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)ermal conductivity is an important thermal parameter in engineering design in cold regions. By measuring the thermal conductivity of
clay using a transient hot-wire method in the laboratory, the influential factors of the thermal conductivity of soils during the freezing
process were analyzed, and a predictive model of thermal conductivity was developed with an artificial neural network (ANN) technology.
)e results show that the variation of thermal conductivity can be divided into three stages with decreasing temperature, positive
temperature stage, transition stage, and negative temperature stage.)e thermal conductivity increases sharply in the transition stage.)e
difference between the thermal conductivity at positive and negative temperature is small when the dry density of the soil specimens is
larger than the critical dry density, while the difference is large if the dry density is less than the critical dry density. As the negative
temperature decreases, the larger the moisture content of the soil specimens, the larger the increase of thermal conductivity. )e effect of
initial moisture content on thermal conductivity is more significant than that of dry density and temperature.)e change tendency of the
thermal conductivity calculated by the established ANN model is basically consistent with that of the laboratory-measured values, in-
dicating that this model can be able to accurately predict the thermal conductivity of the soil specimens in the freezing process.

1. Introduction

)e thermal conductivity of soils is an important thermal
parameter for modeling the freeze-thaw process of soils and
determining the frozen and thawed depth of soils [1]. And
the thermal conductivity represents the heat conduction of
soils, which will affect the heat transfer process of soils. As
we need economic development, more major projects will be
built in cold regions, and their thermal stability is crucial for
the operation. )erefore, it is very important to study the
variation and predictive models of the thermal conductivity
of soils during a freezing process.

)e thermal conductivity of soils is mainly affected by
mineral types, moisture content, dry density, temperature,
and grain size [2–11]. A large number of studies have an-
alyzed the variation of the thermal conductivity of soils

under the influence of various factors and established the
empirical relationship between the thermal conductivity and
the impacting factors. )e thermal conductivity of soils
increases with increasing moisture content [2, 3, 7, 8].
However, the increase of the thermal conductivity of soils in
the frozen and thawed status is different, which is mainly
caused by the phase transition of water in the frozen state
[12]. For a special soil, a power function relationship can be
established between the thermal conductivity and the
moisture content of soils [13]. )e thermal conductivity of
soils increases with increasing dry density [2, 7, 14]. )e
influence of moisture content on thermal conductivity is
more significant than that of dry density [15]. )e thermal
conductivity of soils increases with decreasing temperature
[4, 8]. )e thermal conductivity of soils in the frozen state is
larger than that in the thawed state [4], and the variation of the
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thermal conductivity with temperature is related to moisture
content [4]. Some studies indicated that the porosity and
degree of saturation affect the thermal conductivity of sandy
soils [16, 17], and the thermal conductivity of sand increases
with decreasing porosity and increasing degree of saturation
[17]. In addition, soil particle size, structure, and bulk density
also affect the thermal conductivity of soils [2, 8, 18]. )e
thermal conductivity of coarse-grained soils is larger than that
of fine-grained soils [2, 8, 18].

Many types of predictive models of thermal conductivity
have been proposed, mainly divided into theoretical, em-
pirical, and other models [19]. In terms of theoretical models,
Wiener [20] established the series and parallel models of the
thermal conductivity based on the heat flow direction and the
arrangement of three-phases of porous media. According to
Maxwell’s equation, Devries [21] assumed that the solid
particles of soils were uniformly distributed in the continuous
pore fluid and proposed a theoretical model of the thermal
conductivity of soils. Johansen [22] proposed a weighted
geometric averagemodel to calculate the thermal conductivity
of soils. In terms of empiricalmodels, Kersten [4] used a single
thermal probe method to test the thermal conductivity of 19
different types of soils by considering the effect of moisture
content and dry bulk density and established the empirical
equations of the thermal conductivity for silt and clay soils
and sandy soils in the frozen and unfrozen state, respectively.
Johansen [22] firstly proposed the concept of the normalized
thermal conductivity (λr), namely, “Kersten’s number, Ke,”
expressed the moisture content and dry density in the Kersten
[4] model by a degree of saturation, and normalized the
moisture content and dry density. Cote and Konrad [23]
proposed a new normalized thermal conductivity model
based on the research of Johansen [22]. Chen [17] established
the empirical equation of the thermal conductivity based on
the porosity and degree of saturation and compared the
calculated results with the experimental results and the results
in the published literature. And Bi et al. [24] proposed a
generalizedmodel for the thermal conductivity of the freezing
soils based on frost heave and components of soils.

