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Moisture content of subgrade materials is an essential factor affecting frost heave deformation of high-speed railway subgrade in a
seasonally frozen region. Modeling and predicting moisture transport play an important role in analyzing the subgrade thermal
and hydraulic conditions in cold regions. In this study, a long short-termmemory (LSTM)model was proposed based on subgrade
material moisture in two sections during one winter and spring cycle from 2015 to 2016.(e reliability of themodel was verified by
comparing the monitoring data with the model results. (e results demonstrate that the LSTM model can be effectively used to
forecast the dynamic characteristics of the moisture of subgrade materials. (e data of simulated moisture content of subgrade
materials have a root mean square error ranging from 0.17 to 0.47 in the training phase and from 0.20 to 10.5 in the testing phase.
(e proposed model provides a novel method for long-term moisture prediction in subgrade materials of high-speed railways in
cold regions.

1. Introduction

Seasonally frozen ground is mainly distributed in high-
latitude areas such as northeast China, north China, and
northwest China, accounting for 53.5% of China’s total land
area [1, 2]. Subgrade materials in cold regions undergo
several freeze-thaw cycles every year, leading to subgrade
degradation [3–5]. (e frost heave problem of high-speed
railway foundations in seasonally frozen regions has gar-
nered significant attention and research interest from ex-
perts and scholars. (rough field monitoring and laboratory
tests, it was found that soil properties, temperature, and
moisture content were the main factors affecting the frost
heave of the subgrade [6–13]. Zhang et al. [14] performed
indoor frost heaving tests under different moisture contents
for five types of coarse-grained soils and 13 types of fine-
grained soils. (e results demonstrated that moisture con-
tent was the most important factor causing frost heaving
[15].

(e variation in the moisture content of subgrade ma-
terials is affected by climate, thermal properties of soil

particles, loading conditions, and soil texture [16–19].
Several experiments and numerical models have focused on
one or two controlling factors that may affect moisture
transport. However, they are time-consuming and some-
times cannot predict the long-term dynamics of moisture
content, for instance, Khoury et al. [20] found that a change
in the subgrade moisture content affected the performance
of pavement materials. Naji et al. [21] used a mathematical
model to predict the relationship between soil elastic
modulus and moisture content. (ey used the model to
predict the change in pavement bearing capacity caused by
seasonal changes in moisture content. (rough on-site
monitoring, Lin et al. [22] found that moisture content
change was related to the nature of subgrade filling. How-
ever, few studies have simulated and predicted the moisture
variation in high-speed railway subgrades in cold regions.

Deep learning methods based on artificial neural net-
works can quickly extract effective data features from
massive monitoring data and analyze the nonlinear change
relationship of monitoring data, which can thereafter be
used to effectively predict the change in subgrade moisture
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content; therefore, artificial neural network has been widely
used in the overall evaluation of subgrade engineering [23].
(e long and short-term network is a special recursive
neural network that can solve complex problems and learn
fast [24]. For instance, Chen et al. [25] used this model to
predict the dynamic swelling deformation of a high-speed
railway subgrade.

(e embankment of the Lanzhou–Xinjiang high-speed
railway, located in northwest China, has been operating
since December 2014. (e mean annual air temperature is
approximately 4.8°C at the Minle weather station near the
monitoring site. (e highest and lowest temperatures were
35.0 and −31.5°C, respectively. (e annual mean rainfall was
recorded as 381.2mm, whereas the annual mean evaporation
was 1623.0mm in 2015. (e start and end dates of snowfall
were September 30, 2015, and May 19, 2016, respectively.
(e recorded maximum natural snow depth was 220mm,
whereas the recorded maximum natural frozen depth was
184 cm from 2015 to 2016 [22].

In this study, the long short-term memory (LSTM)
model was established to simulate long-term moisture
changes in subgrade materials. We examined the applica-
bility of the LSTM model to the prediction of time-series
data of the moisture of subgrade materials in high-speed
railways and compared field monitoring data and model
outputs.

2. Methods

(e subgrade of the Lanzhou–Xinjiang high-speed railway
consists of four main layers: a 0.4m height concrete layer,
0.5m height nonfrost susceptible crushed rock layer, 1.8m
height low-frost susceptible crushed rock layer, and an
underlying soil layer. In this study, two monitoring sections
of subgrade, K2020 + 024 and K2028 + 746, were selected,
and their moisture contents were measured using a gravi-
metric method with six soil moisture sensors [22] (Figure 1).
(e data were recorded at 4 h intervals from August 2015 to
April 2016. (e measuring method and working principle of
the soil moisture sensors were the same as those of Mit-
telbach et al. [26]. (e moisture sensor was a QSY8909A
moisture sensor produced by Sichuan Qishiyuan Science
and Technology Co., Ltd. Its measuring range was 0–100%,
length was 6 cm, diameter was 3mm, probe material was
stainless steel, and temperature range was −25–80°C [27].

