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Prefabricated box culvert is a new structure in road engineering, whose health is very important to road safety.+e use of acoustic
emission (AE) as a detection method and the use of other improved algorithms to evaluate the damage of prefabricated box
culverts are still insufficient. In this paper, two kinds of prefabricated box culverts are tested and studied, and the damage process
of the box culverts is analysed based on the AE parameters of the box culvert using the traditional fuzzy C-means method (FCM).
In addition, an improved algorithm based on the combination of grid density and distance (G-DFCM) was proposed, which was
simulated and applied to the AE data analysis of the prefabricated box culvert.+e research results show that the application effect
of the G-DFCM algorithm is good, which not only overcomes the shortcomings of the original algorithm but also improves the
effectiveness of the algorithm. +is work can provide a supplement to the damage identification of fabricated box culverts.

1. Introduction

As an important part of roadbed engineering, culverts are often
buried under underground roadbeds as water passages or traffic
interruptions. Common culvert structure types include box
type, pipe type, and arch type. Box culverts can be divided into
the integral cast-in-situ type and prefabricated assembled type
according to the construction method. Integral cast-in-situ box
culverts are suitable for various projects due to their high
strength and rigidity and relatively low cost. Based on factory-
basedmanufacturing, prefabricated assembled type box culverts
have fast construction speed and stable quality and conform to
the characteristics of green and ecological construction, which
have attracted more andmore attention in modern engineering
construction methods. +e research on the acoustic emission
(AE) characteristics and damage identification methods of the
integrally assembled box culvert and the four-component as-
sembled box culvert in the prefabricated assembled box culvert
is slightly insufficient.

Scholars around the world have carried out related re-
search on the structure of prefabricated box culverts. Park

et al. [1] simulated the influence of vehicle load and tem-
perature load on the maximum tensile stress and cracking of
the box culvert through the finite element method and
proposed the optimal slab length and hinge position of
different types of box culverts. Liu and Chen [2] made
relevant studies on the design parameters, structural re-
quirements, reinforcement types, and construction methods
of prefabricated assembled culverts and provided a reference
for the design of prefabricated box culverts.

Acoustic emission is a common method of non-de-
structive testing. Since its discovery, it has attracted more
andmore attention due to its convenience of detection [3, 4],
and accuracy of the positioning [5, 6]. Modern AE tech-
nology originated from the discovery of the Kaiser effect [7]
and the Felicity effect [8]; then, some scholars continued to
conduct in-depth research on the phenomenon of acoustic
emission. Bhuiyan et al. [9] studied the AE waveforms of
thin aerospace specimens, explained the correlation between
the waveform evolution and the physical boundaries of
cracks, and studied the growth mechanism of fatigue cracks.
Madarshahian et al. [10] studied the problem of inverse
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source location in specific areas and proposed a method to
determine the true arrival time based on probability theory.

Other scholars have also made relevant research on the
damage identification method of determining the structure
by AE signal. Krivosheev and Ivanov [11] proposed a trend
statistical method for the AE signal of rockmasses, described
the statistical change criteria used to identify the flow, and
gave the use of these criteria. Yang et al. [12] analysed the
characteristics of the AE signal during the staged loading of
concrete materials and used the activity coefficient ACT to
indicate the activity of the AE activity. +e results showed
that the energy average exceeded 100mV·ms and the activity
coefficient ACTwas in the range of 20∼70 when the concrete
material was destroyed.

It should be pointed out that the existing acoustic
emission analysis is often used in ordinary concrete speci-
mens, concrete beams, or other concrete specimens [13, 14],
while the research on other types of models, especially box
culvert and prefabricated box culvert, is slightly insufficient
[15]. In addition, as a common method for processing AE
data, the fuzzy C-means (FCM) clustering method has the
inability to identify noise in processing data [16], and
clustering is easy to fall into the local optimal situation [17].
+erefore, it is necessary to monitor, analyse damage process
of the prefabricated assembled box culvert model, and
optimize the damage identification process of the pre-
fabricated assembled box culvert model. In this paper,
aiming at the shortcomings of the existing literature in these
aspects, the AE signals of the two prefabricated box culverts
during the static load test loading and unloading process
were collected through experiments. +e damage process of
the box culvert was analysed based on the test signals, and a
damage identification algorithm based on FCM was pro-
posed. +is algorithm was compared and analysed with the
traditional FCM method, statistical information grid-based
(STING) method, and density-based spatial clustering of
applications with noise (DBSCAN) method, in the mean-
time applying to the prefabricated box culvert scale model.
+e study can fill the problem of insufficient research on
damage identification of prefabricated box culverts and
provide a reference for the research process of damage
identification of prefabricated box culverts.

