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Based on research on subway tunnels in a viscous soil medium, this paper establishes the vibration equation of a tunnel structure
by using the theory of moderately thick cylindrical shells and the method of wave propagation. )e soil around the tunnel is
represented in simplified form as an isotropic viscoelastic medium to obtain the equation of motion of the soil, and the vibration
control equation of the tunnel under the influence of viscous soil is obtained by coupling. By numerical calculations, the variation
trends in the natural vibration frequency of the tunnel and attenuation affected by soil viscosity under different modes are given.
Furthermore, the influences of the tunnel radius, wall thickness, and length on the vibration characteristics of a tunnel structure in
viscous soil are discussed. )is study will provide a reference for the design of subway vehicles and the antivibration design of
subway tunnel structures.

1. Introduction

)e influence of environmental vibrations caused by subway
train operations is a problem that has attracted much at-
tention, and many researchers have conducted a series of
studies on this issue. )ese studies have mainly involved
features such as the track system, tunnel structure, and
physical characteristics of the surrounding strata. With the
widespread use of shield technology in tunneling, a cylin-
drical shell structure has become the first choice for urban
subway tunneling. )e study of the natural vibration
characteristics of underground structures, especially the
calculation of their natural vibration frequency, is an im-
portant part of their dynamic analysis, which provides a
theoretical basis for the dynamic calculation of structural
design loads. At present, research on such structures mainly
focuses on the theory of thin shells [1–4]. However, the
thickness diameter ratio of subway tunnel structures is
generally greater than 1 :12, which does not conform to the
assumptions of thin-shell theory.

Various studies have been performed to model
ground-borne vibrations from underground railways us-
ing numerical and analytical methods. Moore and Guan
[5] used continuous reflection to study the dynamic re-
sponse of a tunnel under incident seismic waves, and their
results showed that the interaction between soil and the
tunnel was significant. Clouteau et al. [6, 7] established a
three-dimensional model to calculate the dynamic inter-
action between a tunnel and soil, simulated the tunnel and
soil with a finite element and a boundary element, re-
spectively, and explained how the boundary element ef-
fectively simulated the periodic medium. )e effectiveness
of this method was demonstrated using two tunnels as
examples. Forrest and Hunt [2, 3] proposed a pipe-in-pipe
model and determined the dynamic response of a tunnel
system in three-dimensional elastic soil by considering the
tunnel-rock interaction. Gupta et al. [8] compared the
pipe-in-pipe model and the periodic finite element-
boundary element coupling model and analyzed the dy-
namic response of a tunnel lining in full space using these
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two models. Hussein et al. [9] developed a model for
analyzing vibrations from railway tunnels in a half-space
by using the pipe-in-pipe model. )en, Kuo et al. [10]
proposed a pair of parallel-tunnel models in homogeneous
full space and calculated the difference between the vertical
and horizontal results of the double-tunnel model and the
single-tunnel model. Clot et al. [11] extended this model to
predict dynamic responses of a double-deck circular
tunnel in full space. Parry et al. [12] verified the behavior of
the pipelines in a software model of pipeline vibrations to
determine ground noise and vibration levels above a
construction tunnel. Yang et al. [13] used a centrifuge
model experiment and numerical simulations to study the
influence of changes in soil parameters with depth on
vibrations caused by a tunnel. Via a comparison between
experimental results and numerically simulated results,
the validity of considering soil as a homogeneous medium
in numerical simulations was illustrated.

Both numerical and analytical methods were used in
the above studies to simulate the soil mass with a single
medium. )erefore, other researchers used model of sat-
urated porous media to simulate soil to increase the ac-
curacy of the models. Senjuntichai et al. [14] studied time-
harmonic vertical vibrations of an axisymmetric rigid
foundation embedded in a homogeneous poroelastic soil.
Kumar et al. [15] analyzed the radial displacement field of
the solid phase and fluid phase when the surface of a
cylindrical tunnel in saturated porous media was subjected
to time-varying loads. Hasheminejad et al. [16, 17] studied
the dynamic stress concentration in the area around the
porous wall of a cylindrical cavity in an infinite saturated
elastic medium under different vibrational modes and
considered the dynamic response of the cavity lining and
the surrounding soil under a moving load when the lining
was not fully in contact with the surrounding saturated
soil. Gao et al. [18] improved a 2.5-dimensional finite-
element model, and He et al. [19, 20] proposed a 2.5-di-
mensional coupled finite element-boundary element
model to simulate the three-dimensional dynamic inter-
action between saturated soil and a tunnel. Di et al. [21]
presented a 3-dimensional multilayer model of a cylin-
drical tunnel for investigating train-induced dynamic
stress in saturated soils, which considers multiple moving
loads and the grouting layer of a shield tunnel. Lu and Jeng
[22, 23] studied the dynamic response of fixed infinite
cylindrical holes in porous media under axisymmetric ring
loading and discussed the analytical determination of the
dynamic response of porous media in half-space under
moving point loading. On the basis of a fractional de-
rivative model and the theory of saturated porous media,
Gao and Wen [24] studied the dynamic characteristics of a

