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Purpose. Guided tissue reconstruction can be performed to restore the supporting structure of a previously lost tooth, which, in
addition to maintaining beauty, preserves the function of the tooth in the patient. Materials and Methods. In this review, Scopus,
PubMed, andMEDLINE databases were searched using the keywords “biocompatible materials,” “membrane,” “bone regeneration,”
“tissue reconstruction,” and “dental biomaterials.” Overall, 150 articles were reviewed, and �nally, 107 articles published during
2000–2021 were included in the �nal paper. Results. Studies have been conducted on a variety of membranes in both clinical and
experimental settings.�e �rst half of this article explores the di�erent kinds ofmembranes and diverse classes of biomaterials used in
these procedures. Secondly, biomaterials are examined for their therapeutic uses such as growth factors, stem cells, and gene delivery
vehicles. Conclusion. If a tooth has been extracted or if the gums have been infected with periodontal disease, guided bone re-
generation procedures may be used to restore the lost bone. Recent years have seen a variety of approaches to regenerating these
tissues. To prevent nonossifying cells from entering, membranes are heavily employed during guided rebuilding.

1. Introduction

Today, one of the most critical topics in periodontology is
the repair of periodontal lesions and the reconstruction of
lost jawbone through proliferating bone cells. A funda-
mental prerequisite for successful implant treatments is the
adequate volume of hard bone tissue [1]. On the other hand,
for the successful repair of damaged tissue, it is necessary
to prevent the invasion of cells with high-speed migration
to the damaged tissue and guide sedentary cells to the
lesion site.

In recent years, tissue engineering using biocompatible
polymers has introduced new methods for repairing dam-
aged tissues [2]. Guided bone regeneration (GBR) and
guided tissue regeneration (GTR) are the most important
conventional reconstruction methods. �e GBR is used to
regenerate alveolar bone in toothless areas, and GTR is
utilized to repair damaged periodontal tissue [3, 4]. In
general, GTR and GBR are surgical techniques that use a
porous polymer membrane to physically prevent the mi-
gration of undesirable tissues and cells to the lesion site [4].
As a result, a suitable space and substrate are provided for
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repairing damaged tissue by proliferating the cells in
question [5]. &e GBR can maintain and strengthen the
alveolar bulge, regenerate alveolar bone, correct contractions
around the implant or fenestration, and regenerate the bone
around the implant [6]. In contrast, GTR refers to peri-
odontal ligament (PDL) regeneration, bone regeneration,
and cementum around the tooth [7].

Although porous membranes in the GBR technique
seem necessary, repairing and growing damaged bone
require osteogenic cells, as well as osteoconductive and
bone-inducing (osteoinductive) materials [8]. &e ideal
membrane used in guided bone tissue repair should have
unique properties, such as good biocompatibility and
functional stability over the required time. In addition,
the membrane must maintain the space and biome-
chanical stability of the lesion area by filtering out the
disturbing cells and tissues and protecting the newly
formed tissue [9].

Generally, membranes used in GTR and GBR techniques
may fall into the following categories: (1) bioabsorbable
based on natural polymers, including collagen, chitosan, and
gelatin, or synthetic polymers; (2) nonresorbable mem-
branes, including expanded polytetrafluoroethylene, tita-
nium-reinforced e-PTFE, and dense-PTFE [10]; and (3)
metals and inorganic compounds considered as another
group of guided membranes, which will be discussed in
detail.

2. Materials and Methods

Based on the institutional regulations, this research was
granted an exemption regarding approval since it was a
literature review. A comprehensive search of the Scopus,
PubMed, and MEDLINE databases was performed. All
relevant articles published during 2000–2021 were ob-
tained using the keywords “biocompatible materials,”
“membrane,” “bone regeneration,” “tissue reconstruc-
tion,” and “dental biomaterials.” Afterwards, articles were
reviewed by titles and abstracts. &e papers that were less
relevant to the subject of study were excluded. &e
remaining full-text articles were evaluated, and those
unrelated to the subject were removed. &e filtered papers
were further analyzed by the team of authors, and this
review was structured.

3. Bioabsorbable

A significant advantage of this type of membrane is that it
does not have to be removed by secondary surgery, that it
has a better repair and healing ability, that it is biocom-
patible, and that it reduces the risk of inflammation and
infection [11]. However, there are several limitations to these
structures, the most important of which is the low ability to
make a suitable space for new tissue growth and the high
destruction rate. &ese structures are destroyed in the body
much faster than expected and leave the damaged area
before completing the tissue formation process [12, 13]. &e
two kinds of adsorbable membranes consist of natural
polymers and synthetic polymers [14].

