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Damage identification based on the change of dynamic properties is an issue worthy of attention in structure safety assessment,
nevertheless, only a small number of discontinuous members in existing structure are damaged under service condition, and the
most remaining members are in good condition. According to this feather, we developed an effective damage location and
situation assessment algorithm based on residual mode vector with the first mode information of targeted structure, which utilized
the quantitative relationship between first natural modes of global structure with the change of the element stiffness. Firstly, the
element damage location is determined with exploitation of the sparseness of element stiffness matrices based on the discontinuity
of damaged members. +en, according to the distribution characteristics of the corresponding residual mode vector, the nodal
equilibrium equation about the damage parameter is established based on the residual mode vector, and the damage coefficients of
structural elements are evaluated with the proposed equations. Two numerical examples are given to verify the proposed al-
gorithm. +e results showed that the proposed damage identification method is consistent with the preset damage. It can even
accurately identify large-degree damages. +e proposed algorithm only required the first-order modal information of the target
structures and held few requirements of analysis resource; hence when compared with existingmethods, it has obvious advantages
for structural damage identification.

1. Introduction

Structural damage identification technology shows its strong
vitality in many engineering fields such as civil engineering,
mechanical engineering, and aerospace engineering, which
has benefited from the combination with modal measure-
ment technology and finite-element analysis [1–3]. Various
damage location and detection technologies have been de-
veloped based on structural vibration properties. +e
principle for vibration-based damage identification is that
the damage-induced changes in the physical properties of
element stiffness will cause detectable changes in system
modal properties (natural frequencies and mode shapes).

+e investigation of mode eigen values for damage
detection is common as the natural frequencies can be
conveniently measured from just a few accessible points on
the structure [4–7]. However, this method could not detect
the subtle damage on structure. Damage detection methods

have also been developed for the identification of damage
directly based on measured mode shapes or mode shape
curvatures [8–10]. A drawback of many mode shape-based
methods is the complexity of having measurements from a
large number of locations for higher order modal shapes
[11–13]. For the purpose of fully utilized mode information,
Kaouk and Zimmerman [14–16] defined the residual mode
equation for damage detection based on mode information
of structure, which can accomplish the dual tasks of de-
termining the damage location and solving the damage
situation effectively. +is kind of damage detection method
has received the widespread attention over the last decade
[17–21]. +ere exists a common obstacle in the aforemen-
tioned detection methods, which is to obtain higher order of
structural modal shapes. +is requirement limits the prac-
tical application of the residual modemethod. Recently, with
the development of high-speed camera and sensitive sensor
and vision recognition technology, the modal parameter
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identification technology of engineering structure has made
remarkable progress [22–25]. We can effectively realize the
accurate identification of the finite-order natural mode
shapes (usually the first order) and natural frequencies
(usually the first order) of the structural system. As such,
more advanced analysis procedures are required to make the
best use of first-order modal information from structural
health monitoring.

In this paper, the authors develop a damage detection
method originally proposed by Kaouk et al. based on the
residual mode equation with only the first order of structure
mode information. +e residual mode vector is developed
based on the residual mode equation for structural element
damage detection, in which the relationship between the
stiffness matrix of damaged element and first-order mode
information is derived from the residual mode equation.
+en based on the relationship, the element damage location
is determined with exploitation of the sparseness of element
stiffness matrices. Finally, according to the distribution
characteristics of residual mode vector, a new damage as-
sessment algorithm is proposed.

+e presentation of this work is organized as follows: in
Section 2, the proposed algorithm based on the residual
mode vector is developed. In Section 3, the process of
structural damage identification using the established
method is introduced numerically in detail with a simple
supported beam. Moreover, the source of the accelerated
formula is also discussed in detail. A two-story framework
example is shown in Section 3.2 to show the feasibility and
the superiority of the proposed method. +e conclusions of
this work are summarized in Section 4.

2. Problem Formulation

2.1. Fundamental Assumptions. In the following theoretical
development, the following assumptions are made in
damaged structures:

(1) Structural damages only reduce the system stiffness
matrix, and structural refined numerical model has
been developed before damage occurrence.

(2) It is assumed that the effect of damage on the mass
properties of the structure is negligible, and we as-
sume that the structure under consideration is
undamped.

(3) +e crack-induced structural member damage is not
continuous in the finite-element model, this is rea-
sonable in the previous study [26–29], and fur-
thermore we could change the scale of element size
in the numerical model.

