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�is paper analyzed the model of swinging oscillation of a solid circular sector arising in hydrodynamical machines, electrical
engineering, heat transfer applications, and civil engineering. Nonlinear di�erential equations govern the mathematical model for
frequency oscillation of the system. Furthermore, a computational strength of Cascade neural networks (CNNs) is utilized with
backpropagated Levenberg–Marquardt (BLM) algorithm to study the oscillations in angular displacement (θ), velocity (θ′), and
acceleration (θ″). A data set for the supervised learning of the CNN-BLM algorithm for di�erent angles (α) and radius (R) are
generated by Runge–Kutta (RK-4) method. �e BLM algorithm further interprets the dataset with log-sigmoid as an activation
function for the solutions’ validation, testing, and training. �e results obtained by the design scheme are compared with
Akbari–Ganji’s (AG) method. �e rapid convergence and quality of the solutions are validated through performance indicators
such as mean absolute deviations (MAD), root means square error, and error in Nash–Sutcli�e e�ciency (ENSE). �e statistics
demonstrate the design scheme’s applicability and e�ciency to highly singular nonlinear problems.

1. Introduction

Nonlinear oscillation and its behavior is an important topic
in applied physics, mathematics, and mechanical engi-
neering that has piqued the interest of many scientists from
the dawn of human recognition of the equations of motion
[1]. In vibrations theory, an extremely unique and important
place is held by oscillatory systems that contain fundamental
nonlinearities. On the other hand, it is of the utmost sig-
ni�cance to comprehend their behavior, not only from an
academic standpoint but also in view of the countless po-
tential applications [2–4]. �e systems of complex nonlinear
and chaotic responses are characterized by a unique equi-
librium position, a strong nonlinearity described by a
monotone increasing mooring restoring force, and a �uid

structure [5–7]. �e dynamical systems, including spherical
pendulum, harmonic oscillator model of aromaticity, spring
systems, symmetric, and biased hardening du�ng oscilla-
tors, produce the nonlinear and modulated responses of
multidegree exhibits the periodic vibration, saturation,
thermal resonance, and waves [8, 9]. Fox and Goulbourne
[10, 11] carried out experiments to study primary and
superharmonic resonances on the nonlinear oscillation of
dielectric elastomers subjected to applied static pressure and
dynamic voltage. A. Alibakhshi [12] investigated the static
and dynamic response of the free and forced vibrations of a
micro/nanobeam made of a hyperelastic material incorpo-
rating strain-sti�ening, size e�ect, and moderate rotation.

�e oscillation of a rigid rod over a circular surface is
considered a classical oscillator whose mathematical model
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was first investigated by Gaylord [13] in 1979. Nonlinearity
is an inherent property of every differential equation that
describes a physical or biological phenomenon. Solving
linear differential equations is quite straightforward and
has been successfully implemented. On the other hand, the
methods for solving nonlinear differential equations
(NDEs) are not as readily available. Generally, NDEs do not
have a precise solution. In general, finding exact and
semianalytical solutions for such problems is challenging
because of the nonlinearity in the elastic and damping
components of the governing equations (14). NDEs have
been the subject of all-embracing studies in various
branches of nonlinear science and engineering. Poincare
and Lyaponuv [15] were credited for being the first to solve
the differential equations governing nonlinear processes.
(eir approaches were based on the existence of a values
(large or small) parameter in the nonlinear equations,
which allows the solution to be expanded as a power series
whose components are generated by the integer powers of
that small parameter. Using the series in the nonlinear
model and equating the coefficients of the small parameters
with like powers results in a system of linear ordinary
differential equations whose solution caused the final result
of the governing equation in closed form. (is basic
concept allowed the research community to solve nu-
merous nonlinear scientific problems with a small or large
parameter. (e procedure was named the perturbation
method. (e method’s only flaw is that it requires the
existence of a small parameter in the equations, even
though we know that the proposed parameter does not exist
in many types of differential equations. A series of ana-
lytical and semiexact techniques that do not require a small
parameter was proposed in the middle of the twentieth
century to overcome the problem. Some well-known
techniques used for the numerical and analytical solution of
nonlinear problems are Adomian decomposition method
(ADM) [16, 17], energy balance method (EBM) [18],
variational iteration method (VIM) [19–21], extended di-
rect algebraic method (EDAM) [22], Adams–Bashforth
method [23], differential transform method [24], Hamil-
tonian approach [25, 26], Backlund method [27] rational
harmonic balance method [28], min-max approach (MMA)
[29, 30], power series technique [31], one-step hybrid block
method [32], amplitude-frequency formulation (AFF)
[33, 34], and modified homotopy perturbation method
(MHPM) [35–37]. Ebrahimi Khah [38] studied the motion
of a rigid rod rocking back over a circular surface using He’s
energy balance method. Galerkin method and modal
analysis technique is utilized by G. Sheng [39, 40] to study
the dynamic stability and nonlinear vibrations of the
stiffened functionally graded (FG) cylindrical shell in a
thermal environment. Reference [41] investigates the vi-
bration analysis of a rigid rod using the Hamiltonian ap-
proach. Abul-Ez [42] employed the hybridization of the
iteration perturbation method and variational iteration
method to study the duffing oscillation of nonlinear os-
cillators. (e above-cited literature shows that all of these
techniques have been effectively applied to study the