2. Materials and Methods

2.1. Materials and Equipment. +ere are two types of
common prefabricated box culverts: one is the integrally
prefabricated culvert, and the other is the four-component
prefabricated culvert. Integrally prefabricated culvert means
that the culvert facade becomes a whole, and the assembly
work only occurs between the culverts, while the four-
component prefabricated culvert is composed of the top
plate, two side walls, and the cast-in-situ bottom plate. +e
assembly work of four-component prefabricated culvert is
carried out not only between the culverts, but also between
the various components in each culvert. In this experiment,
based on the similar theorems [18–20] and the dimensional
analysis, under the condition of ensuring that the prototype
and the model had the same mechanical properties, the scale

used in this experiment is 1 : 4. At the same time, to ensure
that the model and the prototype had the same material
properties, the concrete compressive strength was 40MPa,
which was the same as the prototype. +e main reinforce-
ment of the integrally assembled model was 20Φ6, and the
stirrup was 87Φ2; for the four-component fabricated model,
the main reinforcement was 20Φ6, and the stirrup was 80Φ2.
+e completed two box culvert model sizes are shown in
Figures 1 and 2.

+e SAEU2S acoustic emission system produced by
Beijing Shenghua Testing Company was used in the test.
+e AE system was composed of an AE sensor, a pream-
plifier, and a computer. +e AE sensor collected and
converted the internal acoustic signal of the structure into
an electrical signal and then transmitted it to the pream-
plifier. After being amplified by the preamplifier, the signal
was transmitted to the computer for subsequent analysis
work. +e detailed technical parameters of the system are
shown in Table 1. +e HC-CK101 crack width observer
produced by Beijing Haichuang Hi-Tech Company was
used in the test. +e detailed technical parameters of the
instrument are shown in Table 2. Besides, the test loading
equipment comes from the T-PMC microcomputer-con-
trolled electro-hydraulic servo loading system produced by
Changchun Xiaoxiu Metrology Technology Company. +e
parameters are shown in Table 3.

2.2. Test Scheme. In this test, a hydraulic Jack and an I-type
beam were utilized for the four-point bending test. +ree AE
sensors were stuck on the culvert façade: one was on the
middle span and the other two were near hinges of the
culvert facade with scotch tape. Because the facade of the
concrete box culvert was rough and uneven, the surface of
the concrete was polished as smooth as possible with
abrasive paper. In order to fix AE sensors well, Vaseline was
used as a coupling agent to smear the contact surface be-
tween the sensor and the concrete.+e schematic diagram of
the loading device and AE sensors layout is shown in
Figure 3.

+e cyclic loading and unloading scheme was adopted in
the test. According to the previous similar experiment ex-
perience of the research group and the conclusions of related
documents [16, 21, 22], the loading level interval was 3 kN,
and each level of load was uniformly loaded and unloaded.
For a whole cycle, the load was applied from 0 to the loading
level in 200 s, which was held in the next 300 s. +en, it was
unloaded to 0 kN in 200 s and the interval between cycles was
1000 s. During the loading period and after completely
unloading, the crack observation instrument was employed
to observe the cracks. +is loading system repeatedly loads
and unloads the model until it was destroyed. +e AE data
and crack data of the top plate of the model were observed
and recorded; subsequent analysis was performed.

2.3. Current Status of Damage Identification Research.
Fuzzy C-means clustering (FCM) is a mathematical method
based on the optimal solution of the function, through
continuous iterative calculation, to separate the difficult-to-
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segment data set into visible and distinct data clusters. +e
process is usually achieved through the following 5 steps.

(1) +e objective function is the sum of squared devi-
ations, expressed by

J(U, P) � 
n

j�1


c

i�1
uik 

m
dik( 

2
, (1)

where uik is the membership degree of the k-th data
point to the i-th cluster center, m is smoothing
parameter, and (dik)2 is the Euclidean distance of the
k-th data point to the i-th cluster center.

