabelMe was used to manually draw polygon for the crack.
After that, the annotated images were generated through the
python program, and the output consisted of a JSON file
including the position information of the cracks. *erefore,
the image background was black, while the cracks were
white.

4.3. Segmentation Metrics. *e following evaluation indica-
tors were applied for the crack segmentation task, i.e., precision
(P), mean IoU, recall (R), and F1. In the image, the crack pixels
(white) were defined as positive samples. Based on the com-
bination of labelled cases and predicted cases, the segmentation
of the pixels resulted in true positive (TP), false positive (FP),
true negative (TN), and false negative (FN).

Precision was defined as the ratio of the number of
correctly predicted crack pixels to the number of all the
pixels predicted to be cracks. Recall was defined as the ratio
of the number of correctly predicted crack pixels to the
number of all the true crack pixels. F1 score was the har-
monic mean of precision and recall [44].

Precision �
TP

TP + FP
,

Recall �
TP

TP + FN
,

F1 �
2.precision · Recall
precision + Recall

,

(6)

Intersection over Union (IoU) reflected the overlapping
degree between two objects. In this study, the IoU was
evaluated on the “crack” class to measure the overlap be-
tween the truth crack objects and predicted crack objects.

IoU �
TP

TP + FP + FN
. (7)

4.4. Loss Functions. *ree loss functions were applied and
compared in this study. *e pixel-wise cross-entropy loss
was described as follows.

CE � − 􏽘
n∗n

i�0
(p log(􏽢p) +(1 − p)log(1 − 􏽢p)), (8)

where i is the index of the pixel, n∗n indicates the size of
the output image, p represents the true label of samples, 1
represents positive, 0 represents negative, and 􏽢p represents
the possibility of samples being predicted as positive.

*e balanced pixel-wise cross-entropy loss was similar to
pixel-wise cross-entropy loss. *e difference was that the bal-
anced pixel-wise cross-entropy loss only assigned weights to
positive and negative samples, and the sum of the weight was 1.
*e equation can be described as follows:

BCE � − 􏽘
n∗n

i�0
(βp log(􏽢p) +(1 − β)(1 − p)log(1 − 􏽢p)), (9)

Table 1: Public dataset and Yantai dataset.

Dataset Training Validation Test
Public dataset 1600 200 200
Yantai dataset 2800 500 500
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where β represents the balanced factor, i is the index of the
pixel, n∗n indicates the size of the output image, p represents
the true label of samples, 1 represents positive, 0 represents
negative, and 􏽢p represents the possibility of samples being
predicted as positive.

Dice loss was designed from the perspective of IoU and
expressed in equation (10).

Dice loss � 1 −
2∗TP

2∗TP + TP + FN
, (10)

where TP refers to true positive, and FN refers to false
negative.

4.5. Computing Hardware and Software. All the experiments
were performed on a computer with the following specifica-
tions: CPU was Intel (R) Xeon (R) CPU E5-2678 v3, and GPU
was Nvidia GTX 1060 with 8G RAM. *e software environ-
ment was based on Ubuntu 16.04, and python was used as the
main programming language. Meanwhile, the experiments
were conducted on Pytorch 1.5 deep learning framework.

4.6. Hyperparameter Setting. In this work, the training was
optimized by the min-Batch stochastic gradient-descent
algorithm with momentum. *e hyperparameter settings
were listed as follows: weight decay factor� 0.0002,
momentum� 0.9, learning rate� 0.01, mini-Batch size� 4,
and number of epochs� 60.

Two groups of experiments were designed to assess the
performance of the proposed CrackResAttentionNet model.
*e first group of experiments was based on the public crack
dataset, and the other group was based on the Yantai dataset.
*e detailed settings are listed in Table 2.

For each group of experiments, in addition to CrackRe-
sAttentionNet, the typical image segmentation models in-
cluding ENet, ExFuse, FCN, LinkNet, SegNet, and UNet were
also run. *ree different loss functions, i.e., pixel-wise cross-
entropy loss (CE), balanced pixel-wise cross-entropy loss
(BCE), and dice loss (Dice), were used to train each model.