3.1. Natural Adsorbable Membranes. &e application of
natural polymers has expanded due to their properties in the
GTR and GBR processes. In other words, inherent bioac-
tivity and the ability to provide active sites for cell attach-
ment are among the most important advantages of natural
polymers over synthetic polymers [15]. However, some
problems related to the intrinsic bioactivity of polymers,
including strong immune responses, complications associ-
ated with the purification of these polymers, and the pos-
sibility of disease transmission, restrict the use of these
polymers [16]. Table 1 summarizes the disadvantages and
advantages of various types of membranes.

3.1.1. Collagen Membranes. Collagen is the hardest filament
in the connective tissue. &is membrane has significant
advantages, such as good tissue integrity, fast vasculariza-
tion, biodegradability without external reactions, weak
immunogenicity, hemostatic property, biocompatibility,
and wound healing capacity [42]. In addition, collagen is a
chemotactic factor for fibroblasts and accelerates cell mi-
gration. Collagen membranes may secondarily increase
tissue thickness as a result of enzymatic degradation and
replacement by surrounding connective tissue [43]. Such
properties have led to collagen-based membranes in GTR
and GBR research. &is type of membrane is degradable and
adsorbable by enzymatic degradation, carried out by col-
lagenases and proteases [44, 45]. Porcine collagen fiber types
I and II are incorporated into Bio-Gide, one of the most
commonly used commercial collagen membranes. Soft tis-
sue invasion and development into a defect may be limited
by the smooth surface of Bio-Gide, which may also act as a
scaffold for the attachment of fibroblasts [46–50].&e rough,
porous side of Bio-Gide functions as a framework for the
migration and proliferation of blood vessels and bone cells
[43, 46].

Disadvantages of collagen membranes have rapid bio-
degradability and reduced membrane capability in main-
taining the space and biomechanical stability of the lesion
area in wet conditions. &e destruction time of these
membranes is about 4–8weeks, which is not enough for the
full regeneration of bone tissue [51, 52]. To improve the
mechanical properties and decrease the rate of deterioration
of collagen membranes, several approaches have been in-
vestigated [42, 53]. &ere are a number of possibilities for
treatment with UV light or chemical therapies with genipin
(Gp) [54, 55].

Moreover, various physical, chemical, and biological
crosslinking methods effectively strengthen the mechanical
characteristics and augment the stability of collagen mem-
branes against biodegradability.&emost common chemical
crosslinking agents are glutaraldehyde, 3-dimethyl-amino-
propyl, carbodiimide, and polypoxy [45, 55]. Crosslinking is
accompanied by pros and cons. Its advantage is improving
the tensile strength of collagen and delaying the breakdown
time [56]. Drawbacks entail limiting the use of membranes
by creating potential toxic effects by the remaining cross-
linking agent or the formation of byproducts during collagen
degradation, which can lead to severe inflammation at the
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implant site [51, 57]. Crosslinking, in addition to reducing
the rate of degradation, greatly diminishes tissue integration
and angiogenesis and also affects the biocompatibility of the
final structure. Increasing the percentage of crosslinker
decreases the adhesion and proliferation of PDL fibroblasts
and osteoblasts [58, 59]. &erefore, the success of the op-
eration by collagen membrane, in addition to the source of
the collagen, depends on the preparation and processing
stages, including decellularization, sterilization, and cross-
linking methods. &e Gp and D-ribose, as two natural safe
and nontoxic compounds, have been proposed to raise the
mechanical strength of collagen and diminish its degrada-
tion rate [51, 60, 61].

3.1.2. Gelatin-Based Membrane. Gelatin is a protein that is
soluble and is made from collagen. Improved cell adhesion,
suitable biocompatibility, reasonable price, and flexibility of
this protein have made it a favorable biomaterial for tissue
engineering, GTR, and GBR [62, 63]. Protein membranes
have poor mechanical properties, and they degrade rapidly.
A method for improving stability and mechanical properties
is crosslinking glutaraldehyde and N-hydroxyl succinamide
using heat treatment [64]. However, crosslinking can reduce
the modulus of elasticity under humid conditions, even
though it improves the tensile properties of gelatin fiber
membranes. Because of this, gelatin can sometimes be used
alone in GTR and GBR [65, 66].