Artificial neural networks (ANNs) are also widely used in
the prediction of thermal parameters [9, 25]. Some researchers
used the ANN models to calculate the thermal conductivity
[9, 26–28] and thermal diffusivity [29] of soils. He and Huang
[26] used the BP neural network model to determine the
thermal conductivity of soils by analyzing the relationship
between the thermal conductivity and the physical property
index of soils and pointed out that the predicted thermal
conductivity is close to the measured thermal conductivity
values. Based on the ANN technology, Zhang et al. [27] cal-
culated the layered thermal conductivity of the undisturbed
soils in the field by taking moisture content and porosity as
input layer neurons and the thermal conductivity as the output
layer neuron. Zhang et al. [9] established an individual model
of the thermal conductivity for different types of soils and a
generalized model by considering the influence of soil types via
ANN technology, compared the predicted thermal conduc-
tivity with the calculated results of three empirical models, and
pointed out that the predicted results of the two ANN models
are close to the measured thermal conductivity values.

In the published research studies, when calculating the
thermal conductivity of soils considering the frozen and
thawed status of soils, the influence of the variation of the
temperature of the soil in the freezing process on the
thermal conductivity model is considered in few studies.
Although the ANN models have been successfully used to
predict the thermal conductivity of soils, the applicable
condition of each predictive model is different, the influ-
ence of the variation of negative temperature on the
thermal conductivity is less considered in the predictive
models, and the ANN technology is seldom used to es-
tablish the predictive models of the thermal conductivity of
soils during a freezing process. )erefore, the objective of
this study is to understand the variation of the thermal
conductivity of clay under various impacting factors during
a freezing process where the temperature changes from
positive to negative and to develop a predictive model of
the thermal conductivity of soil during the freezing process
by ANN technology. )e thermal conductivity of clay is
measured in the laboratory, and the effects of initial
moisture content, initial dry density, and temperature on
the thermal conductivity of soils are analyzed. Based on
this, considering the influence of initial moisture content,
initial dry density, and temperature on thermal conduc-
tivity, a predictive model of the thermal conductivity of
soils is developed via ANN technology, which can com-
pletely calculate the thermal conductivity of soils when the
temperature changes from a positive value to a negative
value. And it is validated by comparing the predicted
thermal conductivity results with the measured thermal
conductivity results.

2. Experimental Materials and Methods

2.1. Experimental Materials. In this study, the clay used for
the test was obtained from the Lianghekou region, Sichuan
province, China. Figure 1 shows the grain size distribution
curve of clay. Figure 2 shows the compaction curve of clay.
)emaximum dry density is 1.78 g/cm3.)e optimumwater
content by weight is 17.0%.)e basic physical parameters for
the soil specimens are listed in Table 1.

In order to study the variation of the thermal conductivity
of soils in the compacted and loose status, the thermal con-
ductivity of soils over a wide range of dry densities of about
1.00∼1.92 g/cm3 was tested. )e interval within the large dry
density was small, and the interval within the low dry density
was large; the main purpose is to highlight and analyze the
variation of the thermal conductivity of the compacted soils.
)e temperature decreased step by step from 5°C to −10°C in a
freezing process.)e soil specimens were divided into 4 groups
according to the initial moisture content of different soil
specimens, and a total of 192 soil specimens were measured.
)e specific experimental conditions are shown in Table 2.