(2) +e sample data is normalized to the [0, 1] interval to
eliminate the difference in data scale. Normalization
is expressed by

x
∗

�
xmax − x

xmax − xmin
. (2)

(3) Initialize the membership degree matrix; the
membership degree matrix is expressed by



t

i�1
uik � 1, 1≤ k≤ c,



c

n�1
uik > 0, 1≤ i≤ t,

uik ≥ 0, 1≤ i≤ t, 1≤ n≤ c.

(3)

(4) Enter the number of clusters, smoothing parameter,
maximum number of iterations, and convergence
criteria.
Under the constraints of equation (3), the minimum
value of formula (1) is obtained by applying the
Lagrange multiplier method to equation (1)and
taking the derivative to obtain the elements of the
membership matrix and cluster centers in each it-
eration through calculating. +e cluster centers and
elements of the membership matrix are expressed by
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n
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m , i � 1, 2, . . . , k , (4)
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c
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(2/m− 1)
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− 1

. (5)

(5) Iteratively calculate the cluster centers and adjust the
updated membership matrix until the convergence
criterion is reached. At this time, the objective
function reaches the minimum, and the final cluster
center matrix and membership degree matrix are
taken as the basis for drawing the clustering results.

As a commonly used soft clustering method, the tra-
ditional FCMmethod is often used to analyse the AE data of
the structure. Based on the acoustic emission method and
using the FCM method, Shao [23] monitored the damage
process of steel tube constrained reinforced concrete col-
umns and obtained the damage type and cracking mode of
the structure. Zhao et al. [24] used principal component
analysis (PCA) and FCM to cluster the AE signals collected
during the torsion test of the 3D braided composite shaft.
+e study found the material failure mode and mechanism
by analysing the structural damage. Zhao and Zhou [25]
used AE and FCM methods to evaluate the damage process
of carbon/glass fiber reinforced hybrid composite materials
and obtained the characteristics of the three damage modes
of the material, which provided a reference for the health
monitoring of the material. But due to the random gener-
ation of its initial membership matrix, it was easy to cause a
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Figure 1: Dimension diagram of integrally assembled box culvert
model.

97
.5

116

8 8 R2.512.5 12.537.5 37.5

8
8

37.528 2837.5

131

62
.5

35

10
10

25
42

.5

Figure 2: Dimensions of four-component fabricated box culvert
model.
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local optimal situation [26]. To solve this problem, Liang and
Xue [27] used a method that combines an improved artificial
bee colony algorithm and KFCM algorithm to improve the
problem. +e results showed that, compared to the IABC-
GFCM algorithm, the algorithm could effectively improve
the cluster validity index.

+e basic idea of the STING method is to grid the data
space and analyse the data with space as the basic unit. +e
advantage is that the calculation speed is faster, but the
disadvantage is that the space complexity is high when the
mapping path is long and the dimensions are uneven [28].

+e density-based algorithm represented by the
DBSCAN algorithm has been applied in many fields by
scholars due to its effectiveness in filtering noise and
flexibility in processing data [29, 30], but it was more
sensitive to input parameters [31]. +e density peak
clustering algorithm proposed by Rodriguez and Laio [32]
was based on the spatial hierarchical relationship and
provides two methods for different users. It was extremely
flexible, but its complexity was high, and it had poor
adaptability to high-dimensional data [33].

Aiming at the shortcomings of the above three algo-
rithms and drawing on their advantages and inspired by the
above algorithms, this paper proposes a grid-based fuzzy
C-means clustering analysis method based on the combi-
nation of density and distance (G-DFCM).

2.4. G-DFCM Clustering Method. +e G-DFCM algorithm
aims at solving the fuzzy C-means clustering easy to fall into
the local optimal and cannot identify the noise situation.
First, select the first clustering center grid according to the
peak density, calculate the membership grid matrix, and use
it as the initial membership matrix to replace the matrix
which is the first step to initialize the membership randomly
in the normal fuzzy C-means algorithm, to solve the oc-
currence of local optimal conditions. Secondly, for the case
that the original algorithm cannot identify noise, the relative
grid average density parameter is proposed to distinguish the
noise data in the original data. Finally, a two-step method is
used to reduce the sample space and optimize the original
objective function.+e optimized objective function is based

Table 1: Technical parameters of acoustic emission system.

Name Model Test frequency range (kHz) Noise minimum threshold (dB) Maximum signal amplitude (dB)
Acoustic emission system SAEU2S 3∼2000 10 100

Table 3: Technical parameters of microcomputer-controlled electro-hydraulic servo loading system.