solutions and behavior of the nonlinear oscillatory models,
but besides their advantages, it is observed with keen in-
terest that such methods are gradient-based and require
prior information about the problem. Prior information
includes the choice of a small parameter, initial guess,
continuity, and differentiability of the function. To over-
come these drawbacks, gradient-free stochastic computing
techniques based on the approximation ability of artificial
neural networks are designed.

(e researcher’s community has been widely employing
the concepts of artificial neural network-based numerical
computing techniques for exploring and exploiting linear/
nonlinear mathematical systems. Some recent applications
of the black-box stochastic methodologies include the ap-
proximate solutions for a mathematical model of chaotic
base secure communication systems [43], nonlinear prob-
lems arising in heat transfer [44], thermal radiations of
nanofluid [45, 46], nonlinear restoring moment and
damping effects of ships [47], and wire coating dynamics
[48]. (ese reported articles motivate authors to utilize the
computational strength of artificial neural networks (ANNs)
for the numerical treatment and analysis of nonlinear os-
cillation over a circular sector. (e innovative insights of the
presented study are summarized as follows:

(i) A mathematical model for the oscillation of a ho-
mogenous solid circular sector object is analyzed to
study the influence of variations in angles and radius
on angular frequency, velocity, and acceleration.

(ii) A novel application of artificial intelligence-based
cascade neural networks via backpropagated Lev-
enberg–Marquardt algorithm is presented effectively
for the numerical solution of the nonlinear oscillator.

(iii) Approximate solutions for different scenarios of the
nonlinear problem obtained by the design CNN-
BLM algorithm are compared with analytical so-
lutions by Ranga–Kutta method and Akbari–Ganji’s
method.

(iv) (e proposed algorithm is executed multiple times
to test the results’ convergence, accuracy, and ef-
fectiveness. (e performance of CNN-BLM is fur-
ther validated by mean absolute deviations (MAD),
root means square errors, and errors in
Nash–Sutcliffe efficiency (ENSE).
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Figure 1: Geometric interpretation of a homogenous circular
sector object over a solid surface.
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2. Swinging Oscillation of a Solid Circular
Sector Object

In this section, an oscillation of homogenous circular sector
of angle α and radius (R) over a solid surface is considered as
shown in Figure 1. (e circular object is allowed to roll on a
fixed solid surface producing an oscillatory motion (back
and forth) with no sliding effect, it is evident that α will
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Step I: For supervised learning of CNN-BLM
algorithm, RK-4 method is utilized to generate a
reference solution of 1001 points from the interval 0
to 100.

