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*e stability of rocky slope is determined mainly by discontinuities. *e discrete element calculation method can be used to
analyze the geometric features of rock structures and to deal with the nonlinear deformation and destruction of the rock mass that
may be affected by the discontinuities. In this paper, the Barton–Bandis (B-B) nonlinear strength criterion was introduced to
improve the Mohr–Coulomb (M-C) slip model of joint slope. *e modified model could reflect the real-time shear strength in a
changing stress state. Using the numerical calculation of the shear test of the structural plane, we found that the corrected slip
curve fits well with the process before the failure of the shear test. Furthermore, the modified model can track the disintegration
between blocks while sliding failure of joint slope. With an increase in the number of structural planes and the complexity of the
relative location of blocks, the interaction force between blocks and the sliding failure mode of the joint slope would be more
complex. Changing the nonlinear parameters with the stress state of the structure plane could effectively solve this problem.

1. Introduction

With the improvement and renewal of the application of
computer technology [1–3], numerical calculation has be-
come an important method to effectively solve geotechnical
engineering problems [4, 5]. Specifically, the test data ob-
tained from the experiments [6–9] and the related consti-
tutive models [10, 11] are important factors to determine
whether the numerical simulation is effective.

As for the rocky slope, its stability is determined mainly
by the discontinuities [12–14]. *e discrete element calcu-
lation method can be used to analyze the geometric features
of rock structures and to deal with the nonlinear defor-
mation and destruction of the rockmass that may be affected
by the discontinuities [15, 16]. For example, Wu and Hsieh
[17] adopted the discrete element calculation method to
analyze the debris movement and deposition of the Chiu-
fen-erh-shan landslide under the impact of the earthquake.

Liu et al. [18] investigated the initiation and kinetic char-
acteristics of the Xiaogangjian rockslide failure via the three-
dimensional discrete element method. Fan et al. [19] studied
the jointed rock mass stability based on the tunnel seismic
prediction and discrete element method.

It is essential to discuss the structural plane shear strength
for the joint rocky slope. Scholars tend to use the
Mohr–Coulomb (M-C) slip model when conducting discrete
meta-analysis and to treat the parameters of the slip model as
constants (e.g., [20–22]). However, the description of slope slip
failure is a significant limitation in this setting method.

*is limitation of the M-C slip model could be improved
effectively by introducing the Barton–Bandis (B-B) non-
linear criterion. *e B-B model empirical formula was
proposed by Barton and Bandis based on a large number of
shear tests of natural structures. For rock engineering, the
B-B model was widely used to analyze and infer the shear
strength of rock joints. Recently, many experts and scholars
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had studied and discussed the application of the B-B model
in the discrete element. By combining the B-B empirical
formula with discrete elements, shear slip numerical tests
[23] and double-axis compression tests [24] have been used
to analyze discontinuities. Existing research studies com-
bined M-C parameters with the empirical formula of Bandis
[25] and discussed the contact problems between noncon-
tinuous deformation analysis and the Bandis empirical
formula [26]. *e connection between these two models was
achieved effectively using the discrete element method.

In the process of introducing and revising the B-B shear
strength criterion, however, most scholars have not set the
stress state of continuous change in the actual slip damage as
the key point to the analysis of the shear strength of the rock
mass. As a result, it is difficult to introduce nonlinear
principles into actual working conditions. To apply the
modified slip model to practical engineering, this paper
conducts a new exploration and provides an innovation.

In this paper, by combining a discrete element numerical
calculation using the B-B empirical formula with the
structural plane shear test, we applied the corrected B-B
parameters to the M-C parameters in the slide model. *e
shear strength parameters of the structural plane changed
with the stress state, which we realized by FISH language
programming. We then analyzed the slope slip failure before
and after modification of the M-C slip model.

