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In this work, we build the model and derive the theory of nonlinear deformation for substitutional alloy AB with interstitial atom
C and face-centered cubic structure under pressure from the statistical moment method. ,e calculation results for FCC-AuCuSi
are presented. We obtain the values of density of deformation energy, maximum real stress, limit of elastic deformation, and the
stress-strain curve and compare the calculated results with experiments and other calculations.

1. Introduction

,e study of elastic and thermodynamic properties of perfect
ternary and binary interstitial alloys has also been attractive
such as the theory of interstitial alloy [1], calculations from
first principles, many-body potentials and dynamical dy-
namics for defects in metals, alloys and solid solutions [2–4]
and elastic and thermodynamic properties of perfect ternary
and binary interstitial alloys. We have studied the elastic
deformation for body-entered cubic (BCC) and face-cen-
tered cubic (FCC) ternary and binary interstitial alloys under
pressure by the statistical moment method (SMM) in [5–10].

,e dependence of elastic and nonlinear deformations of
materials on temperature, pressure, and concentration of
components has very important role in predicting and
understanding their interatomic interactions, strength,
mechanical stability, phase transition mechanisms, and
dynamical response. Silicides such as AuCuSi have attracted
a lot of attention in recent years because of their functional
applications and unusual physical properties. Gold silicide
or gold silicon is one of the numerous metal alloys sold by
American Elements under the trade name AE AlloysTM.

,e experimental data on the real stress and the limit of
elastic deformation in the nonlinear deformation of pure
metal Au are presented in [11–14].

,ermodynamic and mechanical properties of metals and
interstitial alloys are studied by some theoretical methods and
simulations. For example, Mehl and Papaconstantopoulos [15]
applied a tight-binding (TB) scheme to extend first-principle
calculations (ab initio) to regimes containing 102–103 atoms in a
unit cell and used two-center, nonorthogonal tight-binding
parameters and on-site terms. Numerical calculations for many
metals are comparedwith ab initio calculations and experiments.
Deformation mechanisms in the mechanical response of
nanoporous gold are investigated by molecular dynamics
simulations [16]. In addition, in recent years, some researchers
have considered factors affecting the structure, the phase
transformation, and the crystallization process of alloys AuCu
[17], NiCu [18, 19], and AgCu [20].

In the present paper, we will study nonlinear defor-
mation of FCC ternary alloy (substitutional alloy AB with
interstitial atoms C) under pressure by the statistical mo-
ment method (SMM) [21–24]. In Section 2, we build the
model and theoretical calculations, and in Section 3, we
carry out numerical calculations for alloy AuCuSi.

2. Model and Theoretical Calculations

In our model, for interstitial alloy AC with FCC structure
and concentration condition cC<< cA (cA � NA/N is the
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concentration of atoms A, NA is the number of atoms A,
cC � NC/N is the concentration of atoms C, NC is the
number of atoms C, and N � NA + NCis the total number of
atoms of the alloy AC), the cohesive energy u0 and the alloy
parameters k, c1, c2, c (k is called the harmonic parameter

and c1, c2, c are called anharmonic parameters) for the
interstitial atom C in face centers of cubic unit cell in the
approximation of two coordination spheres have the form
[5–10]
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(1)

,e cohesive energy u0 and the alloy parameters
k, c1, c2, c for main metal atom A1 in body center of cubic

unit cell in the approximation of three coordination spheres
have the form [5–10]
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,e cohesive energy u0 and the alloy parameters
k, c1, c2, c for the main metal atom A2 in corners of cubic

unit cell in the approximation of three coordination spheres
have the form [5–10]
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where ϕAC is the interaction potential between atoms A and
C, r1X � r01X + y0X(T) is the nearest neighbor distance
between the atom X (X�A, A1, A2, C) (A in clean metal and
A1, A2, and C in interstitial alloy AC) and other atoms at
temperature T, r01X is the nearest neighbor distance between
the atom X and other atoms at T� 0K and is determined