In the K 2020 + 024 and K 2028 + 746 sections in the
concrete layer, the moisture content of 0.2m soil started to
fluctuate slightly. Subsequently, it began to decline rapidly
and tended to be constant in December 2015. It began to
fluctuate again in late March 2016. (e moisture content of
0.5m soil began to fluctuate and rise, reached a peak in
February 2016, and thereafter began to fluctuate and de-
scend. In nonfrost susceptible A/B fillings, and the variation
trend of moisture content at 1.0m was approximately the
same as that at 0.5m.

As shown in Figure 2, the soil moisture content is af-
fected by temperature, rainfall, and other factors. Its
monitoring data have some noise and exhibit prominent

nonlinear characteristics; therefore, it is difficult to predict
them.

In this study, there are missing values in the data due to
the communication failure of detection equipment and other
factors. For missing data, detection data between adjacent
time points were used for interpolation processing. To ac-
celerate the convergence rate of the model, the data were
normalized according to the characteristics of the test data
and requirements of the LSTM model. (e normalization
calculation formula is as follows:

xi �
xi − minxi

max xi − min xi

, (1)

where xi denotes the moisture content monitoring data,
whereas minxi and max xi represent the minimum and
maximum values of xi, respectively [23].

(e LSTM model [23] is a neural network model
proposed by Hochreiter in the 1990s; its model structure is
as shown in Figure 3. It contains a particular unit, namely,
the memory block in the recursive hidden layer. (e
memory block includes a cell state and three gated
mechanisms (input, forget, and output gates) for con-
trolling the flow of information. (e sigmoid function
implements a gating mechanism. After the data flows in,
they first enter the forget gate. After part of the redundant
information is discarded to obtain the critical feature data,
the data enter the input gate to control the data update.
Finally, they pass through the output gate as output. (e
mathematical expression for this process is as follows.

First, the forget gate ft calculates the cell state that needs
to be retained at the previous moment through the activation
function as follows [23]:

if � σ Wf · ht−1, xt􏼂 􏼃 + bf􏼐 􏼑, (2)

where Wf and bf denote the weight matrix and bias of the
forget gate, respectively, σ denotes the sigmoid function, and
ht−1 represents the output at moment t − 1 [23].

Second, the input gate it retains information regarding
the current input xt to be updated to the current cell state Ct

as follows [23]:

it � σ Wi · ht−1, xt􏼂 􏼃 + bi( 􏼁. (3)

(ereafter, the output gate ot controls the information
that comes out as follows [23]:

ot � σ Wo · ht−1, xt􏼂 􏼃 + bo( 􏼁. (4)

Based on the previous input and output information, the
following formula can be used to calculate the nonlinear
output [23]:

􏽥Ct � tanh Wc · ht−1, xt􏼂 􏼃 + bc( 􏼁. (5)

Finally, the new cell state can be expressed as follows
[23]:

Ct � ft ∗Ct−1 + it ∗ 􏽥Ct,

ht � ot ∗ tanh Ct( 􏼁.
(6)
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By controlling the input gate, the influence of redundant
information can be avoided, and information of the previous
time is retained in the network owing to the forgetting gate.
(is model addresses long-term dependence and gradient
disappearance problems encountered by traditional recur-
rent neural networks in prediction tasks, and it is now widely
used in time-series forecasting [25, 28, 29].

In this study, root mean square error (RMSE) and R-
score (R2) were used to evaluate the performance of the
model. (e smaller the RMSE value calculated, the closer the
R2 value is to 1 and the higher the accuracy and reliability of
the model prediction. (e specific formula is as follows:

RMSE �

�������������

1
n

􏽘

n

i�1
yi − 􏽢yi( 􏼁

2

􏽶
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,
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i�1 yi − yi( 􏼁

2,

(7)

where n denotes the number of predicted samples, whereas
yi, yi, and 􏽢yi denote the measured values, mean of the
measured values, and predicted value, respectively.

3. Results and Discussion

(e training of the LSTM model requires the monitoring
data to be preprocessed. In this study, according to the
commonly used split ratio, the holdout method was used to
split the dataset, with the training set accounting for 80% and
validation set accounting for 20%. (e monitoring data of
August 1, 2015, solstice on February 11, 2016, were used as
the training set, whereas the detection data of February 12,
2016, solstice on March 31, 2016, were used as the validation
set. (e training set was used to train the weight of the
model, whereas the validation set was used to evaluate the
model performance. Because the selection of hyper-
parameters has a significant impact on the performance of
the model [30], it is necessary to set the hyperparameters of
the model before the training begins. In this study, the
number of cells in the LSTM model was considered as the
critical hyperparameter, and the candidate operations of the
hyperparameter was [5, 10, 20, 30, 40, 50]. To accurately
evaluate the performance of the model on the specified