Name Model Range (kN)
Microcomputer-controlled electro-hydraulic servo loading system T-PMC 0∼100

Table 2: Technical parameters of creak observation equipment.

Name Model Magnification Range (mm) Minimum indexing (mm)
Crack width observer HC-CK101 40 0∼2 0.02

Load
Steel cushion block

I-type distribution beam

Top plate

AE sensor

Hinge

Side wall

Side wall

Bottom plate

Steel base

Preamplifier Computer

Figure 3: Diagram of loading device and AE sensors layout.
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on the grid.+emembership degree of the grid is substituted
for the degree of membership of the point, and the Euclidean
distance of the point is replaced by the grid distance, and the
relative grid average density parameter is introduced to
reduce the number of iterations and reduce the calculation
time. It is convenient for the objective function to converge
to the minimum value as soon as possible. +e following
describes the foundation and detailed steps of the algorithm.

2.4.1. G-DFCM Algorithm Foundation.

Definition 1. Grid density:

Ri �


k
j�1 ρj

k
, (6)

where Ri is the grid density of the i grid, k is the amount of
data in the i grid, and ρj is the local density of the point,
which can be calculated according to

ρj � 
n

j�1
χ dij − dc , (7)

where ρj is the local density of point j, n is the amount of data,

χ(x) is the indicator function, χ(x) �
1, x< 0
0, others , dij is the

Euclidean distance of point j to the center i, and dc is the cutoff
distance, which is defined by the user. When defining the local
density, keep it greater than the minimum point value.

Definition 2. Relative grid average density:

Rij �
Rj

Ri

. (8)

Definition 3. G-DFCM algorithm objective function:

J(U, V) � 
c
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n
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2
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Use the Lagrange multiplier method to find the partial
derivative of the objective function:
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where uij is the membership degree of grid j relative to the
center grid of i, Rij is the average density of the relative grid,
dij is the Euclidean distance of grid j relative to the center
grid of i, and Ci is the i-th cluster center grid.

2.4.2.0e Specific Operation Steps of the G-DFCMAlgorithm.
+e specific operation steps of the G-DFCM algorithm are as
follows:

Data normalization: use normalization methods to
adjust the data to [0, 1] to eliminate the difference in
data point scale.
Data gridization: grid the region, and assign the data to
the corresponding grid according to its location.
Calculate the parameters of the points in the grid:
calculate the local density parameters of all data
according to equation (7).
Datapoint classification: according to the density cal-
culation result of equation (6), the effective point and
the noise point are distinguished, and the noise point is
removed from the original data after the noise point is
output to facilitate the subsequent steps.
Screening of grid density: screen all grids, and use the
average density of all points in the grid as the grid
density of the grid.
Calculation of grid average density: calculate the rel-
ative grid average density according to equation (8).
Enter the number of clusters, the maximum number of
iterations, smoothing parameter, and convergence
criterion.
Calculate the initial membership matrix: take the
highest grid density as the clustering center, and cal-
culate the membership matrix once according to
equation (9), and use it as the initial membership
matrix to replace the randomly generated membership
in the original algorithm membership grid matrix.
Continue to iteratively calculate the membership de-
gree matrix and the clustering center matrix according
to equations (10) and (11) until the objective function
equation (9) reaches the minimum value.
Output the final membership degree matrix, cluster
center matrix, objective function value, iteration cal-
culation times, running time, and noise points.

2.5. G-DFCM Simulation Experiment. +e performance of
the G-DFCM method was tested. +e test environment was
built as a platform: Core i7-4710HQ (2.5GHz) processor,
8 GB memory, and Windows 10 operating system. +is
algorithm was developed and tested in Matlab R2018a. +e
test data set used the open data sets Iris [34] and Glass [35] in
the UCI data set. +e relevant information of the two data
sets is shown in Table 4. Since the two data sets do not
contain noise data, the Balance-scale data set and the Cmc
data set with the same dimensions were manually intro-
duced as noise data, and the relevant information of the two
data sets is shown in Tables 4 and 5. +e test aimed to
compare the effectiveness of noise discrimination, conver-
gence speed, and clustering effectiveness with the normal
FCM algorithm, STING algorithm, and DBSCAN algorithm
through this algorithm.