from the minimum condition of the cohesive energy
u0X, andy0X(T) is the displacement of atom X from
equilibrium position at temperature T. u0A, kA, c1A, c2A are
the corresponding quantities in the clean metal A with FCC
structure in the approximation of two coordination spheres
and have the form [21, 22]
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,e equations of state for FCC interstitial alloy at
temperature T and pressure P and at 0K and pressure P are
written in the form [5, 6, 8–10, 23]
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From that, we can calculate the nearest neighbor distance
r1X(P, 0) (X � A, A1, A2, C), the parameters
kX(P, 0), c1X(P, 0), c2X(P, 0), cX(P, 0), the displacement
y0X(P, T) of atom X from equilibrium position as in [21],
the nearest neighbor distance r1X(P, T), and the mean
nearest neighbor distance between two atoms A in alloy
r1A(P, T) as follows [5, 6, 8–10]:
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,e Helmholtz free energy of FCC interstitial alloy AC
with the condition cC<< cA is determined by [5–10,21]
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where ψX is the Helmholtz free energy of one atom X, U0X is
the cohesive energy, and Sc is the configurational entropy of
FCC interstitial alloy AC.

,e nearest neighbor distances between two atoms in
alloy AC after deformation have the form [9]
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,emean nearest neighbor distances between two atoms
A in interstitial alloy AC at pressure P and temperature T
after deformation have the form [9]
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,emean nearest neighbor distances between two atoms
A in substitutional alloy AB with interstitial atoms C at

pressure P and temperature T and at pressure P and tem-
perature T� 0K after deformation have the form [5, 6, 9]
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,e Helmholtz free energy of alloy ABC before and after
deformation with the condition cC<< cB<< cA is determined
by [5, 6, 9]
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,e relationship between the stress and the deformation
in nonlinear deformation is given by [9]
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where σ0ABC and αABC are constants for every alloy.
,e density of deformation energy can be written in the

form [9]
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(13)

When the deformation rate is constant, the density of
deformation energy of alloy is determined by [9]

fABC(ε) � CABC · σABC · ε, (14)

where CABC is the proportional factor. At the maximum
value of the density of deformation energy, we have

fABC εF
ABC􏼐 􏼑 � fABCmax � CABCσABCmaxε

F
ABC. (15)

,emaximum value of stress σABCmax and the maximum
real stress σ1ABCmax are [9]

σABCmax �
fABCmax

CABCε
F
ABC

,

σ1ABCmax �
σABCmax

1 + εF
ABC

�
fABCmax

CABCε
F
ABC 1 + εF

ABC􏼐 􏼑
.

(16)

From the maximum condition of stress
(zσ1ABC/zε)εF,

ABC
� 0, we derive the deformation εF

ABC

corresponding to themaximum value of real stress as follows
[9]:

εF
ABC �

αABC

1 − αABC

⇒σ1ABCmax � σ0ABC

εF
ABC􏼐 􏼑

αABC

1 + εF
ABC

. (17)

CABC is determined from the experimental condition of
stress σ0,2ABC in alloy in the form [9]

CABC �
fABC ε0.2( 􏼁

σ0.2ABCε0.2
. (18)

From the obtained value of εF
ABC, we can calculate σ0ABC

and αABC. ,e limit of elastic deformation σe � EABCεe of
alloy ABC is determined by [9]

σe � EABCεe � σ0ABC

εαe
1 + εe

. (19)

Here EABC is Young’s modulus of alloy ABC and has the
form [5, 6]

EABC � cB EB − EA( 􏼁 + EAC,
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(20)
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Here EAC, EA, EB are Young’s moduli of alloy AC and
metals A, B, respectively.

3. Numerical Results for Alloy AuCuSi

To describe the interaction between atoms Au and Si, we
apply the Mie–Lennard-Jones pair interaction potential in
the form [25]

φ(r) �
D

n − m
m

r0

r
􏼒 􏼓

n

− n
r0

r
􏼒 􏼓

m

􏼔 􏼕, (21)

where D is the depth of potential well corresponding to the
equilibrium distance r0 and m and n are determined em-
pirically. ,en, the potential parameters for the interaction
Au-Si are determined by [26]

DAu−Si �
�����������
DAu−AuDSi−Si

􏽰
,

r0Au−Si �
1
2

r0Au−Au + r0Si−Si( 􏼁.

