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In this work, we build the model and derive the theory of nonlinear deformation for substitutional alloy AB with interstitial atom
C and face-centered cubic structure under pressure from the statistical moment method. The calculation results for FCC-AuCusSi
are presented. We obtain the values of density of deformation energy, maximum real stress, limit of elastic deformation, and the

stress-strain curve and compare the calculated results with experiments and other calculations.

1. Introduction

The study of elastic and thermodynamic properties of perfect
ternary and binary interstitial alloys has also been attractive
such as the theory of interstitial alloy [1], calculations from
first principles, many-body potentials and dynamical dy-
namics for defects in metals, alloys and solid solutions [2-4]
and elastic and thermodynamic properties of perfect ternary
and binary interstitial alloys. We have studied the elastic
deformation for body-entered cubic (BCC) and face-cen-
tered cubic (FCC) ternary and binary interstitial alloys under
pressure by the statistical moment method (SMM) in [5-10].

The dependence of elastic and nonlinear deformations of
materials on temperature, pressure, and concentration of
components has very important role in predicting and
understanding their interatomic interactions, strength,
mechanical stability, phase transition mechanisms, and
dynamical response. Silicides such as AuCuSi have attracted
a lot of attention in recent years because of their functional
applications and unusual physical properties. Gold silicide
or gold silicon is one of the numerous metal alloys sold by
American Elements under the trade name AE Alloys™™.

The experimental data on the real stress and the limit of
elastic deformation in the nonlinear deformation of pure
metal Au are presented in [11-14].

Thermodynamic and mechanical properties of metals and
interstitial alloys are studied by some theoretical methods and
simulations. For example, Mehl and Papaconstantopoulos [15]
applied a tight-binding (TB) scheme to extend first-principle
calculations (ab initio) to regimes containing 10°-10” atoms in a
unit cell and used two-center, nonorthogonal tight-binding
parameters and on-site terms. Numerical calculations for many
metals are compared with ab initio calculations and experiments.
Deformation mechanisms in the mechanical response of
nanoporous gold are investigated by molecular dynamics
simulations [16]. In addition, in recent years, some researchers
have considered factors affecting the structure, the phase
transformation, and the crystallization process of alloys AuCu
[17], NiCu [18, 19], and AgCu [20].

In the present paper, we will study nonlinear defor-
mation of FCC ternary alloy (substitutional alloy AB with
interstitial atoms C) under pressure by the statistical mo-
ment method (SMM) [21-24]. In Section 2, we build the
model and theoretical calculations, and in Section 3, we
carry out numerical calculations for alloy AuCuSi.

2. Model and Theoretical Calculations

In our model, for interstitial alloy AC with FCC structure
and concentration condition cc<<cy (¢4 = N4/N is the
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concentration of atoms A, N, is the number of atoms A,
¢c = N¢/N is the concentration of atoms C, N is the
number of atoms C, and N = N4 + N is the total number of
atoms of the alloy AC), the cohesive energy 1, and the alloy
parameters k,y,,y,,y (k is called the harmonic parameter

1
toc =5 Z Pac (1) = 3¢ac (ric) +49ac (r2c)s

i=1

e = ‘/§7’1c’
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and y,,y,,y are called anharmonic parameters) for the
interstitial atom C in face centers of cubic unit cell in the
approximation of two coordination spheres have the form
[5-10]

k.= 1 Z az‘PAC _ dz‘PAc (r1c) +i dguc (ric) +é dZSDAc (rac) n 8 doyc(ryc)
€72 ou? e ’
i Tic

i

Yo = 4(Vic + Ya0)

i

1 64(PAC 1 d4§0Ac(”1c)
ne=3s % (50 - 5 Sl
eq

1 d490Ac (”2C)+

+—_ - TAax N sl

1 2 2
9 dryc 315 drie

The cohesive energy u, and the alloy parameters
k, Y1,V y for main metal atom A; in body center of cubic
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unit cell in the approximation of three coordination spheres
have the form [5-10]

d (PAC(TIAI)
dr%A1 ’
B 1 d4(PAC(r1Al)
=7%1a + ﬁ drAI;Al > (2)
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The cohesive energy u, and the alloy parameters
k,y1,7,,y for the main metal atom A, in corners of cubic