2.2. $eoretical Development. One basic approach to obtain
a qualitative feel for the effect of the damage on an individual
mode is to monitor the change in mode information be-
tween the damaged structures and the undamaged struc-
tures. With the above assumptions, considering an initial
design, the first-mode eigen equation of an n-DOF finite-

element model of the undamaged structure exists and is
given as

λ1Mϕ1 � Kϕ1, (1)

where λ1 and ϕ1 are the first-mode eigen value and corre-
sponding eigenvector separately and M and K are the n× n
analytical mass and stiffness matrices. In this paper, only the
first-order modal information of the system will be used to
identify the damage location and damage situation, and this
is also the important motivation for conducting this re-
search. Let ΔK be the exact perturbation matrices that reflect
the nature of the structural damage. +us, the exact per-
turbation matrices are sparse matrices with the nonzero
elements reflecting the state of damage. +e eigen equation
for the damaged structure is then

λ1dMϕ1d � (K − ΔK)ϕ1d, (2)

where λ1d and ϕ1d are the first-mode eigen value and cor-
responding eigenvector measured precisely, as the first-or-
der modal parameters of structures are the most easily
obtained dynamic information in experimental process. ΔK
is the n× n analytical mass and stiffness matrices:

ΔK � 
m

αmKm, (3)

where αm is a scalar denoting the damage extent corre-
sponding to them-th element and the ΔKmatrices represent
the effect of damage on the structural property matrices.
+us, the exact damage matrices are sparse matrices with the
nonzero elements reflecting the state of damage. Now
equation (2) can be rewritten in the dynamic residual form:

ΔKϕ1d � K − λ1dM( ϕ1d � D, (4)

where D is the defined residual mode vector related to the
first mode about the damaged system, and it could be
depicted as

D � d1, d2 , · · · dn 
T
, (5)

where superscript Tmeans transpose, and the same below,
the proposed residual mode vector is n× 1 column vector.
+en the location of damage element could be easily pro-
cessed based on the distribute regulation of the proposed
residual mode vector. Sort the elements in residual mode
vector in absolute descending order, and then one can easily
find that there is a great deal of differences: +e amplitude of
di in the proposed residual mode vector corresponding to the
damaged element is much larger than that of the undamaged
element; even, the elements in the proposed residual mode
vector corresponding to undamaged element tends to 0,
which could be used as the basis of filtering in the analysis
process.

Obviously, equation (4) is composed of n equilibrium
equations at nodes; based on the assumption that there is
only one element damaged at each node, for the node lo-
cation of the damage element, the stiffness of the inde-
pendent damage element is strictly proportional to the right-
hand side of equation (4), and its ratio is the damage
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coefficient to be calculated. Based on this principle, the
damage situation could be evaluated quantitatively.

In the end, this section summarizes the key steps as
follows:

Step 1: calculating the residual mode vector
For the target structure, calculate residual mode vector

by substituting the experimental results of first-order modal
information λ1 d and ϕ1d into equation (4).

Step 2: locating the damage element in structure and filter
Arrange the elements in the residual mode vector in the

descending order of their absolute values. Divide the pre-
vious element by the next, and the last damage element is
where the result tends to infinity, so as to locate the damage
element; then the element in residual mode vector corre-
sponding to the undamaged unit after positioning is arti-
ficially set to 0 to realize filtering.

Step 3: Verifying the results of location identification
List the elements in residual mode vector after filtering

according to their corresponding structural elements. Divide
the elements in residual mode vector corresponding to the
symmetrical node in the element, and the result whose
quotient is −1 is the damaged component, so as to verify the
results of location identification in Step 3, and prepare a new
list for identification of the damage situation quantitatively.

Step 4: Evaluating the damage coefficient
Take out the stiffness matrix of the damage element after

positioning, establish the balance equation on the node
position one by one according to the damage element code,
and complete the damage identification by evaluating the
damage coefficient of the balance equation.

To conclude this section, the process of the proposed
vibration measurements using only first-order modal in-
formation mainly involves two key influence factors: precise
of first mode information and sparse of element stiffness
matrix. More details are explained in the following nu-
merical examples.

3. Numerical Examples

3.1. Simply SupportedBeam. A 12-element simply supported
beam used in this example shown in Figure 1 is employed to
exercise the proposed method. +e basic parameters of the
beam are as follows: Young’s modulus E� 200GPa, density
ρ� 7.8×103 kg∕m3, length of each element L� 0.1m, and
cross-sectional area A� 2.5×10−3m2. +e finite-element
model of the structure has 26 degrees of freedom.