(22)

We findmAu-Si and nAu-Si by fitting the theoretical result
with the experimental data for Young’s modulus of inter-
stitial alloy AuSi3% at room temperature. ,e Mie–Lennard-
Jones potential parameters for the interactions Au-Au, Si-Si,

and Au-Si are given in Table 1. ,e Poisson ratio is 0.42 for
Au [28], 0.34 for Cu [29], and 0.21 for Si [30]. Our inves-
tigated range of temperature up to 900K is below themelting
temperature of Au, Cu, and Si in the range of pressure from
zero to 6GPa as studies on the melting curve for these
materials [31–33].

From

E �
σ0,2

ε0,2
⟹σ0,2 � Eε0,2 � E × 0.2%, (23)

the experimental value of Young’s modulus E� 89.1.109 Pa
for Au at T� 300K and P� 0 [34]. From that, we obtain
σ0.2 � 89.1 × 109 × 0.002 � 178.2 × 106 Pa. Figure 1 shows
the density of deformation energy f(ε) and the real stress
σ1(ε)of AuCuSi at T� 300K, P � 0, cSi � 1%, and cCu � 1, 3,
and 5% calculated by the SMM. For AuCuSi at the same
temperature, pressure, and concentration of interstitial
atoms, when the concentration of substitutional atoms in-
creases, the maximum real stress decreases by 2% and the
elastic limit also decreases by 2%.,e density of deformation
energy has the maximum value when the strain εF � 0.08,
and from that, we can find the maximum real stress
σ1max,the elastic limit σe, and the elastic strain εe for AuCuSi
as shown in Table 2.

Table 1: Mie–Lennard-Jones potential parameters for interactions Au-Au, Cu-Cu, and Si-Si.

Interaction D/kB (K) r0 (10−10m) m n
Au-Au [27] 7411.5 2.8751 1.96 15.56
Cu-Cu [27] 6841.3 2.5487 3.03 8.37
Si-Si [25] 32701.7 2.295 6 12
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Figure 1: ,e density of deformation energy f(ε) (a) and the real stress σ1(ε) (b) of Au99−xCuxSi1 at T� 300K and P � 0 calculated by the
SMM.
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When concentrations cCu, cSi⟶ 0, we obtain the
nonlinear deformation of main metal Au. Figure 2 shows
the curve of real stress σ1(ε) for Au at P � 0 and T � 300 K
where we have the comparison between the SMM and
experiments [11, 12]. ,e maximum real stress σ1max and
the elastic limit σe calculated by the SMM in Table 3 are in
good agreement with the molecular dynamics (MD) re-
sults [16] and experiments [13, 14]. ,e error of the
maximum real stress between the SMM calculation and
the MD result [16] is 0.6%. ,e error of the elastic limit
between the SMM calculation and the experimental data
[13] is 5.65%. ,us, the SMM calculations of the maxi-
mum real stress and the elastic limit for Au at P � 0 and
T � 300 K are in good agreement with other calculations
and experiments.

Figure 3 shows the density of deformation energy f(ε)
and the real stress σ1(ε) of AuCuSi at T� 300K, P � 0,
cCu � 10%, and cSi � 0, 1, and 2% calculated by the SMM. For
AuCuSi at the same temperature, pressure, and concen-
tration of substitutional atoms, when the concentration of
interstitial atoms increases, the maximum real stress and the
elastic limit decrease strongly. We have the comparison on
values of εF, σ1max, εe, and σe for alloys AuSi, AuCu, and
AuCuSi in Table 4.

Figure 4 shows the density of deformation energy f(ε)
and the real stress σ1(ε) of AuCuSi at T� 300, 600, and
900K, P � 0, cCu � 10%, and cSi � 2% calculated by the SMM.
For AuCuSi at the same pressure, concentration of

substitutional atoms, and concentration of interstitial atoms,
when the temperature increases, the maximum real stress
and the elastic limit increase. We have the comparison on
values of εF, σ1max, εe, and σe for Au88Cu10Si2 at P� 0 and
T� 300, 600, and 900K in Table 5.

