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,anks to the geometric and material complexity of additive manufacturing, the design space of mechanical parts has been
developed, in which lattice filling structure customization can be applied to the solid filling of mechanical parts to achieve the goal
of mechanical structure lightweight. A kind of diamond lattice structure unit is designed by imitating the natural method based on
Design for Additive Manufacturing of mechanical parts. ,e mathematical model of the relative density and mechanical
properties of the unit are established, and the relationship between the two is obtained, which is verified by simulations; then the
relatively uniform results are obtained. ,e variable density hypothesis of diamond lattice structure is proposed, the methods of
simulations and compression tests are used to verify the hypothesis, and the results show that the variable density structure with
the density of the filling element decreasing gradually with the stress point as the center has better compression performance and
concurrently verify the correctness and applicability of the equivalent modulus of elasticity mathematical model.,e results of this
study can be applied to the solid sandwich filling of pressure mechanical parts, and the stress density matching relationship can be
carried out to further specific design.

1. Introduction

,e characteristics of additive manufacturing, such as
geometric complexity and material complexity, provide new
opportunities for customization of products, which also
develop new design space for designers. ,e concept of
Design for Additive Manufacturing (DFAM) emerged.

Design for Additive Manufacturing (DFAM) is de-
fined as follows [1, 2]: ,e process of achieving expected
performance and other life cycle objectives within the
capability of additive manufacturing through the syn-
thesis of shape, size, hierarchy, and material composition.
DFAM, which gives full play to the customizable and
multifunctional characteristics of additive manufacturing,
focuses on maximizing the functional value of products.
,e design freedom of additive manufacturing [3] is
shown in Figure 1.

Different from the reduction process, additive
manufacturing allows complex structural adjustment from
the inside without additional manufacturing costs. ,ere-
fore, the application of sandwich structure as an important
embodiment of additive manufacturing structure design is
conducive to the lightweight of parts. Lattice structure is a
kind of structure which is easy to be parameterized and
controlled. Taking it as the basic unit of sandwich structure is
the basis of this paper.

Lattice structure is a kind of periodically connected space
filling element, which is usually created by truss structure
and minimalist surface [4], which not only has the advan-
tages of saving materials, reducing energy use, and saving
time, but also has high energy absorption rate, high-strength
weight ratio, and thermal management ability. ,e lattice
structure has not been widely used in the past due to the
limitation of processing methods, and the rise of additive
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manufacturing makes mesoscopic lattice structure get a lot
of attention and research.

Rosen [2] and others [1, 5] of Georgia Institute of
Technology in the United States have carried out systematic
research on DFAM and proposed systematic design
method of cellular structure. Li Yang and others of the
University of Louisville in the United States have carried
out theoretical and experimental research on metal cellular
unit made of AM and summarized the size effect of cellular
structure [6, 7]. Sustainable Manufacturing and Life Cycle
Engineering Research Group of the University of New
South Wales in Australia is also committed to the research
of lattice structure; the design, analysis and manufacture of
lattice structure are reviewed [4]; in addition, it cooperates
with Supachai Vongbunyong in ,ailand to develop the
integrated software tool for cellular structure design [8].
,e research team of Universidade de Lisboa in Portugal
has done in-depth research on the mechanical properties of
the lattice structure [9, 10]. Ahmed Yussuf Hussein of the
University of Exeter in UK has studied the development of
light porous structure of metal additive manufacturing
[11]; in addition, many scholars have done a lot of research
on the additive manufacturing and mechanical properties
of porous metal biomaterials [12, 13]. Panda of the National
Institute of Technology in India designed and developed
the cellular structure of additive manufacturing [14]. In
China, Beijing University of Science and Technology is
dedicated to the research of spatial porous structure; Song
et al. proposed an effective optimization method for the
design of irregular cellular structure [15]. Zhao et al.
studied the design method of variable-density porous
structure based on local relative density mapping [16]. Liu
et al. from Beijing University of Aeronautics and

Astronautics studied the design method of honeycomb
structure generation for additive manufacturing [17]. Liao
et al. of South China University of Technology proposed a
topological optimization-based variable density lattice
structure optimization design method [18].