3.1.3. Chitosan-Based Membranes. Studies showed that
chitosan is well adapted to cells in vitro and facilitates bone
regeneration at the site of rat skull lesions [67]. Chitosan
is also a suitable membrane for GTR and GBR because of
its reasonable price, high biocompatibility, good degradation
rate, antibacterial properties, wound healing potential,
and flexibility in humid environments. Chitosanmembranes
deteriorate at different rates depending on their molecular
weight and manufacture method [68]. One of the ways to
boost mechanical strength and reduce the rate of chitosan
degradation is chemical crosslinking. Gp-crosslinked chi-
tosan membranes produce fewer inflammatory reactions
than glutaraldehyde-crosslinked membranes, accelerating
lesion healing [69]. Chitosan-based electrospinning mem-
branes crosslinked with Gp have a much lower degradation
rate than nonlattice membranes. Due to the high cost of Gp
and the toxicity of glutaraldehyde, ionic crosslinking with
sodium tripolyphosphate has been proposed as an alternative
for crosslinking [70].

3.2. Synthetic Adsorbable Membranes

3.2.1. PLA and PLGA. &e PLA is among the most im-
portant and common synthetic polymers applied in the GTR
and GBR processes. &is polymer has high mechanical and
biocompatible properties. To control the hydrophilicity of
PLA and its degradation rate, its copolymers are synthesized
based on lactide, caprolactone, and glycolide [71]. Poly-
glycolic acid (PLGA), in orthopedic applications, is an

excellent alternative to PLA. Despite the biodegradability
and nontoxicity of PLA and PLGA-based membranes, there
are limitations to using these membranes. One of these
problems is the possibility of inflammatory reactions and
reactions to an external object in vivo when oligomers and
acidic byproducts are released during degradation [72].
&eir hardness is another problem that limits the medical
applications of these membranes. One effective solution for
the hardness is to add emollients, such as N-methyl-2-
pyrrolidone (NMP). &e NMP softens PLGA membranes,
thereby accelerating bone regeneration and osteoblast
growth [73].

3.2.2. Poly-Caprolactone (PCL). A low-cost polymer is also
biocompatible and possesses excellent mechanical strength.
&erefore, it has received much attention in bone tissue
engineering. &ere are still few studies on PCL-based GTR
membranes. One of the advantages of this polymer over PLA
and PLGA polymers is that PCL degradation does not in-
crease environment acidity [74]. &e complete bio-
absorption of the PCL membrane in the body takes about
3 years, which is long for use in the GBR and GTR methods.
On the other hand, the hydrophobicity of its pure mem-
branes reduces adhesion and cell proliferation. Conse-
quently, it is always combined with other polymers or as a
copolymer for medical applications [75, 76].

3.2.3. Polyethylene Glycol (PEG). &is polymer is remark-
ably biodegradable and biocompatible, making it a suitable
option for use in GTR and GBR membranes [77]. &e main
positive points of this polymer membrane are regulated
biodegradation, manageability, processability, and the
ability to encapsulate the medicine [75, 78]. In contrast, poor
instability and high degradation rates produce a robust
inflammatory response that affects the outcome of bone
regeneration and leads to regenerated bone resorption
[79, 80].

4. Nonresorbable

&e first used membranes were nonresorbable and able to
keep the bone lesion separate from other tissue cells for a
long time. In these membranes, reoperation is often required
to remove the membrane. &e repair will not occur spon-
taneously if these membranes are exposed. In addition, there
is a possibility of bacterial contamination of the exposed
membrane resulting in infection [81].

4.1. ExpandedPolytetrafluoroethylene (e-PTFE). &e e-PTFE
membranes are the first synthetic polymer used for GBR
with cavities of 0.02–20 μm and are an excellent candidate to
cover the defect opening around the implant and repair or
maintain the bone around the implant in the area [82–85].
Due to its high chemical stability, this membrane is bio-
logically considered the most stable polymer, which resists
degradation caused by host tissues and does not lead to
immunological reactions [80]. &ey also prevent bone and
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other connective tissue cells from migrating to the lesion
[86]. As a result, bone marrow cells, which migrate less
rapidly, are more likely to be present at the lesion site.
Despite the expansion of tetrafluoroethylene membranes,
osteogenesis without interfering with other tissues leads to
repairing damaged bone tissue in an average period of three
months. In contrast, osteogenesis occurs incompletely in
control samples without membrane because of connective
tissue interference [87].