viscoelastic soil fractional derivative viscoelastic lining
system in the frequency domain under axisymmetric
loading and fluid pressure. Yuan et al. [25, 26] determined
the pore pressure transfer function of a tunnel in saturated
soil, compared the equivalent model of elastic soil with the
model of saturated soil, and studied the effect of pore fluids
in the soil on the ground vibrations due to a tunnel buried
in a layered half-space. In addition, some researchers have
paid attention to the effect of the void between the soil and
the tunnel interface [27, 28].

)e above literature contains in-depth and detailed
analyses of the vibrations caused by subway trains from
multiple perspectives. However, although they are an es-
sential parameter in vibration propagation, the vibration
characteristics of tunnels buried in viscous soil have rarely
been reported. In fact, the thickness-diameter ratio of most
subway tunnels excavated by shield tunneling machines is
greater than 1 : 12, and hence it is inappropriate to use
thin-shell theory to model a tunnel in most studies. In
addition, as a result of the natural complexity of soil, the
soil around a tunnel is essentially an unsaturated porous
medium. When the coupling between a tunnel and soil is
considered, the influence of the soil medium on the natural
vibration characteristics of the tunnel structure mainly
comprises the influence of the additional mass and ad-
ditional stiffness. )erefore, in this paper, the theory of
moderately thick cylindrical shells is used to build a tunnel
model, the Voigt-Kelvin equation is used to describe the
constitutive relation of the soil medium, and the disper-
sion characteristic equation for the vibration character-
istics of a tunnel in viscous soil is deduced by coupling of
the tunnel and soil.

2. Vibration Equation of Tunnel Structure

)e cylindrical coordinate system and a geometric model of
the tunnel structure studied in this paper are shown in
Figure 1. )e tunnel structure is represented by the inner
cylinder, and the soil around the tunnel is represented by the
outer cylinder. In the figure, L, R, and h represent the length,
radius, and wall thickness of the tunnel, respectively; u, v,
and w represent the axial, tangential, and radial displace-
ments of the tunnel surface, respectively; x, θ, and r denote
the axial, tangential, and radial coordinates of the shell; qx,
qθ, and qr represent the external forces on the middle surface
of the tunnel structure in the axial, tangential, and radial
directions, respectively. On the basis of the theory of
moderately thick shells [29], the equations of motion of the
displacement components in the tunnel can be established as
follows:

2 Advances in Materials Science and Engineering



z
2
u

zx
2 +

1 − ]
2R

2􏼠 􏼡
z
2
u

zθ2
􏼠 􏼡 +

1 + ]
2R

􏼒 􏼓
z
2
v

zxzθ
􏼠 􏼡 +

]
R

􏼒 􏼓
zw

zx
􏼠 􏼡 +

1
K

􏼒 􏼓qx

+
h
2ε(a)

12R
􏼠 􏼡

z
2ϕ

zx
2 −

1 − ]
2R

2􏼠 􏼡
z
2ϕ

zθ2
􏼠 􏼡 −

1 − ]
2R

2􏼠 􏼡
z
2
v

zxzθ
􏼠 􏼡􏼠 􏼡 �

ρJ0

K
􏼒 􏼓

z
2
u

zt
2􏼠 􏼡,

(1a)

1 + ]
2R

􏼒 􏼓
z
2
u

zxzθ
􏼠 􏼡 +

1 − ]
2

􏼒 􏼓
z
2
v

zx
2􏼠 􏼡 +

1
R
2􏼠 􏼡

z
2
v

zθ2
􏼠 􏼡 +

1
R
2􏼠 􏼡

zw

zθ
􏼠 􏼡 +

qθ

K
􏼒 􏼓

+
h
2ε(a)