5. Results and Discussions

A series of experiments were performed, and the pave-
ment images were processed with the models. Each ex-
periment was evaluated from precision, mean IoU, recall,
and F1. Precision indicated the ratio of the number of
correctly classified crack pixels to the total number of all
pixels, while recall indicated the ratio of the number of
correctly classified crack pixels to the number of all true
crack pixels. Mean IoU reflected the degree of overlap
between predicted crack area and real crack area. F1 was
the harmonic mean of precision and recall, reflecting the
accuracy of an algorithm [45].

5.1. Experiment Results. *e results are summarized in
Tables 3–8.

Table 3 shows the performance of different models
(ENet, ExFuse, FCN, LinkNet, SegNet, UNet, and

CrackResAttentionNet) with CE loss for the public dataset
[44]. Compared with other models, CrackResAttentionNet
yielded higher precision (82.58), mean IoU (72.83), recall
(85.13), and F1 (83.84). ExFuse had good precision (82.22),
and ENet had good mean IoU (72.22), recall (83.94), and F1
(81.94).

Table 4 shows the performance of different models with
BCE loss. Compared with other models, CrackRe-
sAttentionNet showed great precision (89.40). However,
CrackResAttentionNet did not show advantages in the other
three metrics (mean IoU, recall, and F1). Considering all
four metrics together, CrackResAttentionNet still performed
great.

Table 5 shows the performance of different models with
Dice loss. CrackResAttentionNet showed great precision,
mean IoU, and F1 gains, while its recall was not in the lead.

Table 6 shows the performance of different models
(ENet, ExFuse, FCN, LinkNet, SegNet, UNet, and Crack-
ResAttentionNet) with CE loss using the Yantai dataset. *e
maximum F1 score (93.33) was achieved by CrackRe-
sAttentionNet, which was 1.78 higher than that of the model
in the 2nd place, ENet (91.55). Meanwhile, CrackRe-
sAttentionNet had much better performance in other
metrics. For instance, the precision (94.64) and mean IoU
(83.28) of CrackResAttentionNet were both much better
than those of the other models.

Table 7 shows the performance of different models with
BCE loss using the Yantai dataset. CrackResAttentionNet
showed much better precision (96.17), mean IoU (83.69),
recall (93.44), and F1 (94.79) than those of other models.
LinkNet also obtained a good F1 score (93.55), but it was still
lower than the F1 score of CrackResAttentionNet.

Table 8 shows the performance of different models with
Dice loss using the Yantai dataset. CrackResAttentionNet
exceeded other models in all the four metrics (precision
95.43, mean IoU 82.75, recall 94.2, and F1 94.81).

BCE loss can be selected as the best loss function for
CrackResAttentionNet. It can be seen from these two
datasets that BCE loss had higher precision (89.40 for the
public dataset and 96.17 for the Yantai dataset).

Sample prediction segmentation output for BCE loss of
each model is shown in Figures 8 and 9. From the public
dataset sample prediction in Figure 8, SegNet misclassified
some background as cracks, while FCN misclassified some
cracks as background. CrackResAttentionNet made good
segmentation, and the result was extremely close to the
ground truth.

From the Yantai dataset sample prediction results in
Figure 9, ENet and FCN misclassified some background as
cracks, while SegNet and ExFuse misclassified some cracks
as background. CrackResAttentionNet had perfect seg-
mentation performance, and the result was extremely close
to the ground truth.

5.2. Influence ofDifferentActivation Functions. *e effects of
different activation functions on CrackResAttentionNet
performance were further investigated. Firstly, we fixed the
loss function as BCE loss and then used different activation
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functions (Relu, PRelu, RRelu, and LeakyRelu). *e same
experimental setup was used as above.

As shown in Table 9, for the public crack dataset, if PRelu
was used, mean IoU (71.51) was 0.28 higher than the second
place, precision (89.4) was 2.37 higher than the second place,
and F1 was also high (85.04). So PRelu has a better

performance compared with the other three activation
functions (LeakyRelu, RRelu, and Relu).

As shown in Table 10, for the Yantai dataset, PRelu had
outstanding performance compared with the other three
activation functions (LeakyRelu, RRelu, and Relu). Mean
IoU (83.69) was 2.12 higher than the second place, and

Table 2: Experimental settings.

Dataset Epochs Batch size Optimizer Learning rate Weight decay factor Momentum
Public dataset 60 4 SGD 0.01 0.0002 0.9
Yantai dataset 60 4 SGD 0.01 0.0002 0.9

Table 3: Public Crack Dataset- CE loss.