2.2. Experimental Methods

2.2.1. Specimen Preparation Process. Firstly, soils were air-
dried and crushed, sieved over 2mm, and the air-dry
moisture content of soils was measured by the drying
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method. Secondly, according to the experimental condi-
tions, different amounts of distilled deionized water were
added to prepare soil samples with different initial moisture
content. Soil samples were stored in a sealed bag for 24h to
make the moisture in the soil samples uniformly distributed.
)en, the soils were compacted layer by layer in a cylindrical
mold. In order to ensure that the dry density of the upper and
lower parts of the soil specimenswas basically the same, the soil
specimens were compacted from the upper and lower ends.

)e dry density of the soil specimens was controlled by
controlling the height and quality of each layer of the soil
specimens. In this way, cylinder soil specimens with different
initial moisture content and dry density (Table 2) were ob-
tained with a diameter of 61.8mm and a height of 50mm.
Finally, the soil specimens were quickly covered with plastic
film to keep the moisture content unchanged and were stored
for 24 h, so as to ensure that the moisture was uniformly
distributed in the soil specimens.

Table 1: Basic physical parameters for the soil specimens.

Optimum water content ωop

(%)
Maximum dry density ρdmax

(%)
Liquid limit WL

(%)
Plastic limit WP

(%)
Soil specific gravity Gs

(g/cm3)

17.0 1.78 36.9 19.8 2.72

Table 2: Experimental conditions.

Impacting factors Initial moisture content (%) Initial dry density (g/cm3) Temperature (°C)

Experimental conditions

14 1.92, 1.88, 1.82, 1.73, 1.63, 1.58, 1.44, 1.15 5, 1, −0.5, −1, −5, −10
16 1.9, 1.86, 1.81, 1.71, 1.62, 1.52, 1.43, 1.14 5, 1, −0.5, −1, −5, −10
18 1.72, 1.68, 1.62, 1.54, 1.45, 1.36, 1.27, 1.09 5, 1, −0.5, −1, −5, −10
20 1.69, 1.65, 1.6, 1.51, 1.42, 1.33, 1.24, 1 5, 1, −0.5, −1, −5, −10
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Figure 1: Grain size distribution curve of clay.
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2.2.2. Test Process of;ermal Conductivity. In this study, the
thermal conductivity of the soil specimens was measured by
a )ermal Properties Analyzer (Anter Quickline-30) (Fig-
ure 3), the measuring range is 0.3 ∼ 2.0W/(m·K), and the
instrument accuracy is ± 0.0001W/(m·K). )e )ermal
Properties Analyzer is mainly based on the transient hot-
wire method to determine the thermal conductivity of the
soil specimens. Firstly, the temperature of the thermostat
(the accuracy is ± 0.01°C) was set to 5°C; when the real-time
temperature in the thermostat was the same as the preset
temperature, the soil specimens and the instrument probe
were placed into the thermostat together. After about 24 h,
both the temperature inside the soil specimens and that of
the probe were constant at 5°C. Secondly, the probe was
placed on the top surface of the soil specimen; after the
temperature of the )ermal Properties Analyzer stabilized,
the thermal conductivity of the upper end of the soil
specimen was measured. )en, the lower end of the soil
specimen was put upwards, and the probe was placed to
measure the thermal conductivity. )e average of the two
measured results was taken as the thermal conductivity of
the soil specimen. Finally, according to the designed ex-
perimental temperature, the temperature of the thermostat
was adjusted step by step in a freezing process, and the
thermal conductivity of the soil specimens was measured at
each temperature in a freezing process in accordance with
the previous steps. At each temperature, in order to make the
temperature of the soil specimens reach stabilization, the soil
specimens were stored in the thermostat for about 6 h before
the thermal conductivity was measured. And in the tran-
sition process where the temperature changes from positive
to negative, the stored time of the soil specimens is about
12 h.

