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)is study develops and tests an automatic pixel-level image recognition model to reduce the amount of manual labor required to
collect data for road maintenance. Firstly, images of six kinds of pavement distresses, namely, transverse cracks, longitudinal
cracks, alligator cracks, block cracks, potholes, and patches, are collected from four asphalt highways in three provinces in China
to build a labeled pixel-level dataset containing 10,097 images. Secondly, the U-net model, one of the most advanced deep neural
networks for image segmentation, is combined with the ResNet neural network as the basic classification network to recognize
distressed areas in the images. Data augmentation, batch normalization, momentum, transfer learning, and discriminative
learning rates are used to train the model. )irdly, the trained models are validated on the test dataset, and the results of
experiments show the following: if the types of pavement distresses are not distinguished, the pixel accuracy (PA) values of the
recognition models using ResNet-34 and ResNet-50 as basic classification networks are 97.336% and 95.772%, respectively, on the
validation set. When the types of distresses are distinguished, the PA values of models using the two classification networks are
66.103% and 44.953%, respectively. For the model using ResNet-34, the category pixel accuracy (CPA) and intersection over union
(IoU) of the identification of areas with no distress are 99.276% and 99.059%, respectively. For areas featuring distresses in the
images, the CPA and IoU of the model are the highest for the identification of patches, at 82.774% and 73.778%, and are the lowest
for alligator cracks, at 14.077% and 12.581%, respectively.

1. Introduction

)e traditional way of pavements distress evaluation in-
volves manual visual inspection and measurement. )is is
labor intensive, hinders traffic, and poses risk to workers’
safety. It is also inefficient and inaccurate and makes it
difficult to objectively assess the pavement condition. To
improve the situation, cameras [1] and intelligent vehicles
[2] have been used to capture images of the surfaces of
pavements to obtain a large amount of data that are then
analyzed manually. Such semiautomatic (in terms of image
acquisition) and semimanual (in terms of distress identifi-
cation) methods still require a large amount of labor. To
address this issue, researchers have proposed methods for
the automatic identification of pavement distresses using
image analysis.

Li [3] and Li et al. [4] used an eight-directional Sobel
operator and the maximum intercluster variance algorithm

to develop an edge detection method suitable for processing
images showing damage to pavements. Li et al. [5] proposed
a method to detect pavement cracks based on the minimal-
cost path search for strong speckle noise and low-contrast
and poor continuity of pavement cracks. )ese image seg-
mentation methods are complex and difficult to achieve
rapid batch detection. Lin and Liu [6] used a nonlinear
support vector machine (SVM) to identify potholes, and
Shen et al. [7] used the SVM to recognize damage on
pavement images. Acosta [8] proposed a horizontal and
vertical segmentation algorithm, which divides the road
damage image pixels into background, foreground, and
possible foreground. )e road crack image is obtained
through the connection of the adjacent foreground and the
possible foreground area. Chu et al. [9] used the optimal
threshold algorithm to remove noise pixels in the road image
and realized image binarization through online learning.Wu
et al. [10] used the CCOI algorithm to realize the connection
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of the cracks according to the degree of connectivity between
the binary image and the surrounding objects.)e algorithm
improves the accuracy and efficiency of the pavement dis-
tress recognition but cannot distinguish among the types of
distresses or meets the requirements for real-time detection.

With the rapid development of artificial intelligence, in
particular the image classification and object segmentation
technology based on the convolutional neural network
(CNN) in recent years, researchers have applied computer
vision and machine learning technology to achieve auto-
matic detection of pavements distresses [11–16]. Maeda et al.
[12] proposed an object classification method based on the
CNN. )e authors used images captured by a smartphone
mounted on a car and classified eight categories of pavement
damage with an image dataset containing 9,053 images
showing damage to pavements and 15,435 instances of such
damage. Zhang et al. [13] proposed a model that contains
four convolutional layers, a maximum pooling layer, and
two fully connected layers for pavement crack detection. Sha
et al. [14] introduced the CNN to the image analysis based on
pavement distress recognition and measurement and pro-
posed models to extract crack and pothole features. )eir
experiments showed that CNN can achieve accurate results
for the identification and measurement of pavement cracks
and potholes. Shi et al. [15] detected bare surface distress on
concrete pavements using deep learning and achieved an
accuracy of 90.2%. Tang et al. [16] cut the pavement images
into subblocks of 128 pixels× 128 pixels, manually labeled
them as crack and noncrack images, and used a variety of
deep learning models to identify the subblocks, showing
cracks with recognition accuracy of 92%.