It is not difficult to find that the research on the lattice
structure of additive manufacturing is relatively limited at
this stage. Most of the lattice structure units are conventional
which are generated manually; few of them are optimized
design. Most of the lattice structures are in periodic ar-
rangement, lacking the variable scale mapping of the
functional requirements. In addition, the experimental re-
search on the lattice structure is very rare, so the simulation
analysis cannot be verified, and the parameter optimization
of the lattice structure has no experience to follow.

,is paper focuses on the theoretical and experimental
study of the lattice structure with variable density based on
compressive stress. In this paper, a kind of optimized lattice
structure unit is proposed. A fine mathematical model of
lattice structure density and elastic modulus is established on
the premise of considering deformation cross section. On
this basis, a series of simulation and experiment methods are
used to verify the correctness of the above theory.

2. Lattice Structure Unit Design

,e spatial lattice structure mentioned in the existing lit-
erature includes octahedral structure, body centered cubic
structure, and orthotropic cubic structure. ,ere are many
rods connected at the joints of these structures, which is easy
to cause stress concentration and rod waste. Furthermore, in
the context of additive manufacturing, the lattice structure
unit should not be limited to the traditional regular
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Figure 1: Design freedom of additive manufacturing.
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structure, but should be combined with the load-bearing
situation of parts to find the most suitable internal lattice
structure unit under specific load.

,ere are some natural structures in nature, which have
unique advantages under some stress conditions. For ex-
ample, the spider web structure has great tension, the
laminated structure of plant stem makes its bending and
torsion resistance remarkable, the vein structure of lotus leaf
makes its pressure bearing capacity extremely strong, and
the honeycomb structure has a certain strength while playing
its accommodation function.

Diamond is one of the substances with the highest
hardness in the world; because each C atom in its crystal is
connected with four C atoms around it by covalent bond
with the same angle, the inter atomic force is quite firm,
which makes the material very stable. ,is kind of natural
and superior molecular structure is worth learning from in
the design of lattice structure. In this paper, a preliminary
study on the lattice elements of pressure parts is carried out
by using the simulated natural design.

2.1. 1ree-Dimensional Modeling of Diamond Lattice
Structure. ,e diamond lattice structure unit (DLSU)
designed in this paper is shown in Figure 2. C atom is
replaced by node and covalent bond is replaced by rod. Each
node and four surrounding nodes are connected by rods to
form space tetrahedron structure. ,e lengths of rods are
equal, and the angle between rods is 109° 28 ′(109.47°). Fillet
transition connection is designed between nodes and rods in
order to increase the stability of slender members. ,is kind
of structure with space center symmetry has relatively
uniform internal force, and only four rods are connected to
each node, resulting in a smaller stress concentration at the
node, which is more robust than the ordinary structure.

In order to divide the solid into space grids in the design
and parametric modeling of the later structure, the concept of
structural cell is introduced.,e space of each structural unit is
Hexagonal Prism (HP) cell, as shown in Figure 3; the structural
cells are connected end to end to fill the solid structure without
gaps.where∅ is the diameter of the inner tangent circle of the
hexagonal prism; h is the height of HP cell; b is the bottom edge
length of HP cell; and l is the rod length of the DLSU. After
calculation, the parameter relationships are as follows:

h �

�
6

√

3
∅,

l �

�
6

√

4
∅,

b �

�
3

√

3
∅,

(1)

2.2. Calculation of Cell’s Relative Density of Diamond Lattice
Structure. According to the Gibson–Ashby micro-
mechanical model of porous structure (1997), the equivalent
mechanical properties of lattice structure, such as elastic
modulus, shear modulus, yield strength, etc., are all

represented by polynomials related to the relative density of
lattice structure. ,e relative density of lattice structure can
be expressed as

ρx �
Vs

Vc

, (2)

where ρx represents the relative density of structural cell; Vs
is the volume of solid part in structural cell; and Vc is the
total volume of structural cell, for HP cell Vc � (

�
2

√
/2)∅3.