2. Shear Strength Transformation of
B-B Formula

To obtain the connection between shear strength parameters
and the stress state, we transformed and analyzed the B-B
empirical formula. For the shear deformation of the
structural plane, the τ − dh curve before the peak intensity
was satisfied as follows [27]:

1
τ

� m
1
dh

+ n, (1)

where τ is shear stress and dh is shear displacement. In ad-
dition,m� 1/Ksi and Ksi is initial shear rigidity, n� 1/τult, and
τult is the asymptotic value of the hyperbolic curve of τ − dh.

*e shear stiffness Kst is the stress gradient in the unit
deformation, which could be obtained as follows:

Kst �
zτ
zdh

� Kj σn( 􏼁
nj 1 − Rf􏼐 􏼑

2
, (2)

where Kj is the shear stiffness, σn is the normal stress, nj is
the shear stiffness index, Rf is the failure coefficient, and
Rf � τ/τult.

*e modified function τ/τp could be adapted to the
empirical formula as follows [28]:

Kst � Kj σn( 􏼁
nj 1 −

τRf

τp

􏼠 􏼡

2

τ ≤ τp􏼐 􏼑, (3)

where τp is the peak shear strength. *is formula could be
used to characterize variations in the shear stiffness of
joints.

We derived formulas (1)–(3) through the shear test data.
*e shear strength curves of the structural plane can be
obtained by the shear test of the structural plane (Figure 1).
In this shear test, the normal stress was set to 50 kPa,
100 kPa, 150 kPa, and 200 kPa. Because of limited space, the
experimental operation of the shear test of the structural
plane is not included in this paper.

According to formulas (1)–(3), the related parameters
could be extracted from the shear test data. By processing the
data, we obtained a correlation formula and its linear fitting
curve, as shown in Table 1 and Figure 2.

When we substituted the formulas in Table 1 into formula
(3), the shear stiffness Kst characterization formula based on
the Bandis empirical formula could be obtained as follows:

Kst � 2.0547σ0.4881
n 1 −

τ2

0.417σn + 0.0458( 􏼁 1.0812τp + 0.0014􏼐 􏼑
⎡⎢⎣ ⎤⎥⎦

2

.

(4)

*en, the normal stress σn and the normal deformation
ΔVj satisfy the following formula [28]:

lgσn � p + qΔVj, (5)

where p and q are constants. *e normal stiffness Kn could
be obtained as follows:

Kn �
zσn

zΔ Vj

�
qσn

lge
�

qσn

0.3434
. (6)

By fitting results from the direct shear test of the
structural plane lgσn − ΔVj, the formula could be obtained
as follows:

lgσn � 7.715ΔVj − 1.8804. (7)

By substituting formula (7) into formula (6), under a
given normal stress Kn, the structural plane stiffness Kn

could be obtained as follows:

Kn �
7.715σn

0.3434
� 22.4665σn. (8)

3. The Parameter Transformation of the B-B
Empirical Formula

To introduce the nonlinear parameters of the B-Bmodel into
the M-C slip model, we analyzed the nonlinear empirical
formula. *is formula could be used to estimate the peak
shear strength of irregular and unfilled structure [29, 30]:

τ � σn tan φb + JRClg
JCS

σn

􏼠 􏼡􏼢 􏼣, (9)

where σn is the effective normal stress (MPa) and JRC is the
structural plane roughness coefficient that can be obtained
by comparing it with the typical curve given by Barton. JCS is
effective compressive strength for the structural plane
(MPa); if the structural plane does not have any adjacent
rock weathering, JCS is equal to the rock uniaxial com-
pressive strength; otherwise, JCS can be equal to a quarter of
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the rock’s uniaxial compressive strength; φb is the basic
friction angle of the rock’s mass structural plane (°), which
can be obtained by laboratory test. In the empirical formula,
the combination JRClg(JCS/σn) could be defined as the
roughness angle, which was related to the structural plane
rough rolling form (°). In this paper, the values of the pa-
rameters JRC, JCS, and φb were obtained according to the
literature [31].