Let the beam element stiffness matrix in local coordi-
nation can be represented as

Ke �
EI

L
3

12 6L −12 6L

6L 4L
2

−6L 2L
2

−12 −6L 12 −6L

6L 2L
2

−6L 4L
2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (6)

+e corresponding element mass matrix is

Me �
ρA

420

156L 22L
2 54L −13L

22L
2 4L

3 13L
2

−3L
3

54L 13L
2 156L −22L

2

−13L −3L
3

−22L
2 4L

3

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (7)

+e local coordinate of each element is consistent with
the global coordination; hence, the coordination transfor-
mation is unnecessary; the element stiffness matrix repre-
sented by all element node displacements in the global
coordinate system is derived directly as equation (1). +e
deformation vector of each node in the overall coordinate
system is set as

V � v1 θ1 v2 θ2 . . . v12 θ12 v13 θ13 
T
. (8)

Take element 3, for example, the deformation vector
corresponding to Ke

3 can be expressed as

V3e � v3 θ3 v4 θ4 
T
. (9)

According to the relationship of the deformation vector
between local and global coordination, the element matrix
under global coordination system is given by

V3e � SV, (10)

where the connective matrix S is 4× 26, the element in row 1
and column 5 of S is 1; the element in row 2 and column 6 of
S is 1; the element in row 3 and column 7 of S is 1; the
element in row 4 and column 8 of S is 1; and the rest of the
elements of S is 0. +e connective matrix S can be expressed
as

S �

0 . . . 0
0

0

0

. . .

. . .

. . .

0

0

0

1 0 0
0

0

0

1

0

0

0

1

0

0 0 . . .

0

0

1

0

0

0

. . .

. . .

. . .

0
0

0

0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

4×26

.

(11)

+e elastic strain energy of element 3 can be derived
based on the energy theorem as

U3 � VT
3eK

e
3V3e. (12)
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Substitute equation (10) into equation (12), we can get

U3 � VTST3K
e
3S3,

V � VTKg
3V.

(13)

Hence, the element stiffness matrix of element 3 under
the global coordination can be expressed as

K
g
3 � S

T
3 K

e
3S3. (14)

+e element stiffness matrix under the global coordi-
nation could be derived similarly; then the whole stiffness
matrix of the beam is obtained as

K � 
12

i�1
1 − αi( Kg

i , (15)

where αi(0≤ αi < 1) is taken as an unknown variable
expressed as a damage coefficient of the corresponding el-
ement i, and for undamaged theoretical model, these damage
coefficients are all zeros.

With the same procedure, the whole mass matrix M
could be derived; then the modal equilibrium equation of the
undamaged structural system shown in equation (1) is
obtained, and the damage identification of the structure will
be studied with this equation. Obviously, for single element
in the global system, its element stiffness matrix is sparse,
which provides important clues for damage identification.

For the damaged beam, preset the damage coefficient
artificially as α2 � 0.15, α4 � 0.6, α8 � 0.13, and α10 � 0.3,
and the rest elements are intact. Figure 2 shows themeasured
first eigenvector ϕ1d of the damaged system, with which the
corresponding eigen value λ1d � 1033.5.

+en the first-order eigen value λ1d and eigenvector ϕ1d
of the damaged beam are substituted into equation (4) to
obtain the residual mode vector. Figure 3 shows the dis-
tribution diagram of residual mode vector obtained from
equation (4). +e vector is numbered according to the de-
grees of freedom (abscissa) of the element. Since each ele-
ment is statically self-balanced according to mode shape, the
residual mode vector corresponding to each element is
symmetric about the x-axis; hence the sum is 0.

+e first purpose in this analysis is to determine the
location of the damage. Arrange the absolute value of the
obtained residual mode vector from large to small in ac-
cordance with Step 2. It should be noted that for the absolute
value of residual mode vector from large to small, the
number of the corresponding abscissa in Figure 3 of each
ordered element of residual mode vector must be marked
first before the sorting, which is important for the subse-
quent damage detection work. +en, according to Step 3,
obtain the location map of damage element as shown in
Figure 4.+e abscissa is the number of degrees of freedom of

the unit, the ordinate is the ratio, the peak position in the
figure is 16, and each unit corresponds to four degrees of
freedom. +erefore, it is clear that four damaged elements
are present in the simply supported beam, which is con-
sistent with the presetting.