2.2.1. 1e Case of Low Density. ,e rods constituting the
unit structure are slender rods with poor stability when the
relative density is low. ,erefore, the lattice unit structure
with spherical nodes and fillet transition is adopted. ,e
schematic diagram is shown in Figure 4, in which the volume
of equivalent rod is accurately calculated by equation (3).
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(3)

In the design, the rod is the main force object, and its
volume and mechanical properties are changed by changing
its section radius r. ,e node, as the auxiliary structure of
stress, the determination of its size mainly follows
the principle of noninterference of intersecting line.
,erefore, the node radius R should be determined by
the rod radius r and the fillet radius Ry; that is,
R � (

�
6

√
/2)r + ((

�
6

√
− 2)/2)Ry.

,e calculation process of relative density of structure
cell is shown in Table 1. ,e fillet radius Ry � r is selected to
simplify the calculation; the final results are as follows:

ρx � 10.8833
r

∅
􏼒 􏼓

2
− 20.1912

r

∅
􏼒 􏼓

3
. (4)

It can be seen that the value of relative density is a cubic
function of the ratio of the section radius of the rod r to the
cell parameter∅. When the ratio increases gradually, the
space interference of the nodes geometric structure will be
formed, which should be avoided by controlling the ratio in
the range of 0≤ r/∅≤

�
3

√
/8.

2.2.2. 1e Case of High Density. ,e spherical node is
changed into an ordinary node as the stability increases with
the increasing relative density of the unit; that is, the rods are
directly connected. ,e structure unit and the analyzed
equivalent rods are shown in Figure 5, in which (a) shows the
basic unit of diamond lattice structure after omitting the
spherical node and fillet; (b), (c), and (d) show the equivalent
rod and its partial enlarged drawing after unit superposition.
It can be seen from Figure 5(d) that the two ends of the
equivalent rods are all three equal sector sections with
variable radius. As shown in Figure 5(e), the equivalent rod
is made up into a cylindrical rod in order to calculate the
volume. 5(f) is shown to establish a Cartesian coordinate
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system for the complete cylindrical rod, by which calculating
the volume of the equivalent rod shown in Figure 5(c), and
thus establishes a mathematical model for the relative
density of lattice DLSU with ordinary nodes.

In Figure 5(f), the sector plane A is expressed
as z � x/tan(109.47°/2), the Cartesian coordinate system is
transformed into polar coordinate system for the conve-
nience of calculation, where x � ρ cos θ,
y � ρ sin θ, and dxdy � ρdρdθ, and the complement
part is divided, calculated, and then removed to obtain the
volume of the equivalent rod:

Vg′ � πr
2
l − 12􏽚

π/3

0
􏽚

r

0

ρ cos θ
tan 109.47°/2( 􏼁

ρdρdθ, (5)

where r is the section radius of the rod, l is the length of the
rod (related to the cell size), and the integral region D is the
sector region with radius r and included angle of 120°.

,e relative density of HP cell is ρx � 4
�
2

√
Vg′/∅3. ,e

calculation result is as follows:

ρx � 2
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Figure 2: ,e diamond lattice structure unit.
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Figure 3: HP cell and its superposition.
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From the properties of the function in formulae (5) and
(8), it can be seen that the ratio of the section radius r of the
element member to the cell size parameter (a or ∅) is an
important value, which is recorded in this paper as pa-
rameter ratio.,e larger the parameter ratio is, the closer the
structure is to the solid. When the relative density ρx equals
1, the structure appears as a solid in the macroscopic aspect,
while the parameter ratio should be within the range of
r/∅≤ 0.5239, which makes the relative density ρx

meaningful.

2.2.3. Cell’s Relative Density of Diamond Lattice Structure.
,e conclusions in sections 2.2.1 and 2.2.2 are combined to
form the mathematical models of the relative density of the
HP cell of the diamond lattice structure, as shown in the
following equation:
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(7)

,e function value ρx obtained by different parameter
combinations of the combined mathematical model varies
from 0 to 1. Plot the function to get the result shown in
Figure 6.