*e linear M-C formula could be written as follows:

τ � c + σn tan φ. (10)

Also, taking the derivative of σn on both sides, the
formula would be changed as follows:

φ � arctan
zτ
zσn

􏼠 􏼡, (11)

c � τ − σn tan φ. (12)

*en, taking the derivative of σn on both sides, formula
(9) could be changed as follows:

zτ
zσn

� tan JRClg
JCS

σn

􏼠 􏼡 + φb􏼢 􏼣 −
πJRC

180 ln 10
tan2 JRClg

JCS

σn

􏼠 􏼡 + φb􏼢 􏼣 + 1􏼨 􏼩. (13)

Substituting formula (13) into formula (11), the equiv-
alent friction angle φ and the equivalent cohesion value
could be obtained as follows:
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Figure 1: Shear strength curve of structural plane.

Table 1: Shear strength parameters and fitting relationship of the structural plane.

Normal stress, σn(MPa) Peak shear strength,τp (MPa) Initial shear rigidity,
Ksi (GPa/m)

Asymptotic value of the
hyperbolic curve, τult (MPa)

0.050 0.070 0.50 0.073
0.100 0.082 0.63 0.098
0.150 0.110 0.74 0.113
0.200 0.130 1.04 0.146

Relation fitting curve Fitting formula
Determination of

parameter Correlation coefficient
a b

Linear relationship ((1/τ) − (1/dh)) (1/τ) � a(1/dh) + b 0.2394 − 0.0095 0.9733
Logarithmic relationship (Ksi − σn) Ksi � aσb

n 2.0547 0.4881 0.9091
Linear relationship (τult − τp) τult � aτp + b 1.0812 0.0014 0.9368
Linear relationship (τp − σn) τp � aσn + b 0.4170 0.0458 0.9773
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tan φ � tan φb + JRC · lg
JCS

σn

􏼠 􏼡 −
πJRC

180 ln 10
· tan2 JRClg

JCS

σn

􏼠 􏼡 + φb􏼢 􏼣 + 1􏼨 􏼩,

c � σn tan φb + JRC lg
JCS
σn

􏼠 􏼡􏼢 􏼣 − σn tan φ.

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(14)

By referring to the relevant literature and combining this
information from the literature with the actual situation of the
structural plane, we took the following parameters: φb � 32°,

JCS � (1/4)σC � 3.31MPa, JRC � 2.13. We defined f(σn) as
f(σn) � tan(φb + JRC · lg(JCS/σn)). After applying these data,
the formula could be obtained as follows:
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Figure 2: *e fitting curves of shear strength parameters. (a) Linear relationship ((1/τ) − (1/dh)). (b) Logarithmic relationship (Ksi − σn).
(c) Linear relationship (τult − τp). (d) Linear relationship (τp − σn).
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f σn( 􏼁 � tan 32° + 2.13 · lg
3.31
σn

􏼠 􏼡,

φ � arctan f σn( 􏼁 − 0.016 f σn( 􏼁
2

+ 1􏽨 􏽩􏽮 􏽯

c � 0.016σn f σn( 􏼁
2

+ 1􏽨 􏽩.

,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(15)

By combining the B-B nonlinear relationship with the
M-C surface slip model, we could obtain the normal stiff-
ness, tangential stiffness, cohesion, and friction angle of the
M-C sliding model through the normal stress of the
structural plane.

4. Modification of Empirical Formula

To verify the rationality of formulas (4), (8), and (15), the
shear test was numerically simulated by 3D Distinct Element
Code (3DEC) software. As for the 3DEC model, we adapted
the M-C constitutive model as the basis, adopted the M-C
slip model as the structural plane, and then modified and
replaced the strength parameters with the B-B formula. *e
test specimen model was simplified to a 60mm × 60mm ×

120mm rectangle, and the joint plane was the half-height of
the specimen. *e model and boundary conditions are
shown in Figure 3, and the physical and mechanical pa-
rameters of materials are given in Table 2.