+e next step of this analysis is to verify the location of
the structural damage. Referring to Step 4, the residual mode
vector of the corresponding elements is arranged in Table 1
according to the node code of each element, and the first
variable of each element is divided by the third variable. +e
element whose quotient equals minus is the damage

1 2 3 4 5 6 7 8 9 10 11 12 13

12 × 0.1m = 1.2m

1 2 3 4 5 6 7 8 9 10 11 12

Figure 1: +e finite element model of simply supported beam.
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component, so as to verify the results of damage element
location in the third step. Obviously, the results of damage
location are consistent with the presetting, which verifies the
results of Step 3 again.

+e last step of this analysis is to determine the extent of
structural damage with the damage location according to
Step 4. Take out the stiffness matrix of the element after
damage location, and calculateKmϕ1d in the left-hand side of
equation (4), respectively, as shown in Figure 5. At the same
time, take out the residual mode vector of the damage el-
ement located in Table 1, and express it in Figure 5. By
comparison, for the given damage element, the elements in
Dm are proportional to the product vector of the element
stiffness matrix Km and the first-mode shape ϕ1d, and the
ratio is the damage degree αm.

As the located elements, 2, 4, 6, and 10 are discontinuous
members in this study, and the following formula can be
used to solve the damage coefficient:

αmKmϕ1d � Dm. (16)

Finally, the damage parameters obtained are listed in
Table 2. From the table, it can be easily seen that the results
calculated by this method are accurate solutions with
Equation (16) which reflects the advantage of the proposed
algorithm.

+e results in this section indicate that only the first
mode of the structure needs to be provided by the algorithm
proposed in this paper. Compared with the commonly used
identification methods, the experimental requirements were
not strict. +erefore, the proposed method has obvious
advantages for structural damage identification. +is paper
will continue to use an example of a frame structure to
further verify the results.

3.2. Two-Story Frame Structure. +e second example is a
two-story frame structure as shown in Figure 6. +is frame
was modeled with 24 equal elements of 0.2m in length.
Every node has 3 DOFs, an axial displacement, a transverse
displacement, and a rotation.+e properties of this structure
are as follows: cross-sectional areaA� 0.0336m2; moment of
inertia I� 1.6128×10−4m4; Young’s modulus E� 200GPa;
and density ρ� 2500 kg/m3.

+e stiffness matrix of frame element considering axial
deformation can be expressed as

Kef �
EA

L

1 0 0 −1 0 0

0 0 0 0 0 0

0 0 0 0 0 0

−1 0 0 1 0 0

0 0 0 0 0 0

0 0 0 0 0 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+
EI

L
3

0 0 0 0 0 0

0 12 6L 0 −12 6L

0 6L 4L
2 0 −6L 2L

2

0 0 0 1 0 0

0 −12 −6L 0 12 −6L

0 6L 2L
2 0 −6L 4L

2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(17)

+e corresponding element mass matrix is

Mef �
ρAL

6

2 0 0 1 0 0

0 0 0 0 0 0

0 0 0 0 0 0

1 0 0 2 0 0

0 0 0 0 0 0

0 0 0 0 0 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+
ρAL

420

0 0 0 0 0 0

0 156 22L 0 54 −13L

0 22L 4 0 13L −3L
2

1 0 0 0 0 0

0 54 13L 0 156 −22L

0 −13L −3L
2 0 −22L 4L

2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
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. (18)
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Figure 4: +e location map of the damage element.
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Table 1: Residual mode vector according to elements.

Element no. 1 2 3 4 5 6 7 8 9 10 11 12
Residual 0 7431.3 −7431.3 40591.4 −40591.4 743.4 −743.4 0 0.0 −15147.5 15147.5 0
Force 0 −805.2 1548.4 −18598.0 22657.1 −2504.3 2578.6 0 0.0 −5172.5 3657.8 0
Vector 7431.3 −7431.3 40591.4 −40591.4 743.4 −743.4 0.0 0 −15147.5 15147.5 0.0 0
Residual mode vector −805.2 1548.4 −18598.0 22657.1 −2504.3 2578.6 0.0 0 −5172.5 3657.8 0.0 0
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Figure 5: Residual mode vector according to damage location.

Table 2: +e evaluated damage parameters.