Uoa, = Uoa T (PAC(rlAZ)’

unit cell in the approximation of three coordination spheres

have the form [5-10]
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where ¢, is the interaction potential between atoms A and
C, r1x =Tox + Yox (T) is the nearest neighbor distance
between the atom X (X=A, A;, A,, C) (A in clean metal and
Ay, Ay, and C in interstitial alloy AC) and other atoms at
temperature T, 1, x is the nearest neighbor distance between
the atom X and other atoms at T=0K and is determined

Ups = 6944 (r14) + 3044 (724)s

oA = ﬁ”m:

k=2 dZ(PAA (rlA)

2
drlA2 27rlA

4 deya (”1A) d’ (PAA(rZA)_'_

dr, A

from the minimum condition of the cohesive energy
Upx> and yox (T) is the displacement of atom X from
equilibrium position at temperature T. ug,, k4, V14> Y2u ar€
the corresponding quantities in the clean metal A with FCC
structure in the approximation of two coordination spheres
and have the form [21, 22]
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The equations of state for FCC interstitial alloy at
temperature T'and pressure P and at 0 K and pressure P are
written in the form [5, 6, 8-10, 23]

Py = —r1|:16—+0 thxia—k]

6 or 2k or,
3
var, (5)
2
Pye_ lauo hw, ok
"=\ 6or, 4k or, )

ric(P.T) =11c(P,0) + yu (P, T),

ra (P T) =14 (P,0)+ y, (P, T),

ria, (P, T) = 15(P,T),

ria, (P, T) =114, (P,0) + yo (P, T),

ra(P,T)=r4(P,0)+ y(P,T),

r14(P.0) =
y(P.T)

The Helmholtz free energy of FCC interstitial alloy AC
with the condition cc << ¢, is determined by [5-10,21]

Vac = (1= 15cc)ys + ccWe + 6ccya, +8ccys, = TS,

2
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)

Yox = 3N9[xX +ln(1 -

Yy = xycoth xy,

(7)

s (PT) =y (P,0) + y*“" (P,T),

(1= cc)ria(P,0) +ccrig (P, 0), 4 (P,0) =
= (1 - ISCC)yA (P, T) + Ccyc (P, T) + 6CCyA1 (P, T) + SCCyAZ (P, T).
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From that, we can calculate the nearest neighbor distance
rix(P,0) (X =A4,4A,,4,C), the parameters
kx (P,0),y,x (P,0),y,x (P,0),yx (P,0), the displacement
yox (P, T) of atom X from equilibrium position as in [21],
the nearest neighbor distance r,x(P,T), and the mean
nearest neighbor distance between two atoms A in alloy
114 (P, T) as follows [5, 6, 8-10]:

(6)

\/§r1C (P,0),

where yy is the Helmholtz free energy of one atom X, Upy is

the cohesive energy, and S, is the configurational entropy of
FCC interstitial alloy AC.

The nearest neighbor distances between two atoms in
alloy AC after deformation have the form [9]

role =rg1x (1 +8),
rix (P,0) = 7,5 (P,0)(1+2¢ + &)
ric (P, T) = 15,0 (P,0) + yy (P,0),
i (P,0) =1, (P,0) + y (P, T),
ria, (P.T) = 1o (P,T),
ria, (P.T) = roya, (P,0) + y( (P, T).

The mean nearest neighbor distances between two atoms
A in interstitial alloy AC at pressure P and temperature T
after deformation have the form [9]

r(?ICAF (P,0)=|(1-c )rmA(P 0) + ccro‘?gF(P O)](l +2¢e+ 82),

roi4 (P,0) =

yACF (P,T) =

\/grglc (P) 0))

(9)

(1-15¢0)y" (P, T) + ccye (P, T) + 6ccyi1 (P,T) + SCCyf;2 (P, T).
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The mean nearest neighbor distances between two atoms
A in substitutional alloy AB with interstitial atoms C at
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The Helmholtz free energy of alloy ABC before and after
deformation with the condition ¢c << ¢z << ¢4 is determined
by [5, 6, 9]

Vapc = Vac +Cp(Vp—Wa) + TS?C - TS?BC>
)
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Wac = (1= 15cc)ya +ccyc +6ccWy +8ccyy — TS,
F F F ACF ABCF
Yapc = VYact CB(‘//B ) +TS. " —TS. ™,
F F ACF
Ve = (1 15cc) ¥y +ccye + 6Cc1/’A + SCCV/A TS ™.