Existing methods that use deep neural networks to
process images to identify pavement distresses have the
following problems: (1))ere is a lack of high-quality, large-
scale, multidistress pavement datasets for model training.
Most of current researches on pavement distress recognition
have been on a single type of distress, such as cracks [17–20].
(2) When the deep neural networks are used to analyze
images of pavement distress, the images need to be manually
divided into subblocks to reduce their size while maintaining
high pixel. It helps to improve the distress images recog-
nition accuracy, but it is labor intensive as it is done
manually. (3) Advanced technologies for image segmenta-
tion, such as the U-net, can significantly improve the effi-
ciency of image detection while maintaining a high accuracy,
and it has been used for crack detection in concrete
structures [21] and pavements [22–24]. Ji et al. [21] achieved
an accuracy of 99.56% on their test set, and Chen et al. [22]
obtained an accuracy of 89.92% in their asphalt pavement
dataset. However, this model has not been applied to the
identification of multiple distresses of pavements.

For multidistress identification of pavement images, a
large number of pavement images from four asphalt high-
ways in three provinces and cities in China were collected
and labeled on pixel level. Six types of distresses are con-
sidered in this study, namely, alligator cracks, longitudinal
cracks, transverse cracks, block cracks, potholes, and
patches. )e U-net model is combined with the ResNet, a
deep convolutional neural network (CNN), to train the

pavement image recognition model. Techniques such as data
augmentation, batch normalization, momentum learning,
and other regularization techniques are used to enhance the
model training. )e developed model does not require
manual preprocessing of the pavement images and delivers
pixel-level distress location, shape, and size in the images,
which could automate the distress detection procedure and
improve the distress identification accuracy.

)is paper trained a new model to identify the distress
area and classify the distress types for multidistress pave-
ment images. In Section 2, a pixel-level dataset of six types of
distresses is built. In Section 3, a U-net model combined with
the ResNet is introduced. Section 4 demonstrates the
training and verification of pixel-level pavement distress
recognition model. Section 5 summarizes the outcomes and
concludes the paper.

2. Dataset of Pavement Distresses

)e images of pavement distress used in this article were
collected by the Intelligent Road Measuring Vehicle (Luxin-
CT616, see Figure 1), manufactured by the China Merchants
Roadway Information Technology (Chongqing) Co., Ltd.
)e vehicle was equipped with one CCD (charge coupled
device) camera at a right angle to cover the pavement
surface. A 3,662× 2,032-pixel pavement image was captured
every 2m along the driving direction. Each image covered a
pavement patch of 3.5m× 2m at a resolution of 0.96mm/
px× 1mm/px. )e frame rate changed with vehicle speed.

A total of 10,097 pavement images featuring six types of
distresses, alligator cracks, longitudinal cracks, transverse
cracks, block cracks, potholes, and patches, were collected on
four asphalt expressways in three provinces and cities in
China (G15 Yueqing section and Ounan section in Zhejiang
Province, G243 Meitan-to-Yuqing highway in Guizhou,
Chongqing Inner Ring Expressway, and Chongqing
Yuchang Expressway. )e images were captured over
567.33 km).

Each image might have contained no, one, or more than
one type of distress. Each type of distress was labeled at pixel
level as shown in Figure 2. A total of 5,427 images contain
one type of distress, accounting for 53.75% of all images, and
4,670 images contain two or more types of distresses, ac-
counting for 46.25%.

)e 10,097 images of the pavement distress dataset
feature 14,697 cases of distress. )e number of occurrences
of each type of distress is shown in Table 1. Patches accounts
for the largest portion of the dataset, and block cracks is the
smallest.