,e contour lines of function value shown in horizontal
plane 0 in Figure 6 are a series of straight lines passing
through the origin, which indicates that when the parameter
ratio r/∅ is fixed, the relative density is the same, and with
the increase of parameter ratio, the relative density increases
nonlinearly.

3. Equivalent Mechanical Properties of
Diamond Lattice Structure

3.1. Equivalent ElasticModulus of Diamond Lattice Structure.
As shown in Figure 7(a), stress σ is applied on the cell of
diamond lattice structure, which results in deformation of
lattice structure.,e dotted line in Figure 7(b) represents the
original structural axis, and the solid line represents the
deformed structural axis. Since rods are rigidly connected
with each other, the included angle between the tangent lines
of each rod end at the rigid node O remains unchanged after
deformation. In order to obtain the equivalent elastic
modulus, the displacement at point A is required, that is, the
total deformation of the unitΔl.

Vg

Vj

l

R

Ry

m

x

y

o r

Ω x = g (y)

x = f (y)

Figure 4: Model of fillet connection between node and rod.

Table 1: Calculation process of relative density.

Parameters HP cell
Mesh parameter Inscribed circle diameter∅
Solid volume parameters Rod section radius r, joint fillet radius Ry, mesh parameter ∅
Number of equivalent nodes (nj) 2
Number of equivalent rods (ng) 4
Length of equivalent rod (l) (
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√
/4)∅

Length of rod transition area (m) Ry
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√
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Volume of equivalent rod (Vg) πr2 · [l − 2
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] +2π[􏽒
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0 g2(y)dy − 􏽒
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√

− R
f2(y)dy]

Solid volume (Vs) Vs � njVj + ngVg

Structure cell volume (Vc) (
�
2

√
/2)∅3

Relative density (ρx)
�
2

√
(njVj + ngVg)/∅3
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According to the functional principle, the work done by
the pressure is equal to the stored energy of rods [19]; that is,
the work done by the external force is equal to the sum of the
strain energy of the rod system in numerical value, which is
expressed as follows:

1
2

FΔl � U1 + U2, (8)

where U1 is the sum of strain energy in tension and com-
pression and U2 is the sum of strain energy in bending. It
shows that the total deformation of the structure unit can be
obtained by calculating the strain energy of each rod. ,e
specific analysis is as follows.

Figure 8(a) is the force analysis of the rod.,ere is no slip
in the horizontal direction on node O for its resultant force
in the horizontal direction is 0, so that node O displaces only
in the vertical direction. In order to learn the strain energy
conveniently, the node O is set as the fixed point, and the
rods OA and OB are taken as the research objects for the
force and deformation analysis.

,e resultant force of OA rod is an axial force of F, which
leads to tension and compression deformation. For OB rod,
the force FB is decomposed into axial force and vertical force
to obtain the forces N and P, respectively, and the rod is
subject to axial force and bending moment M, resulting in
tension and compression deformation and bending defor-
mation. According to the symmetry of the structure and the
uniformity of the force, the force condition of rods OC and
OD is the same as that of OB. ,erefore, tension and
compression strain energy is produced in all the rods of the
deformed unit, and bending strain energy is produced in the
rods OB, OC, and OD.

,e equations of strain energy in tension and com-
pression and in bending are, respectively, as follows:

U1 � 􏽚
l

0

F
2
(x)

2EA(x)
dx, (9)

U2 � 􏽚
l

0

M
2
(x)

2EI
dx, (10)

where E represents the inherent elastic modulus of the raw
material.