12R
􏼠 􏼡

1 − ]
2

􏼒 􏼓
z
2φ

zx
2􏼠 􏼡 −

1
R
2􏼠 􏼡

z
2φ

zθ2
􏼠 􏼡􏼠 􏼡 +

Gh

KRkτ
􏼠 􏼡 φ −

v

R
􏼒 􏼓 +

1
R

􏼒 􏼓
zw

zθ
􏼠 􏼡􏼠 􏼡 �

ρJ0

K
􏼒 􏼓

z
2
v

zt
2􏼠 􏼡,

(1b)

−
]
R

􏼒 􏼓
zu

zx
􏼠 􏼡 −

1
R
2􏼠 􏼡

zv

zθ
􏼠 􏼡 −

1
R
2􏼠 􏼡w +

Gh

KRkτ
􏼠 􏼡

z

zθ
􏼠 􏼡 φ −

v

R
+

1
R

􏼒 􏼓
zw

zθ
􏼠 􏼡􏼠 􏼡

+
h
2ε(a)

12R
3􏼠 􏼡

zφ
zθ

􏼠 􏼡 +
Gh

Kkτ
􏼠 􏼡

z

zx
􏼠 􏼡 ϕ +

zw

zx
􏼠 􏼡 +

qr

K
�

ρJ0

K
􏼒 􏼓

z
2
w

zt
2􏼠 􏼡,

(1c)

z
2ϕ

zx
2 +

1 − ]
2R

2􏼠 􏼡
z
2ϕ

zθ2
􏼠 􏼡 −

mx

D
−

1
D

􏼒 􏼓
Gh

kτ
􏼠 􏼡 ϕ +

zw

zx
􏼠 􏼡 +

1 + ]
2R

􏼒 􏼓
z
2φ

zxzθ
􏼠 􏼡

+
ε(a)

R

z
2
u

zx
2 −

1 − ]
2R

2􏼠 􏼡
z
2
u

zθ2
􏼠 􏼡􏼠 􏼡 �

ρJ2

D
􏼒 􏼓

z
2ϕ

zt
2􏼠 􏼡,

(1d)

1 − ]
2

􏼒 􏼓
z
2φ

zx
2􏼠 􏼡 +

1
R
2􏼠 􏼡

z
2φ

zθ2
􏼠 􏼡 −

Gh

Dkτ
φ −

v

R
+

1
R

􏼒 􏼓
zw

zθ
􏼠 􏼡􏼠 􏼡 −

mθ

D
+

1 + ]
2R

􏼒 􏼓
z
2ϕ

zxzθ
􏼠 􏼡

+
ε(a)

R

1 − ]
2

􏼒 􏼓
z
2
v

zx
2􏼠 􏼡 −

1
R
2􏼠 􏼡

z
2
v

zθ2
􏼠 􏼡 −

1
R
2􏼠 􏼡

zw

zθ
􏼠 􏼡􏼠 􏼡 �

ρJ2

D
􏼒 􏼓

z
2φ

zt
2􏼠 􏼡.

(1e)

In the above equations, Young’s modulus of the shell
material is denoted by E, the shear modulus is denoted by G,
Poisson’s ratio is denoted by ], and the density of the shell
material is denoted by ρ; ϕ and φ represent the rotation of a
point in the tunnel structure in the x − r and x − θ planes,

respectively; and mx and mθ denote the external forces on the
x − r and x − θ plans, respectively; kr is the shear factor of the
cylindrical shell; and ε(a) represents this item as an additional
term, and t is time, where kr � 6/5, K � Eh/(1 − v2),
D � Eh3/12(1 − v2), J0 � h, and J2 � h3/12.
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Figure 1: Geometric model of tunnel and soil.
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By using the wave propagation method, the solutions
related to the displacement, the axial propagation wave
number k, and the circumferential mode number n can be
obtained as follows:

u � U cos(nθ)exp[i(ωt − kx)],

υ � V sin(nθ)exp[i(ωt − kx)],

w � W cos(nθ)exp[i(ωt − kx)],

ϕ � Φ cos(nθ)exp[i(ωt − kx)],

φ � Ψ sin(nθ)exp[i(ωt − kx)],

(2)

where U, V, W, Φ, and Ψ are the amplitudes of the dis-
placement of the tunnel structure in the x, θ, and r

directions and the x − r and x − θ planes, respectively, and
ω is the frequency. By substituting the form of equation (2)
into equations (1a)–(1e), the vibration equation of the
tunnel structure based on the theory of moderately thick
cylindrical shells can be deduced by omitting the addi-
tional terms:

[g][l]U +[K]q � 0. (3)