3. Deep Neural Network for Pixel-Level
Pavement Distress Recognition

In traditional methods of image recognition, such as feature
engineering tasks, the extraction of image features and tags
needs to be carried out manually. Recent years have wit-
nessed the rapid development of convolutional neural
network (CNN) [25] that can automatically extract image
features. )e deep CNN contains multiple CNNs, which
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enables the extraction of local and global features from
images in one model. )rough the automatic feature ex-
traction of images by a low-level CNN, some basic edge-
related features, such as points and lines, can be constructed
and converted into higher-level features through a high-level
CNN for the accurate recognition of images. )erefore,
when a deep CNN is used to train a model to detect damage
to pavements, the images are input to the model for auto-
matic distress identification without the need of manual
feature extraction. To improve the identification accuracy,

the semantic segmentation of images is used, and the
pavement distresses are identified at pixel level. Specifically,
the U-net network is employed as the main algorithmic
architecture of the model and ResNet as its basic classifi-
cation network.

3.1. ResNet. )ere is a consensus in image recognition that
the greater the number of layers used for image recognition
with deep CNN networks, the higher the recognition

Figure 1: Intelligent road measuring vehicle (luxin-CT616).

(a) (b) (c)

(d) (e) (f )

Figure 2: Six types of pavement distress. (a) Transverse crack. (b) Longitudinal crack. (c) Alligator crack. (d) Patch. (e) Block crack. (f )
Pothole.
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accuracy. However, when the network reaches a certain
depth in image recognition experiments, further increasing
network depth degrades its performance [26]. Simply in-
creasing the number of layers does not yield an improve-
ment in recognition performance but reduces the speed of
convergence and the classification accuracy of the network.

To solve this problem, He et al. [26] proposed a residual
network (namely, ResNet) that uses residual blocks by
adding an identity mapping to the usual deep CNN, as
shown in Figure 3. Take a deep CNN network with output x

for an example. ResNet is to add a residual block as shown in
Figure 3 after the last layer of the deep CNN network. )e
input to the residual block is the output x of the original deep
CNN, its learning feature is the output F(x) of the two
middle CNN layers, and the final output H(x) of the re-
sidual block is H(x) � F(x) + x. When F(x) is zero, the
residual block is subjected to only identity mapping, and the
two convolutional layers in it have no effect on the output of
the original depth of the CNN.)us, the performance of the
CNN network does not suffer if the depth of the residual
block is increased. When F(x) is not zero, the residual block
learns a new feature F(x), and the entire deep CNN network
can learn F(x) based on the input feature x, which improves
the classification performance. In this paper, ResNet is used
as the classification network of the semantic segmentation
model for pavement distress identification.

Table 2 shows the network structures of ResNet-34 and
ResNet-50. Both contained 16 residual blocks. ResNet-34
has 36 convolution layers, a max pooling layer, two average
pooling layers, and a fully connected layer. )e total number
of parameters is 21,813,570. ResNet-50 has 53 convolution
layers, a max pooling layer, two average pooling layers, and a
fully connected layer, and its total number of parameters is
30,682,729.

3.2. U-NetNeural Network. )e probability of occurrence of
different distresses in asphalt pavements varies. For example,
a patch has a higher incidence probability than that of block
cracks.)e imbalance in the dataset can cause the deep CNN
algorithm to attend more to the distresses with more in-
stances and ignore those with fewer exemplars when rec-
ognizing image features. )e consequence is to lower the
recognition accuracy of the latter. )e U-net model [27]
could help solve this problem by a symmetrical U-shaped
structure.

ResNet-34 is shown to have high accuracy in image
classification, and it is used as the backbone of the U-net
network, which is shown in Figure 4. It is a fully

convolutional semantic segmentation network that has a
symmetrical U-shaped structure containing a com-
pression path and an expansion path. )e left side of
Figure 4 shows the path of contraction and the right side
shows that of expansion. )e contraction path consists of
a ResNet-34 with repeated applications of residual
blocks. Some residual blocks are followed by maximum
pooling layers for downsampling, and a skip connection
is used to splice the feature map in the expansion path. In
the expansion path, each repeated step involves firstly
upsampling the feature map and then performing a 2 × 2
deconvolution to halve the number of feature channels
and double the size of the feature map. )is feature map
is spliced using the corresponding feature map in the
contraction path. After stitching, two 3 × 3 convolutions
are performed, and each convolution layer is followed by
a ReLU activation function. In the last layer of the
network, a 1 × 1 convolution is used to map each 64-
channel feature map to the required number of cate-
gories. )e blue arrow in Figure 4 indicates the feature
splicing operation.