In the process of numerical tests, while maintaining the
normal stress σn as 0.05MPa, 0.1MPa, 0.15MPa, and
0.2MPa, the shear stress uses 0.5 τp and τp under different
normal stresses for the numerical calculation. In addition,
when σn � 0.2MPa, then 0.25 τp and 0.75 τp were taken to
provide basic data for the fitting of the modified parameters.
We monitored the shear displacement of the feature point
(0, 0, 0) on the joint surface in the numerical experiments. By
comparing the numerical simulation data with the experi-
mental data, the results of the numerical test tended to be
close to the indoor test results only when τ � 0.5σp. In other
settings, especially when τ approaches τp, the simulation
results would produce a significant difference. *erefore, we
should revise the B-B empirical formula.

By changing the shear stiffness value in the numerical
calculation, we obtained the shear deformation consistent
with the indoor test, and then we also could obtain the
corresponding Kst value of different shear stress τ under
σn � 0.2MPa. On the basis of these shear stiffness values, we
introduced the logarithmic function f(τ/τp) to modify the
B-B empirical formula [30]. *e corrected function f(τ/τp)

and the modified joint shear stiffness Kst could be obtained
as follows:

f
τ
τp

􏼠 􏼡 � 0.312 ln
τ
τp

􏼠 􏼡 + 0.7188,

Kst � Kj σn( 􏼁
nj 1 − f

τ
τp

􏼠 􏼡Rf􏼢 􏼣

2

τ ≤ τp􏼐 􏼑.

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(16)

*e data referred to in this section are given in Table 3.

As shown in Table 3 and Figure 4, the calculated dis-
placement with the modified Bandis formula was basically
consistent with the measured shear displacement. *erefore,
the revised formula could be applied to the calculation of
shear strength. For the analysis of structural surface de-
formation based on 3DEC, it would be difficult to realize the
change of shear stiffness of the structural plane with the
change of tangential stress τ. So, we calculated Kst obtained
in the condition of τ � τp as the reference value of shear
stiffness. *en, the shear stiffness value could be approxi-
mately simplified as a function of normal stress, as follows:

Kst � D · Kj σn( 􏼁
nj , (17)

where D is constant. Formula (17) could simulate the shear
deformation characteristics of the structural plane before
shear failure. Using this method, we realized the deforma-
tion characteristics of the semiquantitative analysis with few
errors, and it was easy to implement in the numerical
simulation.

By reintroducing these formulas to the numerical cal-
culation, we changed the load method to the shear test
(Figure 5) [32]. Specifically, compared with the shear test
method shown in Figure 3, a fixed tangential loading speed
(0.005m/s) was used to complete the shear test shown in
Figure 5. Also, the related shear numerical test curves can be
obtained (Figure 6).

By comparing Figure 1 with Figure 6, we found that the
shear strength curve obtained by introducing the B-B em-
pirical formula was basically same as the measured curve.
Additionally, the numerical test curve could effectively
simulate the shear test curve in the process of changing from
the ascent phase to the peak phase.*erefore, these formulas
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Figure 3: Numerical shear test model.
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Figure 4: Comparison of test value, uncorrected positive value, and modified positive value. (a) *e shear displacement comparison of the
shear displacement under different normal stresses (T is shorthand for test results, N-U is shorthand for numerical results uncorrected, and
N-C is shorthand for numerical results corrected). (b) *e shear displacement comparison under the same normal stress σn � 0.2MPa.

Table 2: Rock physical mechanical parameters.

Lithology Density (kg/m3) Bulk modulus (MPa) Shear modulus (MPa) Cohesive force (MPa) Angle of internal
friction (°)

Compressive
strength (MPa)

Limestone 2300 7.20E+ 03 1.92E+ 03 4.12 35 13.24

Table 3: Structural plane stiffness parameters of numerical test.