When calculating with G-DFCM, the following pa-
rameters need to be entered: number of clusters, cutoff
distance, the minimum number of points, and three com-
mon data maximum iterations, smoothing parameter, and
convergence criterion. Among them, the first three data sets
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have a greater impact on the clustering speed and accuracy,
and different values should be selected for different data sets,
and the last three data sets can generally use common values.
+e value assignment of each parameter is shown in Table 6.

3. Results and Discussion

3.1. ParameterAnalysis ofAcoustic Emission in theModelTest.
When a load is applied to the structure, the AE parameters
generated by the structure will change drastically. +rough
the model test, the AE data of the integrally assembled box
culvert and the four-component assembled box culvert were
collected, including amplitude, ringing count, duration,
rising count, rising time, energy, etc. Among them, am-
plitude, ringing count, and energy are the most commonly
used analysis parameters. +e amplitude represents the
maximum amplitude of the AE signal waveform, which
directly reflects the strength of the signal. +e ringing count
represents the number of oscillations in the AE signal
waveform that exceed the threshold, and it also reflects the
strength and frequency of the signal. Amplitude and ringing
count are both important indicators to measure the intensity
of AE. Energy represents the amount of energy released by
changes in the energy level of the stress wave and reflects the
relative strength of the signal. Due to the particularity of the
ringing count, the ringing count was used as the repre-
sentative parameter to analyse the AE parameters. In the
subsequent analysis, three common parameters are also
selected as clustering data.

Figures 4 and 5 are graphs of the ringing count and
cumulative ringing count of the two prefabricated box
culvert models over time. Table 7 is crack data of four-
component assembly box culvert in model test.

Ni was used to represent the ringing count of the in-
tegrally assembled box culvert, and Nf was used to represent
the ringing count of the four-component assembly box
culvert. +e following can be known from the figure:

(1) In the initial loading stage of the integrally assembled
box culvert (the first five loading stages), the
structural acoustic emission phenomenon was not
obvious, and occasionally a slightly stronger acoustic
emission activity occurred. At this time, the highest
value of the ringing count was Ni,max1 � 597, and the
cumulative ringing count rose slowly. However, the
initial loading of the four-component assembly box

culvert was shorter (the first two loading stages), and
the highest ringing count was Nf,max1 � 1023. Com-
bined with the crack observation instrument to
observe the two box culverts, no cracks occurred.
+erefore, this stage of the two box culverts was the
initial structural compaction and internal slippage of
the structure, and the internal damage of the
structure was in the cumulative stage. Occasionally, a
slightly stronger acoustic emission activity was the
release of energy when the internal pores were closed
under pressure or the internal structure of the
structure slips.

(2) In the mid-loading period of the integrally pre-
fabricated box culvert (the sixth and seventh
loading stages), the structural acoustic emission
phenomenon was very violent and peaks were
generated, the highest ringing count was Ni,

max2 � 973, and the cumulative ringing count was
suddenly increased. Combined with the crack ob-
servation instrument, two cracks were generated,
which were located in the middle of the top plate
and a quarter of the span, whose length was 4.0 cm
and 3.5 cm, respectively, and width was 0.28mm
and 0.14mm, respectively.+e loading period of the
four-component assembly box culvert was slightly
longer (the third to sixth loading stages), the
maximum ringing count was Nf,max2 �1527, and the
cumulative ringing count was rising steadily.
Combined with the observation of the crack ob-
server, one crack was generated, which was located
at the middle of the top plate, whose length was
6.8 cm and width was 0.3mm. +erefore, in the
mid-loading period of the two box culverts, the
internal damage accumulation limit was reached,
and the process of releasing accumulated energy in
the form of cracks began.

(3) At the end of the loading stage (the eighth and ninth
loading stage) of the integrally prefabricated box
culvert, the acoustic emission activity produced a
secondary peak, accompanied by frequent acoustic
emission phenomena. Combined with the observa-
tion of the crack observation instrument, two new
cracks were generated, located between the right
quarter span and the middle span and another
quarter of the span, whose length was 2.9 cm and

Table 4: Related information of the two data sets.

Data set +e amount of data Dimension +e amount of clusters
Iris 150 4 3
Glass 214 9 6

Table 5: Related information of the two noise data sets introduced.