Element no 2 Element no 4 Element no 6 Element no 10
K2ϕ1d D2 α2 K4ϕ1d D4 α4 K6ϕ1d D6 α6 K10ϕ1d D10 α10
7431.2 49541.8 0.15 40591.3 67652.2 0.6 743.3 5718.2 0.13 −15147.5 −50491.6 0.3
−805.2 −5368.2 0.15 −18598 −30996.6 0.6 −2504.2 −19263.6 0.13 −5172.5 −17241.8 0.3
−7431.2 −49541.9 0.15 −40591.4 −67652.3 0.6 −743.3 −5718.2 0.13 15147.4 50491.6 0.3
1548.3 10322.4 0.15 22657.1 37761.8 0.6 2578.6 19835.4 0.13 3657.7 12192.6 0.3
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Taking element 3 as an example, suppose the element
stiffness matrix in the local coordinate system isK3ef , and the
displacement vector in the local coordinate system can be
expressed as

V3ef � u3a v3a θ3a u4b v4b θ4b 
T
. (19)

According to the energy theorem, the elastic strain
energy of the third element is known to be

U3ef � VT
3efK3efV3ef . (20)

+e relationship between the deformation of element
component 3 in the local coordination and the global co-
ordination needs to transform in the numerical model as the
local coordinate of each element is inconsistent with the
global coordination, which is different from the simply
supported beam example.

+e displacement vector in the global coordinate system
can be expressed as

V3g � u3 v3 θ3 u4 v4 θ4 
T
. (21)

+en the mapping relationship between local coordi-
nates and global coordinates can be found as [30]

V3g � PV3ef , (22)

where the matrix P representing the mapping relationship is
a 6× 6 matrix as

P3 �

cos α3(  −sin) 0 0 0 0

sin α3(  cos α3(  0 0 0 0

0 0 1 0 0 0

0 0 0 cos α3(  −sin α3(  0

0 0 0 sin α3(  cos α3(  0

0 0 0 0 0 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (23)

where a3 is the rotation angle of element 3 in the frame, and
obviously the angle is π/2. By substituting equation (22) into
equation (20), the following equations can be obtained by
energy theorem as

U3ef � VT
3g P−1

3 
T
K3efP

−1
3 V3g. (24)

+us, the stiffness matrix of element 3 under the global
coordination can be derived as

K3eg � P−1
3 

T
K3efP

−1
3 . (25)

Furthermore, the stiffness matrix of element 3 repre-
sented by the overall displacement vector of the frame
structure in the global coordination is derived directly. +e
deformation vector of each node in the global coordination
is set as

Vf � u1 v1 θ1 . . . u24 v24 θ24 
T
. (26)

As the simple supported beam model in example 1, the
connective relationship between the element displacement
vector and the overall displacement vector is given by

V3g � SVf , (27)

where the connective matrix S is 6× 72. According to the
corresponding relationship of Vf and V3g, the connective
matrix S3 can be expressed as

S3 �

0 . . . 0

0 . . . 0

0 . . . 0

1 0 0

0 1 0

0 0 1

0 0 0

0 0 0

0 0 0

0 . . . 0

0 . . . 0

0 . . . 0
0 . . . 0

0 . . . 0

0 . . . 0

0 0 0

0 0 0

0 0 0

1 0 0

0 1 0

0 0 1

0 . . . 0

0 . . . 0

0 . . . 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (28)

where the element in row 1 and column 7 of S3 is 1; the
element in row 2 and column 8 of S3 is 1; the element in row
3 and column 9 of S3 is 1; the element in row 4 and column
10 of S3 is 1; the element in row 5 and column 11 of S3 is 1;
the element in row 6 and column 12 of S3 is 1; and rest of the
elements of S is zero. Substitute equation (27) into equation
(24), the strain energy can be deduced as

U3e � VTST3K3eg,

S3V � VTKg
3V.

(29)
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Figure 6: Two-story frame structure.
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Figure 8: Component schematic diagram: (a) the amount of Kmϕ1 d. (b) +e residual mode vector of the damage element.
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Substitute equation (25) into equation (29), then the
stiffness matrix of element 3 under the global coordination
can be expressed by the overall displacement vector as

Kg
3 � ST3 P−1

3 
T
K3efP

−1
3 S3. (30)

+e element stiffness matrix of the rest elements in global
coordination can be obtained by the same procedure. Ob-
viously, for each single element component, the stiffness
matrix is a sparse matrix, and its sparse property is the key
foundation of the proposed damage identification method.