In equation (3), [K] and [g] are diagonal matrices of
order 5, [l] is a coefficient matrix of order 5,
U � (U, V, W,Φ,Ψ)T, and q � (qx, qθ, qr, mx, mθ)

T, where
the elements of each matrix are as follows:

K11 � K22 � K33 �
1
K
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g44 � cos(nθ)exp[i(ωt − kx)],
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3. Equation of Motion of Soil

If it is assumed that the soil around a tunnel is a homo-
geneous and isotropic linearly elastic medium, the equation
of displacement for any point within the soil mass can be
represented by the followingNavier equation of motion [30]:

(λ + μ)∇∇ · u + μ∇2u + ρsf � ρs

z
2u

zt
2 . (5)

In equation (5), u � (ur, uθ, ux)T is the displacement vector
of the soil mass, f is the vector of body forces,
λ � 2vsGs/(1 − vs), and μ � Es/2(1 + vs) are the Lamé con-
stants of the medium (where Gs is the shear modulus, Es is

Young’s modulus, and vs is Poisson’s ratio), ρs is the density of
themedium, and∇ is the Hamilton differential operator. In this
case, the only body forces acting are those due to gravity;
however, because the desired solution relates to vibration about
an equilibrium position, these are ignored, and f is corre-
spondingly set to zero.

If the soil around the tunnel structure is assumed to be a
homogeneous and isotropic viscoelastic medium, the con-
stitutive equation is represented by the Voigt-Kelvin
equation for viscoelastic materials:

sij � 2μeij + 2η
deij

dt
, (6)
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where sij and eij represent deviatoric stress and deviatoric
strain, respectively, μ is the shear modulus, and η is the
coefficient of viscosity. If equation (6) is used to replace the
constitutive equation of a linear elastomer sij � 2μeij, the
equation of motion of the soil mass can be expressed as

(􏽥λ + 􏽥μ)∇∇ · u + 􏽥μ∇2u + ρsf � ρs

z
2u

zt
2 . (7)

In equation (7), 􏽥λ � λ + λ(z/zt), 􏽥μ � μ + μ(z/zt),
λ � − (2/3)η, μ � η, and (z/zt) represents the first partial
derivative of the function with respect to time t.

According to the Stokes-Helmholtz vector decomposition
theorem, the wave equation (7) can be solved by making use of
the scalar potentialΠ and the vector potentialΩ, and hence the
displacement vector field can be expressed as follows:

u � ∇Π + ∇ × Ω, (8)

where Π and Ω satisfy the following wave equations, respec-
tively, in which cp and cs are the longitudinal wave velocity and
shear wave velocity, respectively, in the soil medium.
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)e Laplace equation for equation (9) above in a cy-
lindrical coordinate system can be expressed as
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where ex, eθ, and er are unit vectors in the principal di-
rections of the cylindrical coordinate system, and Ωx, Ωθ,
and Ωr are the components of Ω. Using the decomposition
of equation (8), the components of the displacement of the
soil medium can be expressed as
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)e wave propagation solutions of the wave equation
that satisfy equation (9) can be expressed as

Π � f(r)cos(nθ)exp[i(ωt − kx)],

Ωr � − igr(r)sin(nθ)exp[i(ωt − kx)],

Ωθ � − igθ(r)cos(nθ)exp[i(ωt − kx)],

Ωx � gx(r)sin(nθ)exp[i(ωt − kx)].

(12)

)ese represent harmonic solutions in the same way as
those used in the analysis of the cylindrical shell, but now there
are also variations with the radius r, which are governed by the
functions f, gr, gθ, and gx, respectively. Here,ω is the frequency
in the complex domain, of which the real part is the vibration
frequency and the imaginary part is related to attenuation.
Substitution of the solutions expressed by equation (12) into
equation (9), making use of the definitions expressed by
equation (10) and considering each component of the equation
inΩ in turn, results in the four following differential equations:
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According to the property of gauge invariance [31],
defining gr � − gθ and substituting into the second and third
forms of equation (13) give

d2gr
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)e first and fourth forms of equation (13) are modified
Bessel equations of order n, and equation (14) is a modified
Bessel equation of order (n + 1). From the boundary
conditions at an infinite distance, f, gr, gθ, and gx are
expressed as

f(r) � AWn ξ1r( 􏼁,

gr(r) � − gθ(r) � BWn+1 ξ2r( 􏼁,

gx(r) � CWn ξ2r( 􏼁,

(15)

where A, B, and C are undetermined constants; Wn and
Wn+1 represent a third class of Bessel functions of orders n
and n + 1, respectively; and ξ1 �

����������
ω2/(c2p − k2)

􏽱
and

ξ2 �
����������
ω2/(c2s − k2)

􏽰
are the radial components of the lon-

gitudinal wave number and the shear wave number in the
soil medium, respectively.