)e network structure of U-net based on ResNet-34 is
shown in Table 3. It contains 54 convolutional layers, and the
total number of parameters is 41,132,518.)eU-net network
structure based on ResNet-50 is similar, with 71 convolu-
tional layers and 338,306,566 parameters.

Before the pavement distress images are input to the
model in the form of a pixel matrix, the value of each pixel in
the image is converted. Pixel values of the no-distress areas
(the remaining part of the image except the distress) are all
set to zero, and those of block cracks, longitudinal cracks,
transverse cracks, alligator cracks, potholes, and patches are
set to 1, 2, 3, 4, 5, and 6, respectively. Hence, each pixel in the
images is an integer value between 0 and 6. )e converted
image set is then input to the U-net model for training and
validation.

4. Level Pavement Distress Recognition Model

4.1. Techniques for Training. To improve the model’s pixel-
level recognition accuracy of pavement distresses and speed-
up training, techniques such as data augmentation [28],
batch normalization [28], momentum learning [29], fine-
tuning [30], and a discriminative learning rate [31] are used.

Data augmentation [28] enables a limited amount of data
to produce value equivalent to larger amounts of data
without substantially increasing data. It is an important
regularization technique in computer vision which applies
geometric transformations (such as flipping, rotation,
cropping, deformation, and scaling) and color transfor-
mations (such as pertaining to noise, blur, erasure, and
filling) to images. Because the pavement distress images are
captured vertically and longitudinal cracks and transverse
cracks have obvious directionality, geometric transforma-
tions such as rotation and deformation cannot be used for
data augmentation. In this paper, each image is randomly
flipped vertically with a probability of 0.75. Figure 5 com-
pares the longitudinal cracks after flipping with the original
image.

Table 1: )e numbers of all distress types.

Distress Number Percent (%)
Transverse crack 1786 12.09
Longitudinal crack 2348 15.90
Alligator crack 1662 11.31
Block crack 126 0.86
Patch 6924 47.11
Pothole 1919 13.06
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Batch normalization [28] uses normalization and linear
transformation to constrain the mean and variance of the
input data of each layer to within a certain order of mag-
nitude, which could avoid the mean and variance being too
large or too small, so that subsequent layers of the network
do not need to adapt to changes in the input to the previous
network, and each layer can independently learn the data.
)is improves the learning speed of the entire neural net-
work. Batch normalization after each convolutional layer is
used.

When applying the gradient descent method, if the
absolute value of the slope of the objective optimization
function in the vertical direction is greater than that in the
horizontal direction at a certain position, the gradient de-
scent causes the variable to move to a greater extent along
the vertical direction than the horizontal direction at a given
learning rate. )erefore, a lower learning rate needs to be set
to prevent the independent variable from crossing the op-
timal solution of the objective function in the vertical di-
rection. However, this causes the independent variable to
move slowly in the horizontal direction and prolonged the
time needed for convergence. In order to solve this problem,

the momentum method uses the weighted average of the
gradient of the past time step, where the weight decays
exponentially according to the time step, so that the inde-
pendent variable updates of adjacent time steps are more
consistent in direction. )erefore, a higher learning rate is
used to enable the independent variable to move more
quickly to the optimal solution and accelerate convergence.
According to Smith’s experiments [29], a cyclical momen-
tum of 0.95–0.85 provides better performance than a con-
stant momentum. )erefore, the momenta used in this
paper are (0.95, 0.85).

When recognizing an image, the system first learns low-
level features, such as lines, and then learns specific abstract
features. Model parameters that have been trained on large
image sets are well-learned low-level features. Hence, they
can be migrated to other, smaller image sets to speed up the
training of the model. )is paper uses the transfer learning
method [30] to transfer parameters of the ResNet-34 and
ResNet-50 models, which have been trained on ImageNet
(containing 14,197,122 images in 21,841 categories), to the
model for the semantic segmentation of images of pavement
distress. )e parameters are retrained by fine-tuning and
using a discriminative learning rate [31] to obtain values
suitable for images of pavement distress. Fine-tuning is used
to lock parameters of part of the network layer in the model
and to train only the last layer or few layers of parameters;
the discriminative learning rate is used to divide the pa-
rameters in themodel into three parts according to the depth
of the CNN model (each part is assigned a different learning
rate). )e changes in the parameters decrease with de-
creasing distance to the bottom of the model, where the
learning rate is lower. )us, it becomes easier for the model
parameters to reach a stable state, which speeds up the
training process.