Normal
stress, σn

(MPa)

Shear
stress, τ
(MPa)

Shear stiffness
uncorrected,

Kst(MPa · mm− 1)

Shear stiffness
corrected,

Kst(MPa · mm− 1)

Normal
stiffness, Kn

(MPa · mm− 1)

Joint
internal
friction
angle, Φ

(°)

Joint
cohesion,
C (kPa)

Test
results,

dh

(mm)

Numerical
test

uncorrected,
dh (mm)

Numerical
test

corrected,
dh(mm)

0.05 0.035 0.2678 0.3133 1.1233 36.8 1.27 5.92 5.64 5.95
0.07 0.0001 0.0428 1.1233 13.83 25.38 13.82

0.10 0.04075 0.4369 0.4297 2.2466 35.5 2.47 5.21 5.18 5.23
0.0815 0.0297 0.1202 2.2466 12.96 24.33 12.98

0.15 0.055 0.4820 0.4756 3.3699 34.8 3.64 5.47 5.49 5.46
0.11 0.00274 0.0877 3.3699 13.84 22.96 13.87

0.20

0.0325 0.8310 0.8208 4.4933

34.4 4.82

2.81 2.79 2.80
0.065 0.5513 0.5372 4.4933 5.25 5.22 5.26
0.0975 0.1453 0.3012 4.4933 8.32 8.36 8.32
0.13 0.0048 0.1103 4.4933 13.21 21.87 13.24
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could be used to analyze the joint slope model for sliding
failure by 3DEC.

5. Comparison and Analysis of Slope Failure

5.1. Joint Slope Model. To verify the applicability of calcu-
lating formulas, we used two sets of controlled structural
planes to carry out the numerical calculation of the sliding
failure. Among these planes, the joint’s strike was 0° and dip

was 80°, and the rock layer’s strike was 0° and dip was 20°.We
numbered and monitored the sliding block and joints in the
calculation (Figure 7). *e right and bottom boundaries of
the joint slope model are constrained by the three-direction
displacement.

According to previous discussion, by combining for-
mulas (15) and (16) and making the appropriate reduction,
we could obtain the empirical formula of the shear stiffness
of the limestone joints in the condition τ � τp, as follows:

Normal stress
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Figure 5: Constant velocity loading shear test.
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Figure 6: Shear numerical test curves.
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Kst � 0.1164σ0.4881
n . (18)

Using 3DEC built-in FISH language programming, we
automatically obtained the normal stress of the structural
plane, and then we could calculate the cohesive force,
friction angle, shear stiffness, and normal stiffness by for-
mulas (8), (14), and (17). We automatically reset the shear
strength parameters of the structural plane every 50 steps, so
that the strength parameters of the structure could be
constantly adjusted in the process of slippage. *e related
parameters in numerical calculation are listed in Table 4.

5.2. Comparison of SlipModes. We carried out a rigid sliding
failure analysis on the slopes and extracted the displacement
vector diagram of the sliding zone every 200 steps until the
slip block had detached from the slope (Figure 8).

According to a comparison and analysis of the slide
vector graphs, when the shear strength was constant, the slip
velocity of the block was consistent, and no separation
occurred between blocks in the process of slippage. Relative
to the corrected slip model, the start of the slide process was
slower and the displacement volume was relatively smaller.
*e slippage disruption model was too ideal to describe the
sliding failure, and its predictions of disruption were more
conservative than in reality.

After introducing the B-B formula to modify the M-C
slide model, the structural strength of each block was dif-
ferent because of their stress state. In the process of slippage,

the slip rate of the blocks was different, and the tendency for
disintegration and destruction between blocks was evident.
Because the sliding failure mode was similar to the actual
situation, it also proved the rationality of introducing the
B-B model.

*e monitoring of shear strength of the structural plane
is shown in Figure 9. By means of real-time monitoring of
the displacement of four blocks in the slip area, we obtained
the calculated step-slip displacement curve, as shown in
Figure 10.