(11)
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pressure P and temperature T and at pressure P and tem-
perature T=0K after deformation have the form [5, 6, 9]

(10)
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, ¢ aaﬁi T’
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dak,

The relationship between the stress and the deformation
in nonlinear deformation is given by [9]

o
£ ABC

014BC = UOAch> (12)

where 0gapc and aapc are constants for every alloy.
The density of deformation energy can be written in the
form [9]
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When the deformation rate is constant, the density of
deformation energy of alloy is determined by [9]

fapc(€) =Cupc - Oapc & (14)

where Cypc is the proportional factor. At the maximum
value of the density of deformation energy, we have

F F
fABC(EABC) = faBcmax = CaBCOABC max€aBC- (15)

The maximum value of stress 04 gcmax and the maximum
real stress 01 4pcmax are [9]
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corresponding to the maximum value of real stress as follows
[9]:
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Capc is determined from the experimental condition of
stress 0g,4pc in alloy in the form [9]

£
CABC — fABC( 0.2). (18)
00.24BCc%0.2

From the obtained value of &/ 5, we can calculate opapc
and aupc. The limit of elastic deformation o, = E  pc€, of
alloy ABC is determined by [9]

o
€

0, = Eypce, = JoaBcy | e (19)
Here E - is Young’s modulus of alloy ABC and has the

form [5, 6]
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TaBLE 1: Mie-Lennard-Jones potential parameters for interactions Au-Au, Cu-Cu, and Si-Si.
Interaction D/ky (K) ro (107 m) m n
Au-Au [27] 7411.5 2.8751 1.96 15.56
Cu-Cu [27] 6841.3 2.5487 3.03 8.37
Si-Si [25] 32701.7 2.295 6 12

T T T T 260 . . . . . . . .

240

f(GPa)

1 2 3 4 5 6 7 8 9
& (%)

,,,,, AuggCu, Si

—— AugCusSi;

- - Aug,CusSiy

()

220

o, (MPa)

200

180
160 1 1 1 1 1 1
1 2 3 4 5 6 7
& (%)
‘‘‘‘‘‘ AuggCu,;Siy
—— AuyCu;Si;
- .- Auy,CusSi;

(b)

FiGURE 1: The density of deformation energy f (¢) (a) and the real stress g, (¢) (b) of Augy_,Cu,Si; at T=300K and P = 0 calculated by the

SMM.

Here E ¢, E,, Ep are Young’s moduli of alloy AC and
metals A, B, respectively.

3. Numerical Results for Alloy AuCuSi

To describe the interaction between atoms Au and Si, we
apply the Mie-Lennard-Jones pair interaction potential in
the form [25]

o) = (2 ()]

where D is the depth of potential well corresponding to the
equilibrium distance ry and m and n are determined em-
pirically. Then, the potential parameters for the interaction
Au-§i are determined by [26]

D py—si = VD au-auDsisi>

(21)

(22)

(ToAu-Au * Tosizsi)-

N =

ToAu-Si =

We find ma,_s; and na,_g; by fitting the theoretical result
with the experimental data for Young’s modulus of inter-
stitial alloy AuSiso, at room temperature. The Mie-Lennard-
Jones potential parameters for the interactions Au-Au, Si-Si,

and Au-Si are given in Table 1. The Poisson ratio is 0.42 for
Au [28], 0.34 for Cu [29], and 0.21 for Si [30]. Our inves-
tigated range of temperature up to 900 K is below the melting
temperature of Au, Cu, and Si in the range of pressure from
zero to 6 GPa as studies on the melting curve for these
materials [31-33].