As the next step is establishing the whole stiffness matrix
of the structure system in global matrix, the element stiffness
matrix under the global coordination could be derived
similarly, and the whole stiffness matrix of the frame
structure can be expressed as

K � 
24

i�1
1 − αi( Kg

i , (31)

where αi(0≤ αi < 1) is taken as an unknown variable
expressed as the damage coefficient corresponding to ele-
ment i, and for undamaged theoretical model these damage
coefficients are all zeros. With the same procedure, the whole
mass matrixM could be derived by the element mass matrix
in equation (18), then the modal equilibrium equation of
undamaged structural system shown in formula (1) is ob-
tained, and the damage identification of the structure could
be studied based on it. +e stiffness of the single element in
the global system is spare, whose nodal points are coupled.
+us, it would provide important clues for damage iden-
tification obviously.

For the damaged frame structure, we could preset the
damage coefficients artificially as α2 � 0.15, α4 � 0.3,
α8 � 0.13, α10 � 0.6, α14 � 0.23, and α18 � 0.4, and the rest
elements are intact. Figure 7 shows the measured first ei-
genvector ϕ1d of the damaged system, with which the cor-
responding eigen value λ1d � 58814.7. +e same operation
could be operated for damage identification of frame struc-
tures, which takes an example of the previous proposed beam.

+e first-order eigen value λ1d and eigenvector ϕ1d of
the damaged beam are substituted into equation (4) to
obtain the residual mode vector. Take out the stiffness matrix
of the element after damage location, and calculate the
amount of Kmϕ1d in the left-hand side of equation (4),
respectively, as shown in Figure 8(a) and take out the re-
sidual mode vector of the damage element and express it in

Figure 8(b). By comparison, for the given damage element,
the element value in residual mode vector is proportional to
the product vector of the element stiffness matrixKm and the
first mode shape ϕ1d, and the ratio is the damage degree αm.

+e damage coefficients can be evaluated by equation
(16). Table 3 shows the amount of Kmϕ1d in the left-hand
side of equation (16), and the residual mode vector corre-
sponding to the located damage members of the frame
structure. From the table, it can be seen that the results
calculated by this method are accurately the same as those
preset, which further proves the reliability of this proposed
method.

According to the solution results of the two numerical
examples, only the first-order mode of the structure needs to
be measured by the method developed in this paper.
Compared with the commonly used identification method,
the experimental requirements are not strict, and the
measured results are accurate solutions, so the solution
results are better than the approximate methods such as
sensitivity method, which is worth popularizing. +erefore
this research develops a new strategy of structural damage
identification based on first-order mode and opens up a new
way for structural damage identification based on the dy-
namic test.

4. Conclusions

+is study presents an accurate algorithm for structural
damage identification and location based on the measured
first-order modal information of structure according to the
sparse characteristics of the element stiffness matrix. +e
only location results required in determining the damage in
the first-order modal equilibrium equation is the common
residual mode vector whose nonzero elements are corre-
sponding to the damaged member in the structure system.
Finally based on the location results, the mechanical balance
equation of the residual deformation of the located element
is formulated for determining the damage extent. +e
proposed method has the advantages of low calculation
resource requirement, fast positioning speed, and high
recognition accuracy. As the higher order modal informa-
tion could not be acquired sufficiently with the current
technology, the process of computing the extent of structural
damage using the proposed algorithm is shown to be
computationally attractive and hence suitable for large-scale
problems.

Table. 3: +e evaluated damage parameters.

Element no 2 Element no 4 Element no 8 Element no 10 Element no 14 Element no 18
K2ϕ1 d D2 K4ϕ1 d D4 K8ϕ1 d D8 K10ϕ1 d D10 K14ϕ1 d D14 K18ϕ1 d D18

3211025 481653.7 3581720 1074516 −440108 −57214 4332774 2599664 321187.5 73873.12 −2235587 −894235
5930163 889524.4 7166890 2150067 3836174 498702.6 4061953 2437172 2002432 460559.4 2652865 1061146
−993756 −149063 330389.7 99116.92 −765979 −99577.2 −524497 −314698 419546.6 96495.72 −681415 −272566
−3211025 −481654 −3581720 −1074516 440108 57214.04 −4332774 −2599664 −321187 −73873.1 2235587 894234.8
−5930163 −889524 −7166890 −2150067 −3836174 −498703 −4061953 −2437172 −2002432 −460559 −2652865 −1061146
351551.4 52732.71 −1046734 −314020 1533214 199317.8 −342058 −205235 −19060.2 −4383.84 234297.8 93719.13

α2 � 0.15 α4 � 0.3 α8 � 0.13 α10 � 0.6 α14 � 0.23 α18 � 0.4
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