Model Precision/(%) Mean IoU/(%) Recall/(%) F1/(%)
ENet 80.03 72.22 83.94 81.94
ExFuse 82.22 71.77 81.17 81.69
FCN 81.87 71.02 77.72 79.74
LinkNet 81.15 70.97 82.62 81.88
SegNet 78.00 66.32 75.18 76.56
UNet 80.19 70.42 82.88 81.51
CrackResAttentionNet 82.58 72.83 85.13 83.84

Table 4: Public Crack Dataset- BCE loss.

Model Precision/(%) Mean IoU/(%) Recall/(%) F1/(%)
ENet 74.87 54.64 50.57 60.37
ExFuse 82.78 69.52 78.80 80.74
FCN 86.04 64.32 83.27 84.63
LinkNet 81.84 71.11 81.23 81.53
SegNet 73.53 53.51 61.39 66.91
UNet 86.19 70.40 83.32 84.73
CrackResAttentionNet 89.40 71.51 81.09 85.04

Table 5: Public Crack Dataset- Dice loss.

Model Precision/(%) Mean IoU/(%) Recall/(%) F1/(%)
ENet 76.18 55.45 56.68 65.00
ExFuse 48.92 48.88 50.00 49.45
FCN 80.17 67.83 79.11 79.64
LinkNet 89.90 68.18 79.66 84.47
SegNet 76.46 71.08 89.38 82.42
UNet 82.82 70.41 82.60 82.71
CrackResAttentionNet 90.72 71.69 81.93 86.10

Table 6: Yantai Dataset–CE loss.

Model Precision/(%) Mean IoU/(%) Recall/(%) F1/(%)
ENet 90.88 81.62 92.22 91.55
ExFuse 91.76 82.27 90.64 91.20
FCN 91.56 82.52 90.80 91.18
LinkNet 91.34 82.48 92.11 91.72
SegNet 91.73 81.98 89.73 90.72
UNet 93.54 78.63 89.24 91.34
CrackResAttentionNet 94.64 83.28 92.05 93.33

Advances in Materials Science and Engineering 9



LinkNet SegNet UNet

ENet ExFuse FCN

Original image Ground truth CrackResAttentionNet

Figure 9: Yantai Dataset Sample Prediction-BCE loss.

Table 8: Yantai Dataset–Dice loss.

Model Precision/(%) Mean IoU/(%) Recall/(%) F1/(%)
ENet 94.80 82.17 92.10 93.43
ExFuse 92.10 74.12 87.66 89.87
FCN 90.23 77.65 89.16 89.69
LinkNet 94.45 80.76 91.62 93.01
SegNet 91.80 74.86 90.23 91.01
UNet 93.76 80.11 91.10 92.41
CrackResAttentionNet 95.43 82.75 94.2 94.81

LinkNet SegNet UNet

ENet FCN

Original image Ground truth CrackResAttentionNet

ExFuse

Figure 8: Public Crack Dataset Sample Prediction-BCE loss.

Table 7: Yantai Dataset–BCE loss.

Model Precision/(%) Mean IoU/(%) Recall/(%) F1/(%)
ENet 94.67 81.82 92.34 93.49
ExFuse 95.18 82.03 91.85 93.48
FCN 93.05 82.95 90.64 91.83
LinkNet 95.07 82.53 92.08 93.55
SegNet 91.24 78.06 83.04 86.95
UNet 94.28 81.61 90.26 92.23
CrackResAttentionNet 96.17 83.69 93.44 94.79

10 Advances in Materials Science and Engineering



precision (96.17) was 1.47 higher than the second place.
*erefore, based on the performances of different functions
for the public dataset and the Yantai dataset, PRelu was
selected for CrackResAttentionNet.

6. Summary and Conclusions

In this study, an architecture based on encoder-decoder
network was proposed to detect asphalt pavement cracks
and perform pixel-level image segmentation. *e results
indicated that CrackResAttentionNet with BCE loss func-
tion achieved the best performance in precision (89.40),
mean IoU (71.51), recall (81.09), and F1 (85.04) for the
public dataset. Meanwhile, for the Yantai dataset, Crack-
ResAttentionNet with BCE loss function had the precision of
96.17, mean IoU of 83.69, recall of 93.44, and F1 of 94.79.*e
performance of CrackResAttentionNet exceeded other
popular models including ENet, ExFuse, FCN, LinkNet,
SegNet, and UNet.