F (x) in equation (9) is a function of the force on the rod,
which is a constant function in this example. A(x) is a
function of the cross-sectional area of the rod. Due to the
complexity of the change of the cross-sectional dimension of
the designed member, as shown in Figure 8(b), the profile of
the rod is simplified from the change of curved surface to the
change of wedge shape for the convenience of calculation. In
this research,

A(x) �

π[(
�
6

√
− 1)r − (

�
3

√
−

�
2

√
)x]

2
, 0≤ x≤

�
2

√
r,

πr
2
,

�
2

√
r< x< l −

�
2

√
r,

π[(
�
6

√
− 1)r − (

�
3

√
−

�
2

√
)(l − x)]

2
, l −

�
2

√
r≤ x≤ l.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(11)

In equation (10), M(x) is a function of bendingmoment,
which of OB rod is

M(x) � P x −
l

2
􏼠 􏼡. (12)

,e value of P is FBcos 19.47°. I is the section moment of
inertia of the rod, that of cylinder section is I0 � πr4/4; for
the wedge section, the reduced moment of inertia of the
variable section rod Iz is calculated as follows [20]:

Iz �
16

1/I1( 􏼁 + 2/I2( 􏼁 + 9/I3( 􏼁 + 4/I4( 􏼁
�

πr
4

1.3159
, (13)

where I1, I2, I3, and I4 are the section moments of inertia
when x � (3

�
2

√
/4)r, x � (

�
2

√
/2)r, x � (

�
2

√
/4)r , and x � 0,

respectively, as shown in Figure 8(b).
In conclusion, the total tensile and compressive strain

energy of the structure unit is as follows:

U1 � U1OA + 3U1OB � 􏽚
l

0

F
2

2EA(x)
dx + 3􏽚

l

0

N
2

2EA(x)
dx.

(14)

,e value of N is FBsin 19.47°. ,e total bending strain
energy of the rods in the structure unit is expressed as
follows:

U2 � 3U2OB � 3􏽚
l

0

M
2
(x)

2EI
dx

� 3 􏽚

�
2

√
r

0

M
2
(x)

2EIz
dx + 􏽚

l−
�
2

√
r

�
2

√
r

M
2
(x)

2EI0
dx + 􏽚

l

l−
�
2

√
r

M
2
(x)

2EIz
dx􏼢 􏼣.

(15)

From the above calculation process, it can be observed
that rod OA mainly bears load by tension and compression
deformation, while rods OB, OC, and OD have very small
tension and compression deformation and mainly bear load
by bending deformation.

From the above equations (8)∼ (15), the total defor-
mation of the structure can be obtained. ,at is,

Δl �
σ
πE

0.0196
∅5

r
4 − 0.1826

∅4

r
3 + 2.0220

∅3

r
2 − 2.1427

∅2

r
􏼠 􏼡.

(16)

,erefore, the equivalent elastic modulus E∗ of diamond
lattice structure is obtained by equation (17)

E
∗

�
σ
ε

�
σΔh
Δl

, (17)

where ε represents the strain produced by the stress of the
structure cell and h is the original height of the cell, whose
value is

�
6

√
/3∅. After sorting out, the following result is

obtained:

E
∗

�
E

0.0077(∅/r)
4

− 0.0712(∅/r)
3

+ 0.7883(∅/r)
2

− 0.8353(∅/r)
.

(18)

Obviously, the equivalent elastic modulus of diamond
lattice structure is related to the elastic modulus E of the
raw material itself and the parameter ratio of structure
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cell ∅/r ; the parameter ratio here is the inverse of that
described in Section 2. ,e value of E/E∗ is a quartic
function of the parameter ratio∅/r , while from the above
study, it is concluded that the relative density is a cubic
function of the parameter ratio ∅/r ; it is shown that the
equivalent elastic modulus E∗ has a nonlinear relation-
ship with the relative density ρx. ,erefore, when the
parameter ratio is fixed, the relative density and the
equivalent elastic modulus of diamond lattice structure
are fixed, respectively. After calculation, the following
relationship is obtained:

E
∗

� E 0.4239ρ3/2x − 0.0008􏼐 􏼑. (19)

3.2. Simulation of Mechanical Properties of Diamond Lattice
Structure Unit. For lattice structure, the stress-strain curve
changes with the increase of relative density, and the cor-
responding elastic modulus, plastic yield stress, and ultimate
stress of brittle fracture increase [21]. With the increase of
the parameter ratio r/∅ , the density of diamond structure
increases, and the mechanical properties change.