Data set +e amount of original data +e amount of data introduced Dimension
Balance-scale 625 30 4
Cmc 1473 30 9
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3.6 cm, respectively, and width was 0.09mm and
0.18mm, respectively. +e loading end of the four-
component assembly box culvert was slightly shorter

(the seventh loading stage) and was also accompa-
nied by frequent ringing counting signals and two
cracks were generated in the right quarter span and

Table 6: Parameter value assignment table.

Name of parameters Data set Value assignment

Number of clusters Iris 4
Glass 9

Cutoff distance Iris 0.4
Glass 1.0

Minimum number of points Iris 30
Glass 30

Maximum iterations 100
Smoothing parameter 2
Convergence criterion 1E − 5
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Figure 4: +e change diagram of integrally assembled box ringing count and cumulative ringing count over time.
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Figure 5: Four-component assembly box ringing count and cumulative ringing count change with time.
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left quarter span, whose length was 6.4 cm and
7.5 cm, respectively, and width was 0.08mm and
0.05mm, respectively. +erefore, at the end of
loading of the two box culverts, cracks and defor-
mations continued to be used to release the accu-
mulated energy to the full, and the structure tended
to be destroyed until the bearing capacity was
completely lost. Other acoustic emission signals
showed a tendency to change synchronously with the
ring count.

(4) In terms of cumulative ringing count performance,
the overall prefabricated box culvert model generally
presented a “three-stage” upward trend, and the two
inflection points were located at 66.67% and 77.78%
of the ultimate load, respectively. +e four-member
prefabricated box culvert generally presents a “two-
stage” upward trend, and the only inflection point
was near the ultimate load. +is showed that the
overall prefabricated box culvert was more sensitive
to load than the four-member prefabricated box
culvert. As long as the damage accumulates to a
certain degree, energy would be released through
cracks appearance. +e crack data of the four-
member box culvert model is shown in Table 4.

(5) +e two box culvert models from the early to mid-
loading stage were both in the transition period from
the elastic stage to the plastic stage. +e difference
was that the integrally prefabricated box culvert had
a longer elastic phase (the first five loading phases),
and the four-member prefabricated box culvert had a

longer plastic phase (third to sixth loading phases).
+erefore, corresponding to the actual structure, the
integrally assembled box culvert structure had a
longer elastic stage and could work for a long time
without cracks under the low load level, so the
performance would be more excellent. Under the
action of great load level, because the four-member
prefabricated box culvert had a longer plastic phase,
it could continue to work for a longer time with
cracks. For larger loads, due to the stronger ultimate
bearing capacity of the integrally assembled box
culvert, the integrally assembled box culvert was
more reliable under extreme conditions.

3.2. FCM Analysis of Acoustic Emission in the Model Test.
Although the use of AE parameter analysis can preliminarily
characterize the damage of the two box culverts, because this
method uses single factor analysis in the reanalysis process
and is mixed with some subjective wishes, it is easy to draw
one-sided conclusions [36, 37]. For making a distinction
among the damage stages more reasonably, the fuzzy
C-means clustering method is used to comprehensively
analyse the collected three acoustic emission representative
signals, namely, amplitude (dB), ringing count, and energy
(mV·μs); these parameters can reflect the meaning repre-
sented by the AE signal from different angles. +e relevant
parameters given in this analysis are as follows: the number
of clusters is 3, the smoothing parameter is commonly used
as 2 [38], the maximum number of iterations is 100, and the
convergence criterion is 1E − 5. Among them, the

Table 7: Crack data of four-component assembly box culvert in model test.

Load level (kN) Loading/unloading Crack number Crack starting point (cm) Crack width (mm) Crack length (cm)
3.0 Loading — — — —
6.0 Loading — — — —