3. Experimental Results and Discussion

)e impacting factors of the thermal conductivity of soils
mainly include mineral component, moisture content, dry
density, temperature, and freeze-thaw cycles
[6, 8, 12, 22, 27]. )e variation of the thermal conductivity of
the soil specimens under the effect of initial moisture
content, initial dry density, and temperature will be mainly
analyzed in this section. Based on this, the ANN technology
is used to develop a predictive model for calculating the
thermal conductivity of the soil specimens under the same
experimental conditions.

3.1. Variation of the ;ermal Conductivity of the Soil
Specimens

3.1.1. Influence of Initial Dry Density and Moisture Content
on ;ermal Conductivity. )e variation of the thermal
conductivity of the soil specimens with dry density is shown
in Figure 4. Under the same initial moisture content of the
soil specimens and temperature, the thermal conductivity of
the soil specimens increases with increasing dry density, and
there is basically a linear change between the two (Figure 4).
)e main reasons for the increase of the thermal conduc-
tivity of the soil specimens with increasing dry density are

that, on the one hand, the increase in dry density will in-
crease the content of solid particles inside the soil specimens
and the connectivity between soil skeletons and then will
increase the heat conduction of the soil specimens. On the
other hand, both the pores and porosity of the soil specimens
decrease, and the thermal conductivity of the soil skeleton is
far larger than that of air (Table 3); then, the thermal
conductivity of the soil specimens increases. For a given
moisture content, the increase of the thermal conductivity of
the soil specimens with dry density is independent of
temperature.

In addition, the moisture content of soils is one of the
impacting factors of the thermal conductivity of soils. It can
be seen from Figure 4 that at the temperature of 5°C and
−10°C, the thermal conductivity with the moisture content
of 14% at the dry density of 1.44 g/cm3 is 0.55W/(m·K) and
0.87W/(m·K), respectively; and the thermal conductivity
with the moisture content of 20% at the dry density of 1.42 g/
cm3 is 1.19W/(m·K) and 1.48W/(m·K), respectively. It
indicates that the dry density of the soil specimens with the
moisture content of 20% and 14% is basically the same, while
the thermal conductivity with the moisture content of 20% is
larger than that with the moisture content of 14% at positive
and negative temperatures. )e main reasons for this
phenomenon are that, on the one hand, as the moisture
content of the soil specimens increases, the pores in the soil
specimens will be filled with water, the air in the pores will be
expelled, the porosity of the soil specimens will decrease, and
the thermal conductivity of water is far larger than that of air.
On the other hand, the increase in the moisture content will
reduce the space between soil particles and will increase the
thermal conduction of soil particles.

3.1.2. Influence of Temperature on ;ermal Conductivity.
)e influence of temperature on the variation of the thermal
conductivity of the soil specimens is shown in Figure 5. )e
results showed that, under the same initial moisture content
and dry density, the variation of the thermal conductivity of the
soil specimens with temperature can be roughly divided into
three stages. In Stage I, positive temperature stage (5∼1°C), the
thermal conductivity of the soil specimens decreases slightly
with decreasing temperature. )e main reason for this phe-
nomenon is that, in this stage, the movement of water mol-
ecules inside the soil specimens is intense with increasing
temperature, which will increase the heat exchange capacity
inside the soil specimens. In Stage II, the transition stage from
positive to negative temperature (1∼−1°C), the thermal con-
ductivity of the soil specimens sharply increases with de-
creasing temperature. )e main reasons for this phenomenon
are that, firstly, when the temperature is up to the freezing point
within this change range of temperature, the water in the soil
specimens will transform into ice, the solid phase of the three-
phases system will change from soil skeleton to soil skeleton
and ice, the volume of the soil specimens will increase, and the
content of unfrozen water, air, and the pores in the soil
specimens will decrease. Secondly, the thermal conductivity of
ice is about 4 times that of water and far larger than that of air
(Table 3). In Stage III, negative temperature stage (−1∼−10°C),
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as the negative temperature continues to decrease, the thermal
conductivity of the soil specimens continues to increase, but the
increase is small. )is is because although the negative tem-
perature decreases, the limited water in the soil specimens
limits the increase of ice.