Step II: To calculate the approximate solution, the
targeted data is trained by the Levenberg—Marquardt 
with log-sigmoid function using cascade neural
networks. The validation, testing and training of the
data are shown through multiple graphs that exhibits
the effectiveness of the design algorithm.
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Figure 2: A detailed graphical illustration of the physical problem with its mathematical model, the solution strategy based on the ar-
chitecture of cascade learning, and the optimization framework of the Levenberg–Marquardt algorithm to measure the influence of R and α
on displacement, velocity, and acceleration of the circular sector.

Table 1: Different cases of equation (3) based on variations in
radius and angular displacement of a circular sector with A � π/8
and g � 9.8ms− 2.

Angular displacement
Scenarios Radius Case I Case II Case III
1 15 α � 2π/3 α � π/2 α � π/3
2 10 α � 2π/3 α � π/2 α � π/3
3 05 α � 2π/3 α � π/2 α � π/3
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change, and the system will satisfy the following nonlinear
differential equation [49, 50]:

3
2λ

− 2 cos(θ)􏼒 􏼓θ + sin(θ)θ
. 2

+
λg

R
sin(θ) � 0. (1)

Introducing the dimensionless geometrical parameter

λ �
y

R
�
2 sin(α)

3α
, (2)
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Figure 3: Influence of variations in R and α on an angular displacement of a circular sector.

Table 2: Comparison of approximate solutions obtained by the proposed algorithm for the influence of variations in α with R � 15 on an
angular displacement of a homogenous circular sector.

Case I Case II Case III
t Numerical AGM CNN-BLMA Numerical AGM CNN-BLMA Numerical AGM CNN-BLMA
0 0.39269908 0.39269908 0.392687276 0.39269908 0.39269908 0.392686548 0.39269908 0.39269908 0.392681150
10 0.24512253 0.24501045 0.245122185 0.17012305 0.16964486 0.170122142 0.10875275 0.10762438 0.108752428
20 −0.08993096 0.09371990 −0.089931250 −0.24887845 −0.25944763 −0.248879413 −0.33471506 −0.35104698 −0.334714661
30 −0.35555274 0.36692738 −0.355552929 −0.38187454 −0.38749464 −0.381874167 −0.29201803 −0.27870234 −0.292017486
40 −0.35254525 0.35162485 −0.352544182 −0.08143699 −0.05286683 −0.081436623 0.17597552 0.20864948 0.175975984
50 −0.08307460 0.06065639 −0.083074398 0.31332380 0.33172291 0.313323484 0.38631310 0.37789019 0.386315754
60 0.25054818 0.26978783 0.250548338 0.34991634 0.33408668 0.349915015 0.03769972 −0.00330218 0.037698188
70 0.39263866 0.39135302 0.392621108 −0.01205181 −0.04827707 −0.012052894 −0.36626688 −0.39470691 −0.366268070
80 0.23961867 0.21847002 0.239617147 −0.36004875 −0.38611530 −0.360049029 −0.23945080 −0.18427538 −0.239449924
90 −0.09675804 −0.12620233 −0.096759026 −0.29838583 −0.26304319 −0.298385305 0.23706674 0.29236833 0.237067580
100 −0.35844921 −0.37955984 −0.358447834 0.10482796 0.16555209 0.104818684 0.36732664 0.33439609 0.367367867
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where y � 2R sin(α)/3α is the height of the mass center.
Using (2) in (1) will give

3
2
R
2

−
4 sin(α)

3α
R cos(θ)􏼠 􏼡

d2θ
dt

2 + R
2R sin(α)

3α
sin(θ)􏼠 􏼡

dθ
dt

􏼠 􏼡

2

+
2 sin(α)

3α
g sin(θ) � 0.

(3)

Subjected to the initial conditions

θ(0) � A,
dθ
dt

􏼌􏼌􏼌􏼌􏼌􏼌􏼌t�0
� 0, (4)

where A is vibrational amplitude, θ denotes the angular
displacement, and t is the dimensionless time variable.