4.2. Measures of Model Performance. Pixel accuracy (PA),
category pixel accuracy (CPA), intersection over union
(IoU), and mean intersection over union (MIoU) are
commonly used as measures of semantic segmentation.)ey
are defined as follows.

Suppose that there are k + 1 categories (0 ∼ k) in a
dataset, and “0” usually represents the background. Pii

represents the number of pixels that are originally i type and
are predicted to be so, Pij represents the number of pixels
that are originally i type but predicted to be j type, and Pji is
the number of pixels that are originally j type but predicted
to be i type.

PA is defined as the ratio of the number of pixels cor-
rectly predicted to the total number of pixels defined in the
following:

PA �


k
i�0 pii


k
i�0 

k
j�0 pij

. (1)

)e larger PA is, the greater the number of pixels that the
model has predicted correctly is, and the stronger the
classification ability is for the model.

x

+

Relu

F(x)

F(x) + x

x
Identity

Weight layer

Weight layer

Figure 3: Residual model: a building block.

Table 2: )e architecture of ResNet-34 and ResNet-50.

Layer name 34-layer 50-layer
Conv1 [7× 7, 64]a, stride 2
Max pool [3× 3], stride 2

Conv2_x 3 × 3, 64
3 × 3, 64  × 3

1 × 1, 64
3 × 3, 64
1 × 1, 256

⎡⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎦ × 3

Conv3_x 3 × 3, 128
3 × 3, 128  × 4

1 × 1, 128
3 × 3, 128
1 × 1, 512

⎡⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎦ × 4

Conv4_x 3 × 3, 256
3 × 3, 256  × 6

1 × 1, 256
3 × 3, 256
1 × 1, 1024

⎡⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎦ × 6

Conv5_x 3 × 512
3 × 512  × 3 1 × 1, 512

3 × 3, 512
1 × 1, 2048

⎡⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎦ × 3

Adaptive average pool Output_size� 1
Adaptive max pool Output_size� 1
Fully connected layer Dimensionality� 7
a)e number of the convolutional filters is 64, each of size 7× 7.
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Figure 4: U-net architecture based on ResNet-34.

Table 3: )e architecture of U-net based on ResNet-34.

)e contraction path Layers )e expansion path Layers
Conv2d [7× 7, 64], stride� 2 Pixel shuffle [1× 1, 1024]

Max pool [3× 3], stride� 2 Average pool [2× 2]

Conv2d 3 × 3, 64
3 × 3, 64  × 3 Conv2d 3 × 3, 512

3 × 3, 512  × 2

Conv2d 3 × 3, 128
3 × 3, 128  × 2 Pixel shuffle [1× 1, 512]

Downsample [1× 1, 128] Average pool [2× 2]

Conv2d 3 × 3, 128
3 × 3, 128  × 3 Conv2d 3 × 3, 384

3 × 3, 384  × 2

Conv2d 3 × 3, 256
3 × 3, 256  × 2 Pixel shuffle [1× 1, 768]

Downsample [1× 1, 256], stride� 2 Average pool [2× 2]

Conv2d 3 × 3, 256
3 × 3, 256  × 5 Conv2d 3 × 3, 256

3 × 3, 256  × 2

Conv2d 3 × 3, 512
3 × 3, 512  × 2 Pixel shuffle [1× 1, 512]

Downsample [1× 1, 512], stride� 2 Average pool [2× 2]

Conv2d 3 × 3, 512
3 × 3, 512  × 2 Conv2d 3 × 3, 96

3 × 3, 96  × 2

Conv2d [3× 3, 1024] Pixel shuffle [1× 1, 384]

Conv2d [3× 3, 512 ] Average pool [2× 2]
Conv2d [3× 3, 49]
Conv2d [3× 3, 99]
Conv2d [1× 1, 7 ]
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CPA is defined as the ratio of pixels predicted to be
correct in one category defined in the following:

CPA �
pii


k
j�0 pji

. (2)

)e larger CPA is, the less likely it is that the model
predicts pixels of other categories as belonging to the given
category, and the stronger the model’s classification ability
is.