9.0 Loading 1 (63.8, 0) 0.30 6.8
Unloading 1 (63.8, 0) 0.04 6.8

12.0
Loading 1 (63.8, 0) 0.48 8.0

2 (37.0, 0) 0.44 6.4

Unloading 1 (63.8, 0) 0.18 8.0
2 (37.0, 0) 0.30 6.4

15.0
Loading 1 (63.8, 0) 1.26 8.0

2 (37.0, 0) 0.54 6.4

Unloading 1 (63.8, 0) 0.59 8.0
2 (37.0, 0) 0.28 6.4

18.0

Loading
1 (63.8, 0) 1.50 8.0
2 (37.0, 0) 0.58 6.4
3 (84.0, 0) 0.05 7.5

Unloading
1 (63.8, 0) 0.72 8.0
2 (37.0, 0) 0.28 6.4
3 (84.0, 0) 0.03 7.5

21.0

Loading
1 (63.8, 0) 9.00 8.0
2 (37.0, 0) 2.26 6.4
3 (84.0, 0) 1.70 7.5

Unloading
1 (63.8, 0) 5.10 8.0
2 (37.0, 0) 1.08 6.4
3 (84.0, 0) 0.73 7.5

+e origin of the coordinates is set at the imaginary intersection point between the lower edge of the top plate and the outer edge of the side wall.
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smoothness index affects the clustering mode. +e closer the
parameter is to 1, the closer the clustering result is to the
traditional hard clustering method. +e smoothness index is
generally of a common value 2. Convergence criteria and the
maximum number of iterations affect the tolerance of the
clustering results; the larger the maximum number of it-
erations or the smaller the convergence criterion value, the
higher the clustering accuracy and the longer the calculating
time. +e convergence criteria and maximum number of
iterations are generally of a common value 1E − 5 and 100,
respectively. Substitute the acoustic emission data and four
parameters into equations (1)∼(5) until the change value of
the calculation result of equation (1) reaches the convergence
criterion before reaching the maximum number of
iterations.

+e clustering results after FCM calculation are shown in
Figures 6 and 7.+e following can be known from the figure:

(1) For low-energy (less than 1E4mV·μs [39]) data, the
results of the two prefabricated culverts were similar:
cluster 1 had the characteristics of low amplitude and
low ringing count, and the amplitude range was located
at 40.1∼45.9 dB and 40.1∼46.1 dB, and the ring count
interval was 1∼425 and 1∼964, respectively. Observing
with the crack observer, no macroscopic cracks were
generated, and the influence of laboratory environment
noise was taken into account, which meant it was
related to the accumulated damage inside the model or
the noise signal that cannot be filtered. Compared with
cluster 1, cluster 2 had a higher amplitude and ringing
count. +e amplitude ranges were 42.4∼55.3 dB and
43.3∼56.4 dB, and the ring count ranges were 1∼720
and 1∼1079. +ere are no macroscopic cracks mea-
sured by the crack observer, so this was related to the
relative slippage inside themodel and the initiation and
formation of micro-cracks. Compared with cluster 2,
the amplitude and ringing count of cluster 3 increased
again. +e amplitude ranges were 47.2∼99.6 dB and
52.2∼100dB, and the ringing count ranges were 7∼973
and 3∼1527. +ere were still no macroscopic cracks
after observation with the crack observer, but the
environmental noise would not reach such a high level
and would not have such a significant impact on the
structure, so this was related to the development of
micro-cracks inside the model.

(2) For high-energy data (higher than 1E4mV·μs), there
was a big difference between the two types of fab-
ricated culverts: the overall fabricated culvert had
high-energy AE signals while simultaneously having
a high amplitude and high ringing counts. +e
amplitude range was higher than 99.0 dB and the
ringing count range was higher than 612. At the same
time, combined with the crack observer, it observed
the cracks on the lower edge of the upper roof plate
and found a crack in the middle of the span with a
width of 0.50mm and a length of 5.8 cm. A crack was
found in a quarter span with a width of 0.14mm and

a length of 4.8mm, so this was related to the sudden
release after the cumulative damage, which directly
produces visible cracks; it indicated that the de-
struction of the integrally fabricated culvert was
relatively sudden, and the precursor features were
not obvious, while the four-component assembled
culvert model had a wider range of high-energy
signal values. It not only had a large number of data
points in the high-amplitude area, but also had a
certain number of data points in the other two
groups.+is was related to the increasing cumulative
damage, but the slow generation of macroscopic
cracks, indicating that the failure process of the four-
member assembly culvert was relatively slow and the
precursor characteristics were obvious.

3.3. Results of G-DFCM Simulation Experiment. According to
the above-mentioned G-DFCM method to calculate the
results of the simulation experiment, the experimental re-
sults are as follows: the noise calculation results are shown in
Table 8 and the number of convergences and operation time
in the calculation process are shown in Table 9 and Figures 8
and 9.