3. Design Methodology

3.1. Cascade Neural Networks. An artificial neural network
(ANN) is a collection of interconnected, basic compo-
nents known as neurons with multiple inputs and a single
output, and each neuron represents a mapping. (e
output of a neuron is a function of the sum of its inputs

which is generated with the help of the activation
function. A neural network architecture that only con-
tains the input and output layer is called perceptron [51].
(e sum of weighted signals in perceptron is transmitted
directly to the output layer from the input layer. In neural
network modeling, multilayer perceptron (MLP), also
called feed-forward neural network (FNN) comes with an
additional layer between the input and output layer
known as the hidden layer. In MLP, the signals that enter
the hidden layer are processed by the transfer function to
obtain the desired results. In FNN, the connection be-
tween the input and output layer is indirect while in
perceptron, they possess a direct relation. (e direct
network between input and output layers formulated by
the combination of MLP and perceptron is named as
cascade neural networks (CNNs) [52]. (e basic struc-
ture of CNN is based on two ideas. First, is to build an
architecture of cascade by adding new neurons with their
connection to all inputs and previously hidden neurons
without changing configuration at each layer. (e second
idea is to minimize the residual error by training only the
newly created neurons by fitting their weights. (e
network is updated with new neurons and the perfor-
mance increases.
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Figure 4: Absolute errors in solutions of CNN-BLM algorithm for different cases of scenarios 1, 2, and 3.
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Initially, the cascade neural networks start the process
with m inputs and a single targeted date without hidden
neurons.�e output neuron is connected to each input using
weights such as (w1, w2 . . . , wm) with a standard sigmoid
function. �e Log-sigmoid is one of the best nonlinear
normalized functions, which is di�erentiable and continuous;
therefore, it gives a smooth gradient preventing jumps in the
output values. �e output of the network is presented as

y � f(x;w) �
1

1 + exp −w0 −∑
m
i wixi( )( )

. (5)

�e new neurons formed are added to the network, and
each neuron is connected to hidden neurons. A suitable al-
gorithm trains the neurons for output. �e basic advantage of
CNN is that no structure for the network is prede�ned, it
automatically built its architecture from the training data.
Secondly, the learning process of CNN is fast compared to
other networks because each neuron is trained independently.

3.2. Learning Procedure and Performance Measures. �is
section discusses the working and training procedure of
neurons in CNN architecture. �e learning strategy of the
neurons in CNN is based on two phases. Initially, a network
is presented with inputs of the reference data set of 1001
points generated by the Ranka–Kutta method. Secondly, the
inputs and the weights in CNN are trained by an appropriate
algorithm Levenberg–Marquardt with a log-sigmoid acti-
vation function for the output. �e architecture of CNN
along with the work�ow of the design algorithm is shown in
Figure 2.To examine the accuracy and e�ectiveness of the
results of the CNN-BLM algorithm for oscillations of the
nonlinear circular sector, performance indices are de�ned in
terms of mean square error (MSE) of �tness function of the
model, regression R2, absolute errors (AE), mean absolute
deviations (MAD), root mean square error (RMSE), and
error in Nash–Sutcli�e e�ciency (ENSE). Formulation of
these indices is given as [53]
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Figure 5: Stability analysis in terms of angular velocity and acceleration by CNN-BLM algorithm for di�erent cases of scenarios 1, 2, and 3.
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MSE�
1
k
∑
k

j�1
θj(t)− θ̂j(t)( )

2
,

R2 � 1−
∑kj�1 θ̂j(t) −θj(t)( )

2

∑kj�1 θj(t) − θj(t)( )
2 ,

AE� θj(t)−θj(t)
∣∣∣∣∣

∣∣∣∣∣,

MAD�
1
k
∑
n

m�1
θj(t)−θj(t)
∣∣∣∣∣

∣∣∣∣∣,

NSE� 1−
∑kj�1 θj(t) −θj(t)( )

2

∑kj�1 θj t( )− θ̂j t(( )( )
2, θ̂(x) �

1
k
∑
k

j�1
θj(t),




ENSE � 1−NSE,

(6)

here, n shows the number of grid points, θj, θj and θ̂j are the
reference, approximate, and mean of solution at jth input.
�e desired value of MSE, AE, MAD, RMSE, and ENSE for
perfect �tting is equal to zero while the value of R2 and NSE
should be one.