4.2.DensePolytetrafluoroethylene (D-PTFE). &e porosity of
the e-PTFE membrane can allow germs to migrate. &is
problem was addressed through the creation of d-PTFE
membranes with pores smaller than 0.3m. Clinical studies
have found that d-PTFE does not generate bacterial colonies
as rapidly as e-PTFE [88, 89]. &e d-PTFE membranes used
in the mouth cavity may prevent bacteria from passing
through, but they do allow oxygen to enter and tiny mol-
ecules to pass through. On the other hand, e-PTFE mem-
branes have larger holes and can interact more strongly with

soft tissue. &is results in membrane separation being sig-
nificantly more challenging and requiring deeper incisions
following hard tissue regeneration. As there is no devel-
opment or attachment to soft tissues, d-PTFE membrane
separation is straightforward [90].

4.3. Titanium-Reinforced Expanded Polytetrafluoroethylene
(TR-ePTFE). Flexible titanium mesh-reinforced polytetra-
fluoroethylenemembranes allow themembrane to be ductile
to fit the shape and size of the defect in the desired area and
provide adequate structural stability in bone defects around
the implant [91]. Figure 1 demonstrates an implant surgical
procedure using a titanium-reinforced d-PTFE membrane
[92]. Clinical and experimental studies on nonabsorbable
membranes have shown good therapeutic results in GTR
and GBR applications. However, one of the most important
disadvantages of these membranes is the need for secondary
surgery to remove them after bone growth. In addition to
raising the cost to patients, this sometimes leads to the loss of
a part of the regenerated tissue. Stiffness and rigidity are

Figure 1: Bone augmentation with a titanium-reinforced d-PTFE membrane. (a) Primary CBCT scan, parasagittal section showing the
horizontal and vertical bone defect. (b) Primary CBCT scan, frontal section showing the horizontal and vertical bone defect. (c) Clinical
photograph of the edentulous mandible. (d) Flap preparation with the split-thickness method. (e) Bovine-derived xenograft (Geistlich Bio-
Oss) and particulate autogenous bone graft. (f ) Adaptation of nonresorbable titanium-reinforced d-PTFE membrane (Osteogenics
Cytoplast) over the graft. (g) Fixing the membrane with titanium pins. (h) Suturing. (i) Closure of the mucosal layer with horizontal mattress
and noninterrupted sutures. (j) Healing two weeks post-op. (k) Postoperative CBCT scan after nine months: parasagittal section.
(l) Postoperative CBCTscan after nine months: frontal section. (m) Reentry for removing the membrane. (n) Good quantity of bone tissue
for implant placement. (o) Guided implant surgery (Straumann bone level). (p) Final positioning of implants through a prosthetically driven
technique [92].
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other weaknesses of nonabsorbable membranes that screws
are used in most cases to make them more stable [56].

4.4. Metals. A frequent medical material used in maxillo-
facial surgery and orthopedics, titanium, is highly bio-
compatible, strong, corrosion-resistant, dense, and light
[93]. In addition to bone grafts, titanium mesh has been
shown to improve the localized deficiency of the alveolar
ridge prior to or after implant placement [94, 95]. Studies
have shown that titanium causes less lasting inflammation
compared with PTFE [96]. When considering chronic in-
flammation connected to titanium micro/nanoparticles,
there is a well-established mechanism by which metal
nanoparticles cause inflammation via their immunomodu-
latory properties, which mostly act at the macrophage level
[97, 98]. A number of factors increase with increasing ox-
idative stress, including DNA damage, protein carbonyla-
tion, lipid peroxidation, and superoxide dismutase activity,
while catalase and total glutathione are all declining. In
addition, they result in macrophage activation that is ab-
errant, which is associated with an increase in inflammation
and a decrease in innate immunity [99, 100]. Ti nano-
particles were investigated in vitro to determine their effects
on MSC physiology, ROS generation, and phenotyping of
osteogenic and adipogenic cells. Activating PKC beta, which
is implicated in MSC commitment to adipocyte lineage, also
causes ROS production, and metal particles are not de-
gradable, so ROS production causes abnormal neutrophil
recruitment. &e bone regeneration function of VEGF is
reduced by a genetic abnormality. &is imbalance affects the
osteogenic commitment [101]. Another used metal is cobalt-
chromium (CoCr), which has suitable mechanical proper-
ties, but less biocompatibility than titanium. One study
found that placing a CoCr membrane on the tibial defect of a
rabbit created enough space for bone regeneration [102].