*e summary and main findings are as follows:

(i) In the architecture of the developed algorithm, the
encoder mainly used the convolutional layers of
ResNet-34 to extract image features, and an addi-
tional encoder layer was added to better extract
information. *e decoder employed the deconvo-
lutional layers to perform the semantic segmenta-
tion of crack and noncrack pixels.

(ii) After each encoder, position attention module and
channel attention module were connected to
summarize remote context information. *e two
attention modules were fused proportionally to
emphasize more on the position information. *e
output of each encoder layer was fused with the
output attention and linked with the corresponding
decoder. In addition, the output of the previous
decoder was fed into the decoder as an input. In this
way, the decoder and its upsampling operations can
use the spatial information to help improve the
prediction accuracy.

(iii) *e experiments were conducted for the public
crack dataset and Yantai dataset using CrackRe-
sAttentionNet and other typical models including

ENet, ExFuse, FCN, LinkNet, SegNet, and UNet. In
addition, three different loss functions (CE, BCE,
and Dice) were used in the experiments. *e results
demonstrated that CrackResAttentionNet with BCE
loss function achieved the best performance.

(iv) For public dataset, CrackResAttentionNet per-
formed well in precision (89.40), mean IoU (71.51),
recall (81.09), and F1 (85.04). Especially, with BCE
loss, the precision was increased by 3.21.

(v) For the Yantai dataset, the CrackResAttentionNet
had a great performance in precision (96.17), mean
IoU (83.69), recall (93.44), and F1 (94.79). With
BCE loss, precision was increased by 0.99, mean IoU
was increased by 0.74, recall was increased by 1.1,
and F1 was increased by 1.24.

(vi) *e effects of different activation functions were
further analyzed. For the public dataset, if PRelu was
used, mean IoU (71.51) was 0.28 higher than the
second place, the precision (89.4) was 2.37 higher
than the second place, and F1 was also high (85.04).
For the Yantai dataset, if PRelu was used, mean IoU
(83.69) was 2.12 higher than the second place, and the
precision (96.17) was 1.47 higher than the second
place. *erefore, PRelu was finally selected as the
activation function for CrackResAttentionNet.

Overall, to the best of our knowledge, this research is the
first attempt to use an encoder-decoder network with both
encoder and attention information linked to the decoder
layer. It also defined a few additional encoder and decoder
modules. Another difference was that the position channel
module and channel attention module were proportionally
fused.

7. Suggestions for Future Research

Suggestions for future research on this topic include the
following:

(i) More research should be conducted on the latest
attention models (such as Transformer and SENet),
which might be integrated into our network to
improve the accuracy of the results.

Table 9: CrackResAttentionNet (BCE loss) on different activation functions (Public Dataset).

Model Precision (%) Mean IoU (%) Recall (%) F1 (%)
LeakyRelu 84.93 71.23 86.36 85.64
RRelu 87.03 71 83.77 85.37
Relu 82.09 69.5 86.42 84.2
PRelu 89.4 71.51 81.09 85.04

Table 10: CrackResAttentionNet (BCE loss) on different activation functions (Yantai Dataset).

Model Precision (%) Mean IoU (%) Recall (%) F1 (%)
LeakyRelu 94.7 78.89 92.52 93.6
RRelu 92 81.18 96.5 94.2
Relu 94.17 81.57 92.96 93.56
PRelu 96.17 83.69 93.44 94.79
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(ii) More detailed experimentation is required to ana-
lyze the hyperparameters derived from the training
and validation datasets. Meanwhile, it is necessary
to study the impact of the hyperparameters on the
model performance.

(iii) Multi-GPU can speed up the model training and
inference. Real-time model training and prediction
require running the training under a multi-GPU
hardware environment.

(iv) A bigger public annotated public dataset is needed
to cover all types of cracks with noises under dif-
ferent conditions. And a more accurate method
related to pixel-level crack detection should be
developed to characterize and quantify the spatial
stereoscopic information of cracks in the pavement.

(v) In the future, the proposed detectionmethod should
be optimized, and a large-scale crack database for
asphalt pavement crack detection should be built.
*e image recognition method of pavement cracks
should be applied for pavement intelligent main-
tenance to help identify the microcracks on the
pavement to the cloud platform for earlier repair.
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