4. Numerical Experimentation and Discussion

In this section, the arti�cial intelligence-based stochastic
numerical technique is implemented on a nonlinear
mathematical model of oscillations in a circular section
given by equations (3)−(4) to study the angular dis-
placement, velocity, and acceleration. Di�erent cases of
the problem based on variations in R and α are given in
Table 1.

Approximate solutions for angular displacement of solid
circular sector obtained by the designs scheme for di�erent
values of radius and angle are shown in Figure 3. It can be
seen that by reducing the angle with a constant semicircular
radius, the frequency of oscillation increases. Also, reducing
the semicircular radius R causes an increase in the frequency
of the oscillation. It is worthy to note that the frequency of
oscillation determined by the design scheme is higher than
the frequency obtained by Akbari–Ganji’s (AG) method for
di�erent cases of scenario 1 as shown in Table 2. Table 3
compares the proposed algorithm’s approximate solutions
with numerical solutions by the RK-4 method. Results of
CNN-BLM for di�erent scenarios of (3) overlap the ana-
lytical solution with minimum absolute errors, as shown in
Table 4.
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Figure 6: Surface plots for the comparison of angular velocity and acceleration of di�erent cases and scenarios of oscillation in the
homogenous circular sector.
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To study the smoothness of solutions, absolute errors for
1001 points are plotted in Figure 4. For scenario 1, the mean
values of absolute errors lie around 10− 6 to 10− 9 while the

maximum values of absolute errors lie around 10− 4 to 10− 5

at t � 25, 30, 35, 50, 70, 85 and 100. Similarly, the mean
absolute errors for scenario 2 and 3 lies around 10− 5 to 10− 8

Table 5: Statistics of performance function in terms of mean square error for the influence of variations in R and α in equation (3).

R
Case I Case II Case III

Min Mean Std Min Mean Std Min Mean Std
15 3.60E− 12 1.05E− 09 2.15E− 09 1.54E− 11 1.16E− 10 2.57E− 10 1.04E− 10 3.67E− 10 3.05E− 10
10 3.00E− 11 2.03E− 10 2.13E− 10 2.07E− 10 1.09E− 09 1.97E− 09 3.67E− 10 3.32E− 09 7.16E− 09
5 3.52E− 09 1.80E− 08 3.31E− 08 5.26E− 08 2.56E− 07 6.29E− 07 1.17E− 07 5.06E− 07 8.12E− 07

Table 6: Results of the gradient in terms of minimum, the mean, and standard deviation for different cases and scenarios of the problem.

R
Case I Case II Case III

Min Mean Std Min Mean Std Min Mean Std
15 2.77E− 09 2.77E− 09 9.86E− 07 6.52E− 10 3.30E− 08 7.88E− 08 2.86E− 09 5.91E− 08 1.84E− 07
10 4.94E− 09 1.90E− 07 2.99E− 07 4.34E− 09 2.51E− 07 6.01E− 07 3.63E− 09 2.14E− 07 6.84E− 07
5 2.19E− 08 2.95E− 07 4.62E− 07 2.28E− 08 3.10E− 07 4.53E− 07 7.90E− 09 3.52E− 07 5.46E− 07
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Figure 7: Values of performance function in terms of mean square error for different scenarios and cases of equation (3).
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Figure 8: Behavior of values of mean absolute deviations for different scenarios and cases of equation (3).

Table 7: Statistics of root mean square error in our solutions for different cases and scenarios of the homogenous circular sector.

R
Case I Case II Case III

Min Mean Std Min Mean Std Min Mean Std
15 1.01E− 06 4.74E− 05 5.26E− 05 6.24E− 06 5.27E− 05 3.25E− 05 1.55E− 07 1.07E− 06 1.80E− 06
10 1.24E− 07 1.02E− 06 1.52E− 06 4.10E− 07 2.35E− 06 2.69E− 06 5.69E− 07 3.70E− 06 4.45E− 06
5 1.63E− 06 1.17E− 05 9.40E− 06 6.24E− 06 5.27E− 05 3.25E− 05 3.06E− 05 4.33E− 03 3.24E− 03

Table 8: Results of ENSE obtained by the design scheme during 20 independent runs.