By substituting equations (12) and (15) into equation
(11), expressions for axial, tangential, and radial displace-
ments can be obtained:

ur � ξ1AWn
′ ξ1r( 􏼁 − kBWn+1 ξ2r( 􏼁 +

n

r
CWn ξ2r( 􏼁􏼔 􏼕cos(nθ)exp[i(ωt − kx)],

uθ � −
n

r
AWn ξ1r( 􏼁 − kBWn+1 ξ2r( 􏼁 − ξ2CWn

′ ξ2r( 􏼁􏼔 􏼕sin(nθ)exp[i(ωt − kx)],

ux � − ikAWn ξ1r( 􏼁 + iξ2BWn+1′ ξ2r( 􏼁 + i
n + 1

r
BWn+1 ξ2r( 􏼁􏼔 􏼕cos(nθ)exp[i(ωt − kx)].

(16)

From the relationship between stress and strain, ex-
pressions for stresses σ in the soil medium can be obtained:

σrr

σrθ

σrx

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
�

cos(nθ) 0 0

0 sin(nθ) 0

0 0 cos(nθ)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

d11 d12 d13

d21 d22 d23

d31 d32 d33

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

A

B

C

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
· exp[i(ωt − kx)],

d11 � (􏽥λ + 2􏽥μ)ξ21Wn
″ ξ1r( 􏼁 + 􏽥λ

ξ1
r

Wn
′ ξ1r( 􏼁 − 􏽥λ

n
2

r
2 + k

2
􏼠 􏼡Wn ξ1r( 􏼁,

d12 � − 2􏽥μkξ2Wn+1′ ξ2r( 􏼁,

d13 � 2􏽥μ
n

r
ξ2Wn
′ ξ2r( 􏼁 −

n

r
2Wn ξ2r( 􏼁􏼢 􏼣,

d21 � 2􏽥μ
n

r
2Wn ξ1r( 􏼁 −

n

r
ξ1Wn
′ ξ1r( 􏼁􏼢 􏼣,

d22 � 􏽥μ
n + 1

r
kWn+1 ξ2r( 􏼁 − kξ2Wn+1′ ξ2r( 􏼁􏼔 􏼕,

d23 � 􏽥μ
1
r
ξ2Wn
′ ξ2r( 􏼁 −

n
2

r
2Wn ξ2r( 􏼁 − ξ22Wn

″ ξ2r( 􏼁􏼢 􏼣,

d31 � − 2ik􏽥μξ1Wn
′ ξ1r( 􏼁,

d32 � 􏽥μ ik
2

− i
n + 1

r
2􏼠 􏼡Wn+1 ξ2r( 􏼁 + iξ2

n + 1
r

Wn+1′ ξ2r( 􏼁 + iξ22Wn+1″ ξ2r( 􏼁􏼢 􏼣,

d33 � − ik􏽥μ
n

r
Wn ξ2r( 􏼁.

(17)
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4. Vibration Control Equation of Tunnel in
Viscous Soil

It is assumed that, on the contact surface, the surface dis-
placement of the tunnel structure (cylindrical shell) is equal
to that of the soil medium. When r � R + (h/2),

U cos(nθ)exp[i(ωt − kx)] +Φ cos(nθ)exp[i(ωt − kx)] ·
h

2
� ux|r�R+(h/2),

V sin(nθ)exp[i(ωt − kx)] + Ψ sin(nθ)exp[i(ωt − kx)] ·
h

2
� uθ|r�R+(h/2),

W cos(nθ)exp[i(ωt − kx)] � ur|r�R+(h/2).