A structure unit is intercepted to simulate the upper unit
transferring three equal forces F along the direction of the
rods, and the stress state of the unit under different relative
density is observed. When the maximum stress of the
structure reaches the yield stress, the value of F reaches the
upper limit, which is recorded as Fmax. Aluminum alloy 1061
was selected as the simulation material, with yield stress of

σ

109.47°
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Figure 7: Stress and deformation diagram of structure cell.
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Figure 8: Force analysis and profile simplification of rods.
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27.57MPa and elastic modulus of 69GPa. Figure 9 shows the
mechanical simulation analysis of diamond lattice structure
units under different rod section radius (0.5mm, 1.0mm,
1.5mm, and 2mm) when the inner tangent diameter of HP
cell section ∅ is 10mm. It can be seen from the von Mises
stress that the most dangerous point of the structure occurs
at the joint between the node and the rod.

As seen in Table 2 which shows the comparison of
simulation result data, the larger the section radius r of the
rod, the greater the relative density of the structure, the
greater the load-bearing capacity, and the smaller the de-
formation of the structure; all these changes are nonlinear as
shown in Figure 10.

Comparing the equivalent elastic modulus E∗1 calculated
by the simulation data with the equivalent elastic modulus
E∗2 calculated by the above theoretical research, as shown in
Figure 11, the overall trend of the curve is consistent.

However, with the increase of the parameter ratio, the
bending moment condition of OB, OC, and OD rods in the
model changes into the shear condition. ,erefore, the actual
equivalent elastic modulus of the lattice structure is higher than
the calculated value of the theoretical model in the region of
high parameter ratio, as shown in Figure 11. ,e existence of
this gap makes it necessary to adjust the theoretical model for
the high parameter ratio in future work.

4. Variable Density Design of Diamond
Lattice Structure

4.1. Variable Density Hypothesis and Simulation Verification.
When the structure is stressed, the internal stress decreases
with the increase of the distance from the stressed point.
According to the above research, the load-bearing capacity
of the structure increases with the increase of the relative
density of the structure.

In the observation of organisms in nature, their tissues
are often distributed in areas with large stress and defor-
mation, in order to keep the original shape and physiological
function of organism under external load without damage.
Some organisms can dynamically adjust the flow direction of
internal tissue to the area according to the specific position
of external load, so as to reduce the influence of stress and
deformation on themselves.

,erefore, according to the tissue distribution law of
natural organisms and the above research conclusions, it is
assumed that the variable density structure has better bearing
capacity; that is, with the distance from the stress point, the
structure density is smaller and smaller, and such structure
combination is better than the equal density structure.

According to the hypothesis, the diamond structure is
designed with variable density by changing the section ra-
dius distribution of the rods filled with lattice cell on the
premise that the total material volume and total relative
density of the structure remain unchanged. ,e constant
density structure cell is adjusted by variable density, and the
stress distribution and displacement are simulated and
compared under the same stress conditions; the calculation
results shown in Figures 12 and 13 are obtained, respectively.

From Figure 12, it can be seen intuitively that for the
equal volume structure of materials under the same stress
condition, the superposition of internal variable density
units makes the structure stress distribution more uniform
than that of constant density units. ,e maximum stress is
also reduced from 23.65MPa to 18.34MPa, a decrease of
22.45%. As seen from Figure 13, the maximum displace-
ment, which occurs in the stress center of the structure, is
reduced from 3.320×10− 3 to 2.587×10− 3mm, a decrease of
22.08%. It shows that the structure adjusted by variable
density according to stress conditions can bear more force
and the stress distribution of the whole structure is more
uniform and reasonable. ,e above hypothesis is verified.

4.2.AdditiveManufacturingandCompressionContrastTest of
Diamond Lattice Structure. AlSi10Mg aluminum alloy
powder is used to make diamond lattice structure by SLS
technology. ,e mechanical properties of the material are as
follows: modulus of elasticity 70± 5GPa, yield strength
245± 10MPa, and forming accuracy of 0.05mm; the formed
structure is shown in Figure 14. From left to right, there are
traditional octahedral lattice structure, constant density
diamond lattice structure, and variable density diamond
lattice structure, and they are named specimen 1, specimen
2, and specimen 3, respectively. Various variables of the
three kinds of specimens, including total volume, size,
relative density of lattice part, and thickness of upper and
lower bottom surfaces, are designed to be equal. A stress boss
with a thickness of 2mm is designed at the center of the top
of the structure to simulate the local stress of the structure.