From

E- 0o, _ _ 0
= —===0,, = E¢y, = Ex0.2%,

23
£ (23)

the experimental value of Young’s modulus E=89.1.10° Pa
for Au at T=300K and P=0 [34]. From that, we obtain
0y, = 89.1 x 10° x 0.002 = 178.2 x 10° Pa. Figure 1 shows
the density of deformation energy f (¢) and the real stress
0, (e)of AuCuSi at T=300K, P =0, ¢5;=1%, and cc, =1, 3,
and 5% calculated by the SMM. For AuCuSi at the same
temperature, pressure, and concentration of interstitial
atoms, when the concentration of substitutional atoms in-
creases, the maximum real stress decreases by 2% and the
elastic limit also decreases by 2%. The density of deformation
energy has the maximum value when the strain & = 0.08,
and from that, we can find the maximum real stress
01 max-the elastic limit o,, and the elastic strain ¢, for AuCuSi
as shown in Table 2.
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TaBLE 2: Values of e (f (€r) = finax)> O1max 0o and &, of Augy_,Cu,Si; at P =0 and T=300K calculated by the SMM.
er (%) O1max (MPa) & (%) o. (MPa)
AuogCu,Si; 8.0 231.79 0.21 190.84
AlloCusSi, 8.0 230.38 0.21 189.40
Aug,CusSi; 8.0 227.06 0.20 186.38
480 [ T T T
440 +
400 + E
360
320
§ 280 ......ooo...oooo.°..'..
< 240 LAAA MMM AML M4 Ahdssany
© 200 B
160‘
A
120 + A
A .
80l 4
A
40,
0 A 1 1 1 1 1 1 1

00 05 1.0 15

e EXPT [18]
—— SMM (this work)
A EXPT [19]

20 25 30 35 40 45

£ (%)

FIGURE 2: The real stress o, (¢) of Au at T=300K and P = 0 calculated by the SMM and from EXPT [11] and EXPT [12].

When concentrations cg,,cg; — 0, we obtain the
nonlinear deformation of main metal Au. Figure 2 shows
the curve of real stress o, (¢) for Auat P =0and T=300K
where we have the comparison between the SMM and
experiments [11, 12]. The maximum real stress o, ,,,, and
the elastic limit o, calculated by the SMM in Table 3 are in
good agreement with the molecular dynamics (MD) re-
sults [16] and experiments [13, 14]. The error of the
maximum real stress between the SMM calculation and
the MD result [16] is 0.6%. The error of the elastic limit
between the SMM calculation and the experimental data
[13] is 5.65%. Thus, the SMM calculations of the maxi-
mum real stress and the elastic limit for Au at P = 0 and
T=300K are in good agreement with other calculations
and experiments.

Figure 3 shows the density of deformation energy f ()
and the real stress o, (¢) of AuCuSi at T=300K, P =0,
ccu=10%, and ¢s5; =0, 1, and 2% calculated by the SMM. For
AuCuSi at the same temperature, pressure, and concen-
tration of substitutional atoms, when the concentration of
interstitial atoms increases, the maximum real stress and the
elastic limit decrease strongly. We have the comparison on
values of eg, 07man € and o, for alloys AuSi, AuCu, and
AuCusSi in Table 4.

Figure 4 shows the density of deformation energy f ()
and the real stress o, (¢) of AuCuSi at T=300, 600, and
900K, P =0, ccy = 10%, and cg; = 2% calculated by the SMM.
For AuCuSi at the same pressure, concentration of

TaBLE 3: Values of ¢x (f (€r) = fmax)> T1max € and o, for Auat P = 0
and T=300K calculated by the SMM and from MD [16], EXPT
[13], and EXPT [14].

Olmax (MPa) [ (MPa)
MD EXPT EXPT
SMM 16] SMM [13] [14]
ep=9.6% 243.52 245 ,=0.19% 188.70 200 45+ 300

substitutional atoms, and concentration of interstitial atoms,
when the temperature increases, the maximum real stress
and the elastic limit increase. We have the comparison on
values of €p, 07w € and o, for AuggCu;Si, at P=0 and
T=300, 600, and 900K in Table 5.