Figure 9 shows that the normal stiffness and shear
stiffness of the structure plane constantly changed during the
sliding process. When the stress state changed, the normal
stiffness and shear stiffness of each structure would change
synchronously. At the steps from 0 to 300, there was an
adjustment period in the stress, which corresponded to the
glide phase of the displacement monitoring (Figure 10(c)).
Because the initial control condition of the slip model was
rock mass gravity, the shear strength for different spatial
location was significantly different. Among these differences,
the peak positive stress of the horizontal joint was the
maximum value and its changing amplitude was the largest,
whereas the value of vertical joint was relatively small.

*e monitoring curves (Figure 10) show that, under the
unmodified M-C slip model, the slippage rate of each block
remained basically consistent, and with an increase in the
calculation step (up to 800 steps), the slip rate of the block
had only a small difference. In the process of modified slip,
for No. 2 block, there was free surface along the slide

No. 1 block

No. 4 block

No. 2 block
No. 3 block

Near-horizontal
joint

Near-vertical
joint

Figure 7: *e numerical model of joint slope.

Table 4: Rock mass parameters in numerical calculation.

Parameters of rock
mass Density (kg/m3) Bulk modulus (MPa)

Shear
modulus
(MPa)

Cohesive
force
(MPa)

Angle of internal
friction (°)

Limestone 2300 7.20E+03 1.92E+03 4.12e3 35.0
Structural plane
strength

Shear stiffness, Kst
(MPa · mm− 1)

Normal stiffness, Kn

(MPa · mm− 1)
Joint angle of internal

friction, Φ (°)
Joint cohesive force, C

(kPa)

Nonlinear change
formula Kst � 0.1164σ0.4881

n Kn � 22.4665 σn
f(σn) � tan(33.4° + 2.04 · lg(3.87/σn))

φ � arctan f(σn) − 0.016[f(σn)
2

+ 1]􏽮 􏽯

c � 0.016σn[f(σn)
2

+ 1]

⎧⎪⎪⎨

⎪⎪⎩
Constant parameters

10.7 10.7 14.51 5.4
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Displacement vectors
Maximum: 0.134752

1.3475E-01
1.3000E-01
1.2000E-01
1.1000E-01
1.0000E-01
9.0000E-02
8.0000E-02
7.0000E-02
6.0000E-02
5.0000E-02
4.0000E-02
3.0000E-02
2.0000E-02
1.0000E-02
0.0000E+00

Constant parameters

Displacement vectors
Maximum: 0.122273

1.2227E-01
1.2000E-01
1.1000E-01
1.0000E-01
9.0000E-02
8.0000E-02
7.0000E-02
6.0000E-02
5.0000E-02
4.0000E-02
3.0000E-02
2.0000E-02
1.0000E-02
0.0000E+00

Dynamic parameters

(a)

Displacement vectors
Maximum: 0.370314

3.7031E-01
3.5000E-01
3.2500E-01
3.0000E-01
2.7500E-01
2.5000E-01
2.2500E-01
2.0000E-01
1.7500E-01
1.5000E-01
1.2500E-01
1.0000E-01
7.5000E-02
5.0000E-02
2.5000E-02
0.0000E+00

Constant parameters

Displacement vectors
Maximum: 0.374375

3.7438E-01
3.5000E-01
3.2500E-01
3.0000E-01
2.7500E-01
2.5000E-01
2.2500E-01
2.0000E-01
1.7500E-01
1.5000E-01
1.2500E-01
1.0000E-01
7.5000E-02
5.0000E-02
2.5000E-02
0.0000E+00

Dynamic parameters

(b)

Displacement vectors
Maximum: 0.788493

7.8849E-01
7.5000E-01
7.0000E-01
6.5000E-01
6.0000E-01
5.5000E-01
5.0000E-01
4.5000E-01
4.0000E-01
3.5000E-01
3.0000E-01
2.5000E-01
2.0000E-01
1.5000E-01
1.0000E-01
5.0000E-02
0.0000E+00