Figure 5 shows the real stress σ1(ε) of AuCuSi at
T� 300K, P � 2, 4, and 6GPa, cCu � 10%, and cSi � 3%
calculated by the SMM. For AuCuSi at the same tempera-
ture, concentration of substitutional atoms, and concen-
tration of interstitial atoms, when the pressure increases, the
maximum real stress increases and the elastic limit de-
creases. When the pressure increases from 2 to 4GPa, the
maximum real stress increases by 3% and the elastic limit
decreases by 7.86%. When the pressure increases from 4 to
6GPa, the maximum real stress increases by 11% and the
elastic limit decreases by 10.56%. We have the comparison
on values of εF, σ1max, εe, and σe for Au87Cu10Si3 at P � 2, 4,
and 6GPa and T� 300K in Table 6.

Table 2: Values of εF (f (εF)� fmax), σ1max, σe, and εe of Au99−xCuxSi1 at P � 0 and T� 300K calculated by the SMM.

εF (%) σ1max (MPa) εe (%) σe (MPa)
Au98Cu1Si1 8.0 231.79 0.21 190.84
Au96Cu3Si1 8.0 230.38 0.21 189.40
Au94Cu5Si1 8.0 227.06 0.20 186.38
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Figure 2: ,e real stress σ1(ε) of Au at T� 300K and P � 0 calculated by the SMM and from EXPT [11] and EXPT [12].

Table 3: Values of εF (f (εF)� fmax), σ1max, εe, and σe for Au at P � 0
and T� 300K calculated by the SMM and from MD [16], EXPT
[13], and EXPT [14].

σlmax (MPa) σe (MPa)

SMM MD
[16] SMM EXPT

[13]
EXPT
[14]

εF � 9.6% 243.52 245 εe � 0.19% 188.70 200 45÷ 300
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Figure 3: ,e density of deformation energy f(ε) (a) and the real stress σ1(ε) (b) of Au99Si1, Au90Cu10, and Au89Cu10Si1 at T� 300K and
P � 0 calculated by the SMM.

Table 4: Values of εF (f (εF)� fmax), σ1max, εe, and σe for Au99Si1, Au90Cu10, and Au89Cu10Si1 at P � 0 and T� 300K calculated by the SMM.

Alloy εF (%) σ1max (MPa) εe (%) σe (MPa)
Au99Si1 9.6 214.07 0.18 165.49
Au90Cu10 8.3 242.95 0.19 196.75
Au89Cu10Si1 8.2 216.79 0.19 175.98
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Figure 4: ,e density of deformation energy f(ε) (a) and the real stress σ1(ε) (b) of Au88Cu10Si2 at P� 0 and T� 300, 600, and 900K
calculated by the SMM.
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4. Conclusion

In our paper, we derive the analytic expressions of charac-
teristic quantities for the nonlinear deformation such as the
density of deformation energy, the maximum real stress, and
the limit of elastic deformation depending on temperature,
pressure, and concentration of components together with the
strain-stress of substitutional alloy AB with interstitial atom C
and FCC structure under pressure. We apply theoretical re-
sults to alloy AuCuSi. ,e maximum real stress σ1max and the
elastic limit σe calculated by the SMM are in good agreement
with MD results [16] and experiments [13, 14]. For AuCuSi at
the same temperature, concentration of substitutional atoms,
and concentration of interstitial atoms, when the pressure
increases, the maximum real stress increases and the elastic
limit decreases. When the pressure increases from 2 to 4GPa,
the maximum real stress increases by 3% and the elastic limit
decreases by 7.86%. When the pressure increases from 4 to

6GPa, the maximum real stress increases by 11% and the
elastic limit decreases by 10.56%. Our calculated results for
alloy AuCuSi are compared with ones for alloys AuCu, AuSi,
and metal Au. If we use more coordination spheres and we
have exact experimental data for the stress σ0.2 of alloy AuCuSi
at different temperatures, pressures, and concentrations of
components, we will obtain better calculations.
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