It can be found from Figure 5 that, for given initial
moisture content, the difference between the thermal con-
ductivity of the soil specimens at positive and negative
temperatures is related to the dry density. )ere is a critical
dry density; when the dry density is larger than the critical
dry density, the difference between the thermal conductivity
of the soil specimens at positive and negative temperatures is
small, indicating that the thermal conductivity is less affected
by temperature. However, when the dry density is less than
the critical dry density, the difference between the thermal
conductivity of the soil specimens at positive and negative
temperatures is large, indicating that the thermal conduc-
tivity is greatly affected by temperature. )e main reason for

the above phenomenon is that the soil specimens with low
dry density are loose and with many pores in them; after the
water in the soil specimens transforms into ice under the
negative temperature condition, the reduction of pores in
the soil specimens is more obvious, and the thermal con-
ductivity of ice is much greater than that of air (Table 3).

According to the calculation, the average increment of the
thermal conductivity of the soil specimens between the initial
moisture content of 20% and 14% is 0.05W/(m·K); that of the
soil specimens between the maximum and minimum initial
dry density is 0.024W/(m·K); that of the soil specimens
between the temperature of 5°C and −10°C is 0.021W/(m·K).
It can be seen that, under the influence of different impacting
factors, the increase of the thermal conductivity of the soil
specimens from large to small is as follows: initial moisture
content, initial dry density, and temperature. It indicates that
the initial moisture content has the greatest effect on the
thermal conductivity, followed by the initial dry density and
temperature.

3.2. Development of the ANNModel. In this paper, based on
the experimental results, a predictive model of the thermal
conductivity of the soil specimens is developed via the ANN
technology, and the calculated results are compared with the
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Figure 3: Experiment apparatus for thermal conductivity. (a) Photograph. (b) Schematic diagram.
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Figure 4: Variation of the thermal conductivity of the soil specimens with dry density. (a) w � 14%. (b) w � 20%.

Table 3: )ermal conductivity of basic constituents of soils [12].

Basic constituents Water Ice Air Soil skeleton
)ermal
conductivity/(W/(m · K))

0.465 2.21 0.024 1.2 ∼ 7.5
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laboratory-measured results to validate the correctness of
the calculated results of the model.

3.2.1. Establishment of the ANNModel. ANN is a multilayer
feed-forward neural network, which is composed of an
input layer, hidden layer, and output layer, and each layer
is composed of different numbers of neurons. In this
calculation process, there are 3 neurons in the input layer,
including initial moisture content, initial dry density, and
temperature of the soil specimens. And there is only one
neuron in the output layer, which is the predicted thermal
conductivity of the soil specimens. Figure 6 shows the
schematic diagram of the structure of the ANN model to
calculate the thermal conductivity of the soil specimens.
And x, hl, and y denote the neuron of the input layer,
hidden layer, and output layer, respectively. Each neuron
in the input layer is connected with each neuron in the
hidden layer by weights, and each neuron in the hidden
layer is connected with the neuron in the output layer by
weights.

)e ANN uses the Backpropagation algorithm, and the
learning process is mainly divided into two stages. )e first
stage is to input the known learning soil specimens and to
calculate the output of each neuron backward from the input
layer of the network by setting the structure of the network
and the weights and thresholds of the previous iteration;
then, the output of each neuron is calculated backward from
the input layer of the network. )e second stage is to modify
the weights and thresholds, to calculate the effect of each
weight and threshold on the total error from the output
layer, and then tomodify each weight and threshold.)e two
stages are repeated alternately until the convergence is
reached.

In addition, the training and test process of multilayer
perceptrons (MLPs) are carried out in the ANN toolbox of
Matlab 2019. )e software is widely used in algorithm

development, data analysis, data visualization, and nu-
merical calculation [30].