Constant parameters

Displacement vectors
Maximum: 1.04087

1.0409E+00
1.0000E+00
9.0000E-01
8.0000E-01
7.0000E-01
6.0000E-01
5.0000E-01
4.0000E-01
3.0000E-01
2.0000E-01
1.0000E-01
0.0000E+00

Dynamic parameters

(c)

Figure 8: Continued.
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Displacement vectors
Maximum: 1.80083

1.8008E+00
1.8000E+00
1.7000E+00
1.6000E+00
1.5000E+00
1.4000E+00
1.3000E+00
1.2000E+00
1.1000E+00
1.0000E+00
9.0000E-01
8.0000E-01
7.0000E-01
6.0000E-01
5.0000E-01
4.0000E-01
3.0000E-01
2.0000E-01
1.0000E-01
0.0000E+00

Constant parameters

Displacement vectors
Maximum: 2.42268

2.4227E+00
2.4000E+00
2.2000E+00
2.0000E+00
1.8000E+00
1.6000E+00
1.4000E+00
1.2000E+00
1.0000E+00
8.0000E-01
6.0000E-01
4.0000E-01
2.0000E-01
0.0000E+00

Dynamic parameters

(d)

Figure 8: Displacement vector diagram of slip damage. (a) Step 200. (b) Step 400. (c) Step 600. (d) Step 800.
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Figure 9: *e monitoring curves of structural strength. (a) Near-horizontal joint. (b) Near-vertical joint.
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Figure 10: Continued.
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direction, and the block was pushed by the trailing edge
block; thus, its slip rate was the fastest. No. 3 block was in the
trailing edge of the sliding zone, and its sliding direction was
restricted by the front block; thus, its slip rate was the
slowest. As for No. 1 block and No. 4 block, because of the
influence of the surface and the velocity of the bottom block,
the sliding speed of these blocks remained basically the same.

Taking No. 2 block as an example, we compared the slip
rate under two slide models as shown in Figure 10(c). After
we introduced the B-B formula, the curve pattern of the slip
rate did not change, and both curves could be fitted to
quadratic polynomials. In terms of slip rate, however, the
joint shear strength with the uncorrectedM-C slipmodel did
not change in the process of sliding. *erefore, its slide
process was ideal and its calculations were more conser-
vative than in reality. *is trend was consistent with the
block slip phenomenon observed from the displacement
vector diagram of slip damage.

6. Discussion and Conclusion

By introducing the B-B empirical formula to the M-C slip
model, we corrected the M-C parameters. *e modified
model could reflect the real-time shear strength in a
changing stress state. It should be noted that this method
focuses on the peak strength of shear failure and does not
consider the residual strength. Using the numerical calcu-
lation of the shear test of the structural plane, we found that
the corrected slip curve fits well with the process before the
failure of the shear test and that it could be applied to the test
situation.

According to the rigid sliding failure analysis of the joint
slope, the slope had been in an overall slip state with the
unmodifiedM-Cmodel, and the internal block displacement
and the rate of the sliding area remained basically consistent.

After we modified this model by introducing the B-B em-
pirical formula, we could transform the stress state differ-
ence caused by the structural plane and the thickness of the
overburdened rock layer into the nonlinear change of shear
strength for each structural plane. In the sliding process
using the modified M-C model, we noted the tendency for
disintegration to occur between blocks, which was close to
the reality.

Whether or not we had modified theM-Cmodel was not
essential to the curve form of the individual block slip rate,
but the slip process was ideal, and the calculation results
were overly conservative because the shear strength of the
unmodified M-C slip model was constant during the process
of slippage.

In practice, with an increase in the number of structural
plane and the complexity of the relative location of blocks,
the interaction force between blocks and the sliding failure
mode of the joint slope would be more complex. *erefore,
the M-C slip model would not be able to accurately reflect
the sliding failure mechanism of the joint slope. Changing
the nonlinear parameters with the stress state of the
structure plane could effectively solve this problem.
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