IoU is defined as the ratio of the intersection and union
of the ground truth and the predicted value of one category,
as defined in the following:

IoU �
pii


k
j�0 pij + 

k
j�0 pji − pii

. (3)

)e closer the IoU is to one, the more consistent the
model’s predicted position for the category is with the true
position, and the stronger the model’s ability is to locate the
category.

MIoU is the average of the IoU of all classes defined by

MIoU �
1

k + 1


k

i�0

pii


k
j�0 pij + 

k
j�0 pji − pii

. (4)

)e closer the MIoU is to one, the stronger the model’s
ability to locate all classes is.

4.3. Analysis of Results

4.3.1. Training Process. A total of 80% of images in the
dataset are used to train the models and the remaining 20%
are used for validation. Cross-entropy loss is used as loss
function for the training process. )e image sizes are set to
256× 256-pixel and 512× 512-pixel, respectively. Using the
above training techniques, the pixel-level recognition model
of pavement distresses is trained based on ResNet-34 and

ResNet-50. All code is implemented on Fast.ai with a
PyTorch backbone on an NVIDIA RTX 2080Ti GPU. )e
training of the model includes the three following steps.

)e first step is to randomly flip the pavement images for
data augmentation and set the original image size to
256× 256-pixel and 512× 512-pixel, respectively.

)e second step is to load the U-net model with ResNet-
34 and ResNet-50, where the parameters have been pre-
trained on a large dataset [32] and [33] input the images of
step 1 into the model and specify the evaluation index of the
model.

)e last step is to train the model using fine-tuning and
discriminating the learning rate. Firstly, the parameters of
the network layer in the model except the last layer or a few
layers are locked using fine-tuning method, and only the

Figure 5: Images of longitudinal crack using flip. (a) Original image. (b) Flipped image.

Table 4: PA values of different models using images of different sizes.

Model Input image size (pixel)
PA

Detecting distress with six types Detecting with or without distress

ResNet-34 256× 256 0.66103 0.97336
512× 512 0.62716 0.97113

ResNet-50 256× 256 0.44953 0.95772

Table 5: CPA values of different labels using ResNet-34.

Distress CPA
No distress 0.99276
Patch 0.82774
Pothole 0.31902
Transverse crack 0.19139
Block crack 0.25135
Alligator crack 0.14077
Longitudinal crack 0.27439

Table 6: IoU of different labels using ResNet-34.

Distress IoU
No distress 0.99059
Patch 0.73778
Pothole 0.28436
Transverse crack 0.21429
Block crack 0.19445
Alligator crack 0.23038
Longitudinal crack 0.12581
Average (MIoU) 0.3968
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Patch. (e) Block crack. (f ) Pothole.
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unlocked layers parameters are trained.)en the parameters
of the model are divided into three parts by discriminating
the learning rate, and the model is trained with each part
assigned a different learning rate.

4.3.2. Test of the U-Net Model. Table 4 shows the PA values
of the pavement distress pixel-level recognition model using
ResNet-34 and ResNet-50 by inputting images with different
sizes. When only the distressed or nondistressed areas in an
image are to be distinguished, the PA values obtained on the
verification set of the two models are 97.336% and 95.772%,
respectively. )is is higher than the single-category model
(89.92%) for crack recognition on an asphalt pavement in
Chen et al.’s work [22] and the single-category model
(92.12%) for crack recognition of Fitchburg Municipal
Airport runways as reported in Cheng et al.’s work [23].

When the distress types detection are concerned, for
example, in our case, six types of distresses are to be cate-
gorized, the PA of ResNet-34 is evaluated to be 66.103%,
higher than the PA of ResNet-50 (44.953%) on the 256× 256-
pixel image size dataset. However, when 512× 512-pixel
image size is used, the PA of the model based on ResNet-34 is
62.716%, lower than that on 256× 256-pixel image size.

For the six types of distresses detection, the CPA and IoU
of each distress obtained by the ResNet-34 model on the
validation set with 256× 256-pixel image size are shown in
Tables 5 and 6, respectively. Compared with distress de-
tection model based on SSD (Single-Shot MultiBox De-
tector) [34] using the same distress images dataset, where the
distressed areas are labeled with rectangle bounding boxes,
the IoU is set to 0.5 (the common value in object detection),
the average precision (AP) of patches, potholes, transverse
cracks, block cracks, alligator cracks and longitudinal cracks
is 0.53061, 0.00263, 0.30748, 0.28322, 0.41175, and 0.09820,
respectively [35]. )e U-net model has great improvement
on patches (0.82774 versus 0.53061), potholes (0.31902
versus 0.00263), and longitudinal cracks (0.27439 versus
0.09820) detection over the SSD model but poorly performs
on transverse cracks (0.19139 versus 0.30748), block cracks
(0.25135 versus 0.28322), and alligator cracks (0.14077
versus 0.28322). )e poor performance of the U-net model
on the three types of distresses may be due to the fact that
some image pixels within the distress outline have the same
features as the no-distress pixels outside the outline on the
distress images.