(18)

By substituting equation (16) into equation (18), the
displacement conditions expressed by the matrix for vis-
coelastic medium can be obtained:

Q11 Q12 Q13
Q21 Q22 Q23
Q31 Q32 Q33

⎛⎝ ⎞⎠

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌r�R+(h/2)

A
B
C

⎛⎝ ⎞⎠ � U +
h

2
Φ V +

h

2
Ψ W􏼒 􏼓

T

,

(19)

where Q11 � − ikWn(ξ1r), Q12 � iξ2Wn+1′(ξ2r) + i(n + 1/r)

Wn+1(ξ2r), Q13 � 0, Q21 � − (n/r)Wn(ξ1r), Q22 �

− kWn+1 (ξ2r), Q23 � − ξ2Wn
′(ξ2r), and Q31 � ξ1Wn

′ (ξ1r),

Q32 � − kWn+1(ξ2r), Q33 � (n/r)Wn(ξ2r). According to
the continuous condition of the force on the contact surface,
the force F exerted by the soil medium on the outer surface
of the tunnel structure can be determined as follows:

Fx Fθ Fr( 􏼁
T

� σrx|r�R+(h/2) σrθ|r�R+(h/2) σrr|r�R+(h/2)( 􏼁
T
.

(20)

By substituting equation (17) into equation (18), the
following continuous conditions can be obtained:

F �

Fx

Fθ

Fr

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
� g′􏼂 􏼃

α11 α12 α13

α21 α22 α23

α31 α32 α33

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

r�R+(h/2)

A

B

C

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (21)

where α11 � − 2i􏽥μkξ1Wn
′(ξ1r), α12 � i􏽥μ [(k2 − (n + 1/r2))

Wn+1(ξ2r) + ξ2(n + 1/r)Wn+1′(ξ2r) + ξ22Wn+1″(ξ2r)], α13 �

− i􏽥μk(n/r)Wn(ξ2r), α21 � 2􏽥μ[(n/r2)Wn(ξ1r)− (n/r)ξ1 Wn
′

(ξ1r)], α22 � 􏽥μ[(n + 1/r)kWn+1(ξ2r) − kξ2Wn+1′(ξ2r)], α23 �

􏽥μ[(ξ2/r)Wn
′(ξ2r) − (n2/r2)Wn(ξ2r) − ξ22Wn

″(ξ2r)], α31 �

(􏽥λ + 2􏽥μ)ξ21 Wn
″(ξ1r) + 􏽥λ(ξ1/r)Wn

′(ξ1r) − 􏽥λ((n2/r2) + k2) Wn

(ξ1r), α32 � − 2􏽥μkξ2Wn+1′(ξ2r), α33 � 2􏽥μ[(n/r)ξ2 Wn
′(ξ2r)

− (n/r2)Wn(ξ2r)], and [g′] � diag g11 g22 g33􏼈 􏼉.
Substituting equation (19) into equation (21) gives

F � g′􏼂 􏼃[α][β]U′, (22)

where U′ � (U + (h/2)Φ, V + (h/2)Ψ, W)T, [α] �

α11 α12 α13
α21 α22 α23
α31 α32 α33

⎛⎜⎝ ⎞⎟⎠

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌r�R+(h/2)

and [β] �

β11 β12 β13
β21 β22 β23
β31 β32 β33

⎛⎜⎝ ⎞⎟⎠ �

Q11 Q12 Q13
Q21 Q22 Q23
Q31 Q32 Q33

⎛⎜⎝ ⎞⎟⎠

− 1􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌r�R+(h/2)

. By extending F, [g], [α], [β],

and U′ in equation (22), we can obtain

F � [g][α][β][h]U. (23)

In equation (23), F � (Fx, Fθ, Fr, 0, 0)T, U � (U, V,

W,Φ,Ψ)T, [α]5×5 �
α 03×2

02×3 02×2
􏼠 􏼡, [β]5×5 �

β 03×2
02×3 02×2

􏼠 􏼡,

[h]5×5 �
I3 h0I2
02×3 02×2

􏼠 􏼡, Ik is the identity matrix of order k,

and h0 � (h/2).
In accordance with equation (23) for the continuous

condition of the force on the contact surface, the force
exerted by the soil medium on the surface of the tunnel can
be determined by the translation of force:

q � [h]
T
F � [h]

T
[g][α][h]U. (24)

By substituting equation (24) into equation (3), the vi-
bration control equation of a tunnel structure in viscous soil
based on the theory of moderately thick shells can be
obtained:

[l] +[K][h]
T
[α][β][h]􏼐 􏼑U � 0. (25)

For the nonzero solution of equation (25), the deter-
minant of its coefficient matrix must be equal to zero, and
thus the dispersion characteristic equation for the vibration
characteristics of the tunnel can be obtained:

[l] +[K][h]
T
[α][β][h]

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 � 0. (26)
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5. Numerical Results

5.1. Boundary Conditions. In this paper, the simplified
boundary conditions in the form of solid supports at both
ends of the tunnel are selected for calculation. )e pa-
rameters of the tunnel are selected as follows: E� 50GPa,
]� 0.3, ρ� 2500 kg/m3, h� 0.25m, R� 2.75m, λ� 28.8GPa,
and μ� 19.2 GPa. )e parameters of the soil around the
tunnel are chosen as follows: Es � 400MPa, vs � 0.35, and
ρs � 1960 kg/m3. )e viscosity coefficient of the soil is
denoted by η and has units of Pa·s.