R
Case I Case II Case III

Min Mean Std Min Mean Std Min Mean Std
15 7.46E− 11 7.52E− 08 1.41E− 07 6.79E− 09 4.11E− 07 7.57E− 07 3.84E− 12 8.45E− 10 4.52E− 09
10 7.21E− 09 5.60E− 06 5.25E− 05 3.03E− 11 1.86E− 09 8.37E− 09 4.83E− 11 4.42E− 09 1.65E− 08
5 5.18E− 10 3.57E− 08 9.72E− 08 5.18E− 10 3.57E− 08 9.72E− 08 2.00E− 08 1.22E− 04 5.97E− 04
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Figure 9: Regression analysis for each case of scenarios 1, 2, and 3 of a homogenous circular sector.
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and 10− 4 to 10− 7, respectively. Furthermore, to study the
angular displacement and velocity, graphs of θ against θ′ are
shown though Figure 5. Apart from the graphs of the so-
lutions, Figure 5 depicts that the oscillation trends are
somehow harmonic and stable. It can be seen that velocity
reaches its peak when the angle (α) or semicircular (R)

decreases. Surface plots are shown through Figure 6 for
angular velocity and acceleration in the homogenous cir-
cular sector. (e oscillations are all stable because neither
successive increases in the amplitudes are noticed in the
displacement time diagram, nor open curves have been
detected in the phase plane.To study the performance of the
design scheme, the CNN-BLM algorithm is executed for 20
independent runs. Results of performance function in terms
of mean square errors are dictated in Tables 5 and 6 and
plotted through Figure 7. Mean values of MSE lie around
10− 7 to 10− 10. Figure 8 shows the convergence of mean
absolute deviations of the solutions at each step size. It can be
seen that the mean value of MAD for each case lies around
10− 8 to 10− 9. Tables 7 and 8 dictates the statistics of root
mean square error (RMSE) and error in Nash–Sutcliffe
efficiency (ENSE) in terms of minimum, mean and standard
deviations. Additionally, regression plots are shown in
Figure 9. It can be seen that the values of regression for each
case are equal to unity which shows the efficiency, cor-
rectness, and accuracy of the results obtained by the CNN-
BLM algorithm for oscillations in the homogenous circular
sector.

5. Conclusions

In this paper, an artificial intelligent strength of cascade
neural networks with backpropagated Lev-
enberg–Marquardt algorithm is utilized to study the
swinging oscillation of a solid circular sector over a solid
surface. (e governing relation of the system was presented
in the form of the differential equation. (e proposed al-
gorithm is implemented to study the effect of variations in
semicircular radius R and semicircular angle (α) on angular
displacement, velocity, and acceleration of the system. (e
results dictate that by reducing the angle with a constant
semicircular radius, the frequency of oscillation increases, in
these cases, higher velocities are achievable and the phase-
plane ellipse height is greater. In addition, reducing the
semicircular radius R also causes an increase in the fre-
quency of the oscillation. (e approximate solution for
angular displacement obtained by the CNN-BLM algorithm
is compared with analytical solutions and approximate
solutions by Akbari–Ganji’s (AG) method. Absolute errors
demonstrate the effectiveness of the results as the solutions
by the CNN-BLM algorithm overlap the numerical solution
up to 8 and 9 decimal places. Statistics of MAD, RMSE,MSE,
and ENSE lie between 10− 5 to 10− 6, 10− 6 to 10− 7, 10− 9 to
10− 12, and 10− 9 to 10− 11 which reflects the accuracy of
solutions and validates the worth, efficiency, and stability of
the proposed algorithm.

In the future, the authors aim to implement cascade
neural networks to study the solutions of nonlinear frac-
tional differential equations modeling physical problems

such as biochemical reactors, skin cancer, tumor growth,
physiological temperature regulations, drying processes, and
chaotic behaviors in warless communications.
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