3.2.2. Parameters Setting. In the general calculation process
of the ANN model, the data set is mainly divided into two
subsets: the training and validation set. However, it was
found that dividing the data set in this way will lead to the
model overfitting [31]. And overfitting will prevent the
MLPs from properly generalizing the new data in the
memory training patterns [32]. )erefore, the data set is
divided into three subsets in this calculation process, which
are used for training, validation, and testing, respectively,
and accounting for 58%, 17%, and 25% of all data. )e
training data is mainly used to update the weights of the
ANN and to establish the most suitable structure of the
neural network [25]. )e validation data is used to verify the
validity of the established model. )e testing data is used to
determine the thermal conductivity of soils and to validate
the accuracy of the model.

)e calculated requirements can be met when a network
is with one hidden layer [33]; hence, one hidden layer is used
in this paper. In addition, the number of neurons in the
hidden layer directly affects the performance of the ANN
model [27]. )erefore, the number of neurons in the hidden
layer is very important for choosing the appropriate
structure of the ANN model. )e empirical calculation
equation for the number of neurons in the hidden layer is
[30]

n �
������
ni + n0

√
+ a, (1)

where n is the number of neurons in the hidden layer, ni is
the number of neurons in the input layer, n0 is the number of
neurons in the output layer, and a is a constant in the range
of 1∼10. )en, the range of n in this calculation is 3∼12.
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Figure 5: Variation of the thermal conductivity of the soil specimens with temperature. (a)w � 14%. (b)w � 20%.
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)e optimum number of neurons in the hidden layer can
be obtained by the following steps: firstly, selecting the
number of neurons in the hidden layer to be 3 to train the
model, and then, sequentially adding one neuron in the
hidden layer for training. When the errors of training,
validation, and testing results begin to increase, the training
process is terminated. )e number of neurons in the hidden
layer is considered most appropriate when the errors of
training, validation, and testing are small.

We adopt the sigmoid differentiable function as the
transfer function of the hidden and output layer of the ANN.
)en, the input and output data should be normalized to the
range of 0∼1, and the calculation equation is

xn �
xmax − x

xmax − xmin
, (2)

where xn is the normalized data, xmax and xmin are the actual
maximum and minimum value, respectively, and x is the
actual input and output data.

Table 4 shows the boundary values of the input and
output data.

)e Levenberg–Marquardt method was used for training
the network. )e maximum number of network iteration
epochs and the expected error goal were selected as 1000
times and 0.0000001, respectively. )e learning rate (lr) was
selected as 0.01 so as to obtain the most suitable structure of
the ANN model.

3.2.3. Model Verification. )e comparison between the pre-
dicted thermal conductivity of the soil specimens during the
training, validation, and testing process of the model with the
laboratory-measured thermal conductivity values is shown in
Figure 7. )e predicted thermal conductivity values during
training, validation, and testing are relatively close to the
measured thermal conductivity values (Figure 7), indicating that
the structure of the established ANN model is reasonable.

In addition, in this study, the correlation coefficient (R2),
square root error (RMSE), mean absolute error (MAE), and
variance (VAF) are selected to further validate the accuracy
of the calculated results of the established ANN model. )e
calculation equations are as follows:

RMSE �

�����������

1
n

􏽘

n

i�1
yi − yi
′( 􏼁
2

􏽶
􏽴

,

VAF � 1 −
var y − y′( 􏼁

var(y)
􏼢 􏼣 × 100%,

(3)

where n is the number of the soil specimens, yi is the
laboratory-measured thermal conductivity, yi

′ is the thermal
conductivity calculated by the model, and var is an ab-
breviation of variance. If the values of R2 and VAF are close
to 1, RMSE and MAE are close to 0; it means that the
predicted thermal conductivity values of the model are close
to the measured thermal conductivity values, and the pre-
dicted result is more accurate.