Table 6 shows the IoU of different categories (including
no-distress areas, that is, the background) on the verification
set. )e IoU of the no-distress area is 99.059%, and the
average is 39.68% (MIoU). Compared with the IoU value of
0.6 for pavement cracks obtained by Jiang et al. [24] with a
single-class model, the IoUs of various cracks achieved in
this study are low, showing that the detection of location,
shape, and size of distressed area of images is still a challenge
for multiple classifiers.

Figure 6 shows the IoU confusion matrix diagram of
different categories (including the no-distress areas, that is,
the background) on the validation set. )e horizontal axis in
the figure represents the predicted category and the vertical
axis represents the true category. )e darker the color is, the

closer the IoU is to one. In the confusion matrix, the darker
the diagonal block is, the higher the accuracy of the model is,
and the darker the nondiagonal block is, and there is a
greater probability of being incorrectly recognized. Pixels
with various distresses have a significant probability of being
recognized as no-distress pixels (background pixels). In
addition, block cracks are more likely to be mistaken for
transverse and alligator cracks, while patches and potholes
are rarely mistaken for other types of distresses.

Figure 7 shows a comparison between the manually
determined area of pavement distress and the predicted area
by the trained model for various types of distresses. It shows
that the developed model could recognize multiple distress
labels in the images but incur certain errors in identifying the
specific type and location of the distresses. )is might have
occurred for a number of reasons. Firstly, the size of certain
pavements distresses occupied a relatively small part of an
image. When the image of the pavement distress is reduced,
the distress characteristics become less prominent, which
might have affected the recognition performance of the
model. Secondly, for such distresses as alligator and block
cracks, some image pixels within the distress outline have the
same features as the no-distress pixels, which might have
reduced the recognition accuracy of the model.

5. Conclusions

)e development of pavement distress inspection technol-
ogy and AI, especially convolutional neural networks
(CNN), makes it possible to automate the road inspection
and evaluation process from road image collection, distress
detection, and road condition assessment. To achieve this
goal, an efficient and high-precision pavement distress
classification and detection model is needed. Toward this
purpose, road distress image detection models based on
U-net are trained and tested with a road distress image
dataset built by road images collected from 567.33 km as-
phalt expressways in China. )e major conclusions of this
study are drawn in the following:

(1) A total of 10,097 images of six common distresses
captured from four asphalt expressways in three
provinces in China are labeled in pixel level to
construct a pavement distress image dataset.

(2) Using the U-net model and ResNet, an advanced
semantic segmentation model for road distress de-
tection is trained for pixel-level pavement distress
recognition. )e developed model does not require
manual preprocessing of the pavement images and
delivers pixel-level distress location, shape, and size
in the images, which could automate the distress
detection procedure and improve the distress
identification accuracy.

(3) For binary classification, which classifies an image
pixel as distressed or not distressed, the PA values are
evaluated to be 97.336% for the ResNet-34 model
using the test dataset. When the six types of common
road distresses are to be classified, the trained
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multiple feature classifier performs differently on the
six types of distresses. It achieves an accuracy of
82.774% for patches but incurs fairly large errors in
predicting the shape and location of other types of
distresses.

(4) )e U-net network structure used in this article
contains 4 downsampling processes and 4 upsam-
pling processes, and the image has undergone
multilayer convolution before the first down-
sampling, whichmakes it extract a smaller number of
the feature maps of small size distress such as pot-
hole. On the other hand, cracks have more point and
line characteristics, and shallow convolution layers
will be helpful to extract the characteristics of cracks
and potholes. )us, changing the number of
downsampling processes or upsampling processes,
converting long skip connection in the U-Net
structure into short skip connection, and integrating
multilayer feature maps may help to improve the
recognition accuracy.
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