In accordance with the simplified treatment of boundary
conditions in the case of cylindrical shells in an infinite flow
field [1], the boundary conditions at both ends of the tunnel
are approximately treated as solid beams in this paper, and it
is considered that the wave number for waves propagated in
the axial direction is related to the boundary conditions at
both ends of the cylindrical shell. )e tunnel is represented
in simplified form as a cylindrical shell with fixed supports at
both ends, and hence kL � (2m + 1)π/2, wherem is the axial
mode number. From the wave number k and the circum-
ferential mode number n, the characteristic equation (26)
can be used to calculate the frequency of the cylindrical shell
under different modes (m, n) in the complex domain. Here,
the circular frequency ω is a complex number, of which the
real part represents the natural vibration frequency of the
tunnel and the imaginary part is related to attenuation.
Circular frequency ω and frequency f satisfy ω � 2πf, where
f is a complex number, f � fR + ifIm, the real part fR
represents the vibration frequency of the tunnel, and the
imaginary part fIm is related to attenuation. To assess the
influence of soil viscosity on attenuation at the vibration
frequency of the tunnel structure, the attenuation coefficient
η∗ is introduced and is defined as

η∗ � exp 2π ·
fR

fIm
􏼠 􏼡. (27)

5.2. Effect of Soil Viscosity on Frequency of Tunnel Structure.
Figure 2 shows the variations in the natural frequency of
each mode at different soil viscosities. When η� 0, the
viscous soil around the tunnel becomes isotropic and lin-
early elastic. With an increase in η, the natural frequencies of
the tunnel structure are reduced. )e results show that the
influence of a viscous soil medium on the vibration char-
acteristics of the tunnel structure is mainly manifested as the
influence of additional mass.

Figure 3 shows the variations in the attenuation coefficient
η∗ of the tunnel for each mode at different soil viscosity. )e
attenuation coefficient increases significantly with an increase
in soil viscosity. )is indicates that viscous soil surrounding
the tunnel has a strong influence on energy dissipation. In
addition, with an increase in soil viscosity, the attenuation
coefficient increases to a significantly greater extent for the
high-order modes than for the low-order modes, which ex-
plains why vibrations at the natural frequency of the tunnel, as
shown in Figure 2, are attenuatedmore significantly in the case
of high-order modes at high viscosity.

5.3. Effect of Tunnel Radius on Frequency of Tunnel Structure.
In order to analyze the influence of the tunnel radius on the
natural vibration frequency of the tunnel structure under the
influence of viscous soil, other calculation parameters remain
unchanged, while the tunnel radius is varied, and the viscosity
coefficient of the soil mass is defined as η� 1.0×106Pa·s.

As shown in Figure 4, the natural frequency of the tunnel is
basically the same at the same axial mode number m for each
mode. With an increase in the tunnel radius, the natural fre-
quency of the tunnel for each mode slight increases. Figure 5
shows the attenuation curves for each mode corresponding to
Figure 4. At the same axial mode number, the attenuation
coefficient for a high circumferential mode number is higher
when the tunnel radius is less than 0.3m.On the whole, it can be
seen that the radius has little influence on the natural frequency
of the tunnel.
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Figure 2: Relationship between natural frequency of the tunnel and
changes in soil viscosity for different modes.
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Figure 3: Relationship between attenuation coefficient and
changes in soil viscosity for different modes.
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5.4. Effect of Tunnel Wall @ickness on Frequency of Tunnel
Structure. Figure 6 shows the variations in the natural fre-
quency of the tunnel structure at different wall thicknesses.
Except for the tunnel wall thickness, the calculation parameters
are the same as those given in Section 5.1, and η� 1.0×106 Pa·s.
As shown in Figure 6, with an increase in wall thickness, the
natural frequency of the tunnel for each mode decreases. All
modes with the same axial mode number m have basically the
same natural frequency and exhibit the same variation trend.
When the tunnel wall thickness is at least 0.3m, the natural
frequency of the tunnel for higher circumferential modes is
lower at the same axial mode number. Figure 7 illustrates the
variations in attenuation due to the tunnel structure at different
wall thicknesses for each mode. )e attenuation coefficient
increases with an increase in tunnel wall thickness. When the
tunnel wall thickness is at least 0.25m, the attenuation of each
mode increases with an increase in tunnel wall thickness, and at
the same axial mode number the attenuation coefficient for a

high circumferential mode number is higher. )is indicates
that in a viscous soil medium the influence of an increase in
tunnel wall thickness on the natural vibration frequency of the
tunnel structure is mainly caused by an increase in the gen-
eralized mass of the tunnel.