3.2.4. Performance Assessment of the Established Model.
)e comparison of the thermal conductivity of the soil
specimens with the initial moisture content of 16% calcu-
lated by the ANN model with the laboratory-measured
thermal conductivity is shown in Figure 8. )e subscripts m
and p of ρdm and ρdp denote the measured and predicted
values, respectively. Under the same initial moisture content
and dry density, the change tendency of the predicted results
by themodel is basically consistent with that of themeasured
results with temperature, and the two are relatively close, but
the predicted values of the model are slightly larger than the
measured values (Figure 8(a)). )e correlation coefficient
(R2) between the predicted values of the model and the
measured values is high, which is 0.9869 (Figure 8(b)).
Table 5 shows the values of R2, RMSE, MAE, and VAF of the
predicted results of the model compared with the measured
results. )e values of R2 and VAF are greater than 0.95 and
95%, respectively (Table 5). It indicates that the established
ANN model can accurately predict the thermal conductivity
of the soil specimens.

)e proposed model can be applied to calculate the
thermal conductivity of clay in the frozen and unfrozen
states and further used to calculate and analyze the variation
of the temperature field of soils in cold regions and to es-
timate the frozen depth of soil.

X1

X2

X3

hln

hln–1

hl2

hl1

y

Moisture content

Dry density
Thermal

conductivity

Input layer Hidden layer Output layer

Temperature

Figure 6: Schematic diagram of the structure of ANN model.
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Table 5: Comparison of the parameter values of the predicted thermal conductivity results of the model with the measured thermal
conductivity results.

Data sets R2 RMSE (W/(m · K)) MAE (W/(m · K)) VAF (%)
Training 0.9974 0.02 0.04 99
Testing 0.9869 0.09 0.1 98
Validation 0.9561 0.11 0.1 95

Table 4: Boundary values of the input and output data.

Data Variable Maximum value Minimum value

Input data
Moisture content (%) 20 14
Dry density (g/cm3) 1.92 1
Temperature (°C) 5 −10

Output data )ermal conductivity (W/(m · K)) 1.83 0.36
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Figure 7: Comparison of the predicted thermal conductivity values of the soil specimens by ANN with the measured thermal conductivity
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Figure 8: Comparison of the thermal conductivity of the soil specimens with the initial moisture content of 16% predicted by themodel with
the measured values. (a) Variation curve with temperature. (b) Fitting curve.
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4. Conclusions

)is paper measures the thermal conductivity of clay under
the influence of initial moisture content, initial dry density,
and temperature. )en, the variation of the thermal con-
ductivity of the soil specimens during a freezing process
where the temperature changes from positive to negative is
analyzed, and a predictive model is developed via the ANN
technology to calculate the thermal conductivity of the soil
specimens under the same experimental conditions. )e
main conclusions are drawn:

(1) )e thermal conductivity of soils is affected by
initial moisture content, initial dry density, and
temperature, and the initial moisture content plays
a dominant role. As the initial moisture content
and initial dry density of the soil specimens in-
crease, the thermal conductivity of the soil spec-
imens increases

(2) During different variation stages of temperature,
the variation of the thermal conductivity of the soil
specimens is different. In the transition stage, the
increase of the thermal conductivity is large be-
cause water transforms into ice. )e variation of
the thermal conductivity with temperature is re-
lated to the initial moisture content and dry
density of the soil specimens. )e difference be-
tween the thermal conductivity of the soil speci-
mens at positive and negative temperatures is
small when the dry density is larger than the
critical dry density, while that of the soil specimens
is large when the dry density is less than the critical
dry density. As the negative temperature decreases,
the larger the moisture content, the larger the
increase of the thermal conductivity of the soil
specimens

(3) )e change tendency of the thermal conductivity
calculated by the predictive model based on ANN is
consistent with that of the laboratory-measured
thermal conductivity, and both are close. Both the
values of R2 and VAF of the thermal conductivity
calculated by the model and the measured thermal
conductivity are close to 1, and RMSE and MAE are
lower than 0.11 W/(m · K) and 0.1 W/(m · K), re-
spectively. It indicates that the structure of the
established model is reasonable, which can accu-
rately calculate the thermal conductivity of clay.
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