Figure 5 shows the real stress o,(¢) of AuCuSi at
T=300K, P=2, 4, and 6GPa, cc,=10%, and cg=3%
calculated by the SMM. For AuCuSi at the same tempera-
ture, concentration of substitutional atoms, and concen-
tration of interstitial atoms, when the pressure increases, the
maximum real stress increases and the elastic limit de-
creases. When the pressure increases from 2 to 4 GPa, the
maximum real stress increases by 3% and the elastic limit
decreases by 7.86%. When the pressure increases from 4 to
6 GPa, the maximum real stress increases by 11% and the
elastic limit decreases by 10.56%. We have the comparison
on values of €p, 01max € and o, for Aug,Cu,,Sis at P = 2, 4,
and 6 GPa and T'=300K in Table 6.
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T T T y T . T - 260 :
10 I I
240 -

220

200

f(GPa)
o, (MPa)

180 |-

160

140 |

444444 AuggSi, C AuggSiy
— AugCuyg —— AugCuyg
- - AugyCuySi; - - AugyCuSiy

(a) (b)

FIGURE 3: The density of deformation energy f (¢) (a) and the real stress o, (€) (b) of AuggSi;, AugyCu,;y, and AugyCu,,Si; at T=300K and
P = 0 calculated by the SMM.

TaBLE 4: Values of er (f (€F) = finax)> T1max € and 0, for AuggSi;, AuggCuyg, and AugeCuySi; at P = 0 and T=300 K calculated by the SMM.

Alloy er (%) O1max (MPa) £ (%) 0. (MPa)
AugeSi; 9.6 214.07 0.18 165.49
AugoCuyo 8.3 242.95 0.19 196.75
AugoCu,oSi; 8.2 216.79 0.19 175.98
8 : : : : 220 T T T T
’r 200
180
5l | £ 160
S 2
~ 5y
7 140
i o |,/
100
O 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8
£ (%) £ (%)
‘‘‘‘‘‘ 300K ...... 300K
—— 600K —— 600K
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FIGURE 4: The density of deformation energy f (¢) (a) and the real stress o, (¢) (b) of AuggCu;,Si, at P=0 and T'=300, 600, and 900 K
calculated by the SMM.
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TaBLE 5: Values of e (f (€r) = fimax)> T1max € and o, for AuggCu0Si, at P = 0 and T'=300, 600, and 900K calculated by the SMM.

T (K) e (%) O1max (MPa) &, (%) o. (MPa)
300 8.2 194.52 0.18 157.36
600 6.7 208.29 0.24 179.85
900 5.0 210.27 0.32 193.19

200

180

160

140

g, (MPa)

120 |
100 |

80 -

P=2GPa
— P=4GPa
—.-. P=6GPa

FIGURE 5: The real stress o, (&) of Aug,Cu,,Si; at P = 2, 4, and 6 GPa and T=300K calculated by the SMM.

TaBLE 6: Values of ex (f (€£) = fnax)> T1max € and o, for AuggCu;Si,
at P =2, 4, and 6 GPa and T=300K calculated by the SMM.

P (GPa) €F (%) O1max (MPa) Ee (%) [ (MPa)
2 8.9 175.86 0.14 149.50
4 9.7 170.64 0.10 137.75
6 10.2 152.06 0.08 123.20

4. Conclusion

In our paper, we derive the analytic expressions of charac-
teristic quantities for the nonlinear deformation such as the
density of deformation energy, the maximum real stress, and
the limit of elastic deformation depending on temperature,
pressure, and concentration of components together with the
strain-stress of substitutional alloy AB with interstitial atom C
and FCC structure under pressure. We apply theoretical re-
sults to alloy AuCuSi. The maximum real stress 0, ,,, and the
elastic limit o, calculated by the SMM are in good agreement
with MD results [16] and experiments [13, 14]. For AuCuSi at
the same temperature, concentration of substitutional atoms,
and concentration of interstitial atoms, when the pressure
increases, the maximum real stress increases and the elastic
limit decreases. When the pressure increases from 2 to 4 GPa,
the maximum real stress increases by 3% and the elastic limit
decreases by 7.86%. When the pressure increases from 4 to

6 GPa, the maximum real stress increases by 11% and the
elastic limit decreases by 10.56%. Our calculated results for
alloy AuCusSi are compared with ones for alloys AuCu, AuSi,
and metal Au. If we use more coordination spheres and we
have exact experimental data for the stress 0, , of alloy AuCuSi
at different temperatures, pressures, and concentrations of
components, we will obtain better calculations.

Data Availability

The data that support the findings of this study are available
from the corresponding author upon reasonable request.
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