5.5. Effect of Tunnel Length on Frequency of Tunnel Structure.
Figures 8 and 9 show the variations in the natural frequency of
the tunnel and attenuation due to the tunnel structure at dif-
ferent tunnel length. Except for the length of the tunnel, the
calculation parameters are the same as those given in Section
5.1, and η� 1.0×106Pa·s. Under the influence of coupling with
viscous soil, the natural frequency of the tunnel and attenuation
due to the tunnel significantly decrease with an increase in
tunnel length, and at the same axial mode number the natural
frequency of the tunnel for a high circumferentialmode number
is lower. As shown in Figure 9, with an increase in tunnel length
the attenuation due to the tunnel tends to be constant. )is
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Figure 5: Relationship between attenuation and changes in the
tunnel radius for different modes, where η� 1.0×106 Pa·s.
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Figure 6: Relationship between natural frequency of the tunnel and
tunnel wall thickness for different modes, where η� 1.0×106 Pa·s.
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η� 1.0×106 Pa·s.
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indicates that in a viscous soil medium the effect of an increase
in tunnel length on the natural vibration frequency of the tunnel
structure is mainly caused by decrease in the generalized
stiffness of the structure.

5.6. Effect of Tunnel Depth on Frequency of Tunnel Structure.
In this paper, the change of soil modulus is used tomeasure the
buried depth of the tunnel, and the influence of buried depth
on vibration frequency of the tunnel is studied. Except for the
modulus of soil, the calculation parameters are the same as
those given in Section 5.1, and η� 1.0×106Pa·s. As shown in
Figure 10, with an increase in the modulus of soil, the natural
frequency of the tunnel for each mode increases. All modes
with the same axial mode number m have basically the same
natural frequency and exhibit the same variation trend. Fig-
ure 11 shows the attenuation curves for each mode

corresponding to Figure 10. It can be considered that, with the
increase of the buried depth of the tunnel, the influence of soil
media on the vibration characteristics of the tunnel structure is
mainly the influence of additional stiffness.

6. Conclusions

In this paper, the vibration control equation for the coupling
of a tunnel and viscous soil is established by using the theory
of moderately thick cylindrical shells and the method of
wave propagation and representing the soil around the
tunnel in simplified form as an isotropic viscoelastic me-
dium. )e effect of a viscous soil medium on the natural
vibration frequency of the tunnel structure is mainly
manifested as the effect of additional mass. For each mode,

0

10

20

30

40

50

�
e a

tte
nu

at
io

n 
co

effi
ci

en
t η

∗

6040 5020 30
Tunnel length L (m)

η∗

4

2

48 49 50 51 52
L (m)

m = 1, n = 2
m = 1, n = 3
m = 2, n = 2

m = 2, n = 3
m = 3, n = 2
m = 3, n = 3

Figure 9: Relationship between attenuation and tunnel length for
different modes, where η� 1.0×106 Pa·s.

m = 1, n = 2
m = 1, n = 3
m = 2, n = 2

m = 2, n = 3
m = 3, n = 2
m = 3, n = 3

350 400 450 500 550 600300
Modulus of soil Es (MPa)

10

20

30

40

50

Tu
nn

el
 v

ib
ra

tio
n 

fre
qu

en
cy

 f R
 (H

z)

Figure 10: Relationship between natural frequency of the tunnel
and the modulus of soil, where η� 1.0×106 Pa·s.
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the natural frequency of the tunnel structure decreases with
an increase in the viscosity of the soil around the tunnel, and
attenuation increases with an increase in soil viscosity.
Higher modes are more sensitive to soil viscosity than are
lower modes.

In a viscous soil medium, the natural frequency of the
tunnel structure decreases with the increase of tunnel wall
thickness, tunnel length, and tunnel buried depth. When the
tunnel radius is large, the natural frequency of the tunnel
structure slightly increases with an increase in the tunnel
radius.
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