parameter performance and avoid the instability of the
performance of a single training session, the average error of
five repeated training sessions was used as the evaluation
indicator. (e error statistics of the hyperparameter search
training are as shown in Figure 4. It is observed from the
figure that when the number of units is 10, the model has a
minor error and higher computational efficiency. After
several experiments, the number of units in the model was
determined to be 10, the epoch was set to 200, and learning
rate was 0.001. (e model was implemented using Ten-
sorFlow framework. In this study, the gradient descent al-
gorithm was applied to update the weight of the model. (e
adaptive moment (Adam) estimation was selected as the
optimization algorithm for the training process of themodel.
In comparison with other optimization algorithms, the
Adam algorithm is more efficient in terms of calculation and
it has a better effect in practical applications [31].

(e calculated results of R2 and RMSE indices on the
training and validation sets of the trained model are sum-
marized in Table 1. From the table, the prediction effect of
the LSTM model is the best when the depth of the LSTM
model in R2 of section K2028 reaches 0.94. In the training set
of moisture content at all depths, R2 was greater than 0.95,
indicating that the model fitted the training data well.
However, there was a gap between R2 in the test and training
sets, indicating that the model had an overfitting phe-
nomenon. (e RMSE error of the model is small for each
moisture content dataset, thereby proving that the LSTM
model is suitable for the prediction of soil moisture content
and it has a specific application potential.

To more intuitively compare the prediction effect of
the model on different moisture contents, a comparison
between the predicted value of the model and the mea-
sured value on the two sections, K2020 + 024 and
K2028 + 746, is as shown in Figures 5 and 6. It is observed
from Figure 4 and Table 1 that the prediction accuracy of
the model decreases with an increase in depth possibly
because the change in soil moisture content is a gradual
accumulation process, and the change in the soil moisture
content in a period of shallow depth is easier to learn from
the historical trend. With the increase in the predicted
time steps, the deviation of soil moisture content at a
depth of 1.0m in the two sections increases, and the
model’s prediction ability is weak.

Figure 1: Fieldwork of the automatic monitoring system of moisture content of subgrade materials of high-speed railway in cold regions.
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In this study, we use an LSTM model to predict the
moisture content of subgrade materials in high-speed rail-
ways based on one-year field monitoring data. (e model
achieved great performance for predicting moisture content
of subgrade materials above 0.5m in the two sections.
However, we found that the prediction accuracy of the

moisture content of subgrade materials below 0.5m was
slightly lower than those of others.(is phenomenonmay be
attributed to the sample size and model parameters [32]. In
addition, our model does not consider the detailed influ-
ential factors of soil moisture and soil particle structure,
which may affect the model outputs.
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Figure 2: Variations in moisture content were measured at three depths in two sections from August 2015 to March 2016. Note. H1 to H3
represents depth of 0.2, 0.5, and 1.0m, respectively. (a-b) K 2020 + 024 section. (c-d) K 2028 + 746 section.
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Table 1: Performance evaluation index of the model.

Section
R2 RMSE

Train set Test set Train set Test set
K2020 + 024 H1 0.99 0.90 0.36 0.51
K2020 + 024 H2 0.98 0.92 0.31 0.24
K2020 + 024 H3 0.95 0.87 0.17 0.21
K2028 + 746 H1 0.99 0.93 0.47 1.05
K2028 + 746 H2 0.99 0.94 0.23 0.20
K2028 + 746 H3 0.98 0.89 0.28 0.20
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Figure 5: Predicting results of two subgrade sections in the three depths. (a–c) K 2020 + 024 section. (d–f) K 2028 + 746 section.
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Figure 6: Comparison of the predicted values of the soil moisture with measured values (a–c) K 2020 + 024 section. (d–f) K 2028 + 746
section.
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4. Conclusions

Based on soil moisture measurement data at different depths
of two sections of the Lan–Xin high-speed railway and
combined with the LSTM deep neural network model, this
study explored the application of this model in the short-
term prediction of temporal series changes in soil moisture
content. (e specific conclusions are as follows:

(1) Aiming at obtaining a nonlinear law for soil moisture
monitoring data, the number of model units was
determined using the hyperparameter search
method

(2) (e LSTM neural network model has a strong
generalization ability in the short-term prediction of
soil moisture content, and it can be used for soil
moisture content prediction tasks

(3) For a significant number of soil moisture prediction
tasks at different depths, the LSTMmodel has higher
prediction accuracy in the shallower depth; it has the
best prediction effect for the depth of 0.5m in a
specific time period

In conclusion, the strategy discussed in this study, based
on field monitoring data and a deep neural network model,
can effectively extract the dynamic characteristics of soil
moisture content monitoring. It can effectively predict the
soil moisture content in a specific period of time, thereby
providing a practical reference for the safety of train
operation.
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