Analyse the accuracy of the G-DFCM clustering algo-
rithm. Since the XB index considers the geometric structure
information and membership degree of the data set at the
same time [40], the XB index is used to verify the clustering
effectiveness of the above method, and the XB index can be
expressed by the following equation [41]:

XB(− )
�


K
i�1 

n
j�1 μ

m
ij d xj, vi 

n × min
i≠j

d vi, vj 
, (12)

where (− ) indicates that the index is a minimum index; that
is, the smaller the value, the higher the clustering
effectiveness.
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Figure 6: +e direct clustering results of the whole assembled box
culvert model.
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Table 10 and Figure 10 show the XB index values of the
two fuzzy algorithms.

From Table 8 and Figure 10, it can be concluded that the
G-DFCM algorithm not only identifies noise points but also
improves the effectiveness of clustering through almost the
same or lower number of iterations, while only increasing a
small amount of computing time.

3.4. G-DFCM Analysis of Acoustic Emission in Model Test.
+eG-DFCM algorithm is used to analyse the AE data of the
test integrated box culvert. +e clustering results are shown
in Figure 11.

Figure 11 indicates that the clustering result of acoustic
emission data using the G-DFCM algorithm has clearer
boundaries and more obvious differences between clusters.
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Figure 7: +e direct clustering results of four-component assembled box culvert model.

Table 8: Data set noise calculation results.

Calculation
method Data set +e amount of total

data
+e amount of noise point

calculation
+e amount of noise accurate

calculation
Accuracy

(%)

G-DFCM
Iris + Balance-

scale 180 30 30 100.00

Glass +Cmc 244 32 30 93.75

DBSCAN
Iris + Balance-

scale 180 39 30 76.92

Glass +Cmc 244 32 32 52.63

FCM
Iris + Balance-

scale 180 —1 — —

Glass +Cmc 244 — — —

STING
Iris + Balance-

scale 180 —2 — —

Glass +Cmc 244 — — —
1FCM algorithm cannot identify noise. 2+e STING algorithm is not suitable for high-dimensional data.

Table 9: Comparison of data set calculation process.

Calculation method Data set Number of convergence iterations Operation time (s)

G-DFCM Iris + Balance-scale 16 0.368
Glass +Cmc 35 0.363

DBSCAN Iris + Balance-scale — 1.030
Glass +Cmc — 0.995

FCM Iris + Balance-scale 16 0.309
Glass +Cmc 43 0.286

STING Iris + Balance-scale —1 —
Glass +Cmc — —

1+e STING algorithm is not suitable for high-dimensional data.
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Table 10: Data set XB index comparison.

Data set
Calculation method Iris Glass
G-DFCM 0.023 0.057
FCM 0.108 0.143
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Figure 10: XB index comparison.
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+is is mainly due to the higher clustering effectiveness of
the algorithm.

4. Conclusions

Aiming at the deficiencies in the research on the structure of
the prefabricated box culvert and the damage identification
method, this paper had made and tested the scaled model of
the prefabricated box culvert; the AE data during the test
were collected and analysed; a grid-based fuzzy C-means
clustering analysis method was proposed based on the
combination of density and distance (G-DFCM), and the
algorithm was simulated to verify its effect, and it was ap-
plied to the damage identification process of the assembled
box culvert. +rough the analysis of the research results in
the experiment, the main conclusions of this paper are as
follows:

(1) +e failure process of both culvert models includes
three stages, namely, the accumulation of internal
damage and internal structural slippage, the for-
mation and development of micro-cracks, and the
formation and development of macro-cracks. But the
difference is that the destruction process of the in-
tegrally fabricated culvert is more sudden and the
stage is more obvious; the failure process of the four-
member fabricated box culvert is slower and the
precursors are obvious.

(2) For low-energy signals, the acoustic emission am-
plitude range of 40∼46 dB corresponds to the ac-
cumulation of structural internal damage; amplitude
range of 43∼56 dB corresponds to the internal
structure slip; amplitude range of 49∼99.8 dB cor-
responds to the formation and development of
structural micro-cracks. For high-energy signals,
they are often accompanied by high amplitude and
high ringing count (amplitude interval higher than
99.0 dB, ringing count interval higher than 612).
Such signals usually correspond to structural mac-
roscopic cracks.

(3) Compared with the FCM algorithm, the G-DFCM
algorithm improves the clustering effectiveness by
69.4% and can identify noise while the calculation
time and the number of iterations are similar, and
has the ability to identify the noise. +e G-DFCM
algorithm is used to cluster the AE data of the
prefabricated box culvert. It can be found that this
method can make the clustering boundary clearer
and the clustering effect more obvious.
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