,e compression tests are carried out on the universal
mechanical testing machine, and the force-displacement
curves shown in Figure 15 are finally obtained.

,e test curves are analyzed as follows:
First of all, the three kinds of specimens have gone through

the elastic stage, yield stage, and strengthening stage in the
compression process. ,eir curves basically coincide in the
elastic stage and yield stage because they are of the same relative
density, and they all enter into a short yield stage when the
pressure is about 13 kN. Secondly, the three kinds of specimens
show different trends in the strengthening stage: the dis-
placement of specimen 1 changes faster and faster with the
increase of force until the bottom edge of the specimen breaks;
specimen 2 and specimen 3 show higher compressive capacity
in the strengthening stage, and the displacement basically
increases at a constant speed with the increase of force, but
small cracks appear due to the problem of the forming quality
of the specimen, resulting in the trend of the force-displace-
ment curve being step like in the later stage until reaching the
failure condition. Specimens 2 and 3 do not form obvious
fracture on the structure after failure.

Finally, the failure loads of the three kinds of specimens
are 21.1 kN, 28.1 kN, and 38.8 kN, respectively. It can be seen
through comparison that the compressive strength of
specimen 3 is higher than that of specimen 2.

Table 3 is the analysis and comparison of the com-
pression test results. ,e average equivalent modulus of
elasticity of the diamond lattice structure specimens
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von Mises (N/m^2)

2.757e + 007
2.532e + 007
2.307e + 007
2.083e + 007
1.858e + 007
1.634e + 007
1.409e + 007
1.184e + 007
9.599e + 006
7.353e + 006
5.107e + 006
2.561e + 006
6.156e + 005

von Mises (N/m^2)

2.757e + 007
2.529e + 007
2.301e + 007
2.072e + 007
1.844e + 007
1.616e + 007
1.387e + 007
1.159e + 007
9.306e + 006
7.022e + 006
4.739e + 006
2.456e + 006
1.723e + 005

von Mises (N/m^2)

2.757e + 007
2.530e + 007
2.303e + 007
2.076e + 007
1.848e + 007
1.621e + 007
1.394e + 007
1.166e + 007
9.392e + 006
7.119e + 006
4.846e + 006
2.573e + 006
3.007e + 005

von Mises (N/m^2)

2.757e + 007
2.529e + 007
2.300e + 007
2.072e + 007
1.843e + 007
1.615e + 007
1.386e + 007
1.158e + 007
9.294e + 006
7.009e + 006
4.723e + 006
2.438e + 006
1.534e + 005

Figure 9: Simulation analysis of diamond lattice structure unit.

Table 2: Comparison of simulation data of diamond lattice structure unit.

Serial
number

Rod section
radius r
(mm)

Relative
density ρx

Force
Fmax (N)

Maximum
stress σs(MPa)

Maximum
displacement s (mm)

(×10− 3)

Simulation equivalent
modulus of elasticity

E∗1 (GPa)

,eoretical equivalent
modulus of elasticity

E∗2 (GPa)

1 0.5 0.0265 3.644 27.57 5.602 0.0617 0.0710
2 0.6 0.0375 6.573 27.57 4.913 0.1261 0.1572
3 0.7 0.0507 10.700 27.57 4.407 0.2289 0.2787
4 0.8 0.0657 15.902 27.57 3.971 0.3776 0.4374
5 0.9 0.0825 24.319 27.57 3.811 0.6016 0.6379
6 1.0 0.1011 32.346 27.57 3.610 0.8448 0.8850
7 1.1 0.1214 42.697 27.57 3.440 1.1702 1.1820
8 1.2 0.1433 56.201 27.57 3.371 1.5718 1.5315
9 1.3 0.1669 70.797 27.57 3.264 2.0450 1.9391
10 1.4 0.1921 88.592 27.57 3.218 2.5956 2.4075
11 1.5 0.2188 110.539 27.57 3.231 3.2256 2.9383
12 1.6 0.2469 130.450 27.57 3.112 3.9521 3.5331
13 1.7 0.2765 160.650 27.57 3.173 4.7735 4.1974
14 1.8 0.3075 190.280 27.57 3.147 5.7006 4.9323
15 1.9 0.3398 219.681 27.57 3.063 6.7619 5.7384
16 2 0.3734 250.636 27.57 2.966 7.9671 6.6186
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Figure 10: Variation trend of parameters of structure unit with section radius of rod.

Comparision of theoretical calculation and simulation results
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Figure 11: Comparison of theoretical and simulation results of equivalent modulus of elasticity.

von Mises (N/m^2)
2.365e + 007
2.168e + 007
1.971e + 007
1.774e + 007
1.577e + 007
1.380e + 007
1.183e + 007
9.856e + 006
7.885e + 006
5.915e + 006
3.944e + 006
1.973e + 006
2.816e + 003

(a)

von Mises (N/m^2)
1.834e + 007
1.682e + 007
1.529e + 007
1.376e + 007
1.223e + 007
1.070e + 007
9.175e + 006
7.646e + 006
6.118e + 006
4.590e + 006
3.062e + 006
1.533e + 006
5.004e + 003

(b)

Figure 12: Comparison of stress state. (a) ,e superposition of constant density units (r� 1mm). (b) ,e superposition of variable density
units (r� 1.2mm and 0.8mm).
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URES (mm)
3.321e – 003
3.045e – 003
2.768e – 003
2.491e – 003
2.214e – 003
1.937e – 003
1.661e – 003
1.384e – 003
1.107e – 003
8.303e – 004
5.535e – 004
2.768e – 004
1.000e – 030

(a)

URES (mm)
2.586e – 003
2.371e – 003
2.155e – 003
1.940e – 003
1.724e – 003
1.509e – 003
1.293e – 003
1.078e – 003
8.621e – 004
6.466e – 004
4.311e – 004
2.155e – 004
1.000e – 030

(b)

Figure 13: Comparison of displacement state. (a) ,e superposition of constant density units (r� 1mm). (b) ,e superposition of variable
density units (r� 1.2mm and 0.8mm).

Figure 14: Specimens with AM and their compression test.
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Figure 15: Comparison of force-displacement curves of three kinds of specimens.
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obtained from the test results is 4.165, and the equivalent
modulus of elasticity calculated from equation (19) is 4.084,
the two are relatively consistent, which preliminarily proves
the correctness of the theoretical research.

According to the comparison results of Figure 15 and
Table 3, the following test conclusions can be obtained:

(i) Compared with the octahedral lattice structure; the
diamond lattice structure shows better compressive
properties in the strengthening stage.

(ii) ,e compressive strength of the variable density
lattice structure adapted to local stress is higher than
that of the uniform one.

(iii) ,e formula of equivalent modulus of elasticity
studied in Section 2 has certain applicability.

5. Conclusion

,e aim of this paper is to study the theoretical effect of
relative density on the mechanical properties of the diamond
lattice structure and to use this study to design a varying
density lattice structure optimized for equivalent elastic
modulus in compression based on additive manufacturing.

A highly detailed geometric model is developed to de-
termine the exact volume of the diamond lattice within a
greater cell superposition, thereby allowing an accurate
determination of the relative density of the lattice structure
given the rod diameter and diameter of inscribed circle
representing the size of the unit fill space. ,e mathematical
model of the relative density and mechanical properties of
the unit is established, and the relationship between them is
obtained. A series of simulations are carried out to verify
them, and the results are relatively consistent. ,e data of
compression test in Section 4 also confirms the correctness
of the mathematical model accuracy.

,e hypothesis of variable density is put forward and
verified by simulation and experiment. ,e results show that
the diamond lattice structure has more advantages than the
traditional octahedral structure in compression, and the
variable density diamond lattice structure whose density of
the filling unit gradually decreasing with the stress point as
the center has better compression performance.
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