5. Inorganic Components

Calcium sulfate (CaS) is a substance used to form significant
GBR membranes because it is osteoconductive, biocom-
patible, and bioresorbable [103, 104]. It is possible to make
solid substances with relatively stable and less absorbable
crystals by hydrating CaS hemihydrate powder [105, 106]. It
is a calcium phosphate of the hydroxyapatite type. HA is
frequently used in bone applications due to its resemblance
to bone minerals and biocompatibility. &e biocompatibility
and osteoconductivity of HA make it a common material
used in bone treatments. Membranes with strong me-
chanical properties can withstand soft tissue static pressure
while allowing bone to regenerate more readily [107]. When
combined with nonabsorbable and absorbable membranes,
membranes that are mixed with HA have been shown to
enhance osteoblast-like cell activity in vitro [108–113].

6. Biomaterial-Based Delivery

6.1.GrowthFactorDelivery. Signal molecules such as growth
factors control how cells grow and develop. Several cell
functions are affected by growth factors, including

proliferation, migration, and extracellular matrix (ECM)
formation. Some of them play a role in cell differentiation
[114]. Growth factors include VEGFs, FGFs, PTHs, PDGFs,
and IGFs. When cells begin to repair themselves, PDGF is
released, which is chemotactic and mitogenic. Angiogenesis
is induced by FGF, and cells such as fibroblasts, periodontal
ligaments, osteoblasts, and endothelium are proliferated and
differentiated by this growth factor [115]. Similarly, FGF
signaling contributes to the development of the cranial
skeleton [116]. Figure 2 illustrates a method developed to
deliver growth factors to scaffolds [117]. &e combined use
of PDGF and grafts results in bone regeneration of up to
5mm, whereas grafts alone result in bone regeneration of
about 1-2mm. &erefore, it is expected that growth factors
will enhance the results of grafting materials [114]. To
maintain skeletal health and growth, IGFs are necessary
[118]. &e mesenchyme also plays a role in vascularization,
proliferation, and bone formation in the skull and maxilla
[119]. Periodontal lesions are treated with plasma-rich
plasma (PRP) derived from one’s own centrifuged blood.
&is can be used alone or with grafting materials. Although
there is insufficient evidence to suggest a relation between
PRP and maxillary sinus floor elevation, it appears to have
benefits in treating periodontal lesions [120, 121]. &e
PDGFs are known to contribute to bone repair, wound
healing, and regeneration following trauma or infection by
stimulating osteoblastic progenitor cells to multiply [122].
&ere is histological evidence that the enamel matrix de-
rivative (EMD), Emdogain, can regenerate periodontal le-
sions due to its high amelogenin content and small amounts
of enamel and other proteins. Additionally, angular peri-
odontal lesions can be treated with it [123, 124]. In addition,
EMD contains growth factors that stimulate the production
of growth factors, such as bone morphogenetic proteins
(BMPs), and enhance angiogenesis. In addition, EMD
contains growth factors that encourage angiogenesis and
enhance bone morphogenetic proteins (BMPs). In several
studies, the combination of demineralized freeze-dried bone
allograft (DFDBA) with EMD has been studied and found to
be successful in regenerating periodontal lesions [125, 126].

Bonematrix proteins, or BMPs, play an important role in
bone development at all stages. In addition to their con-
tribution to the formation of the neural crest, rhBMP-7 and
rhBMP-2 are also involved in the development of the teeth,
lips, palates, and facial primordia, as well as creating soft and
hard calluses [116, 127]. In the process of creating it, or-
thopedics, periodontics, and dentistry were considered. By
interacting with the ECM, growth factors are stabilized and
maintained in vivo. To achieve steady and local release of one
or several GFs, selecting the right biomaterial delivery
method is crucial [128]. To capture GFs physically or
chemically, sponges, micro/nanoparticles, nanofiber mem-
branes, and hydrogels are being used as delivery vehicles
[129]. In addition to maintaining release kinetics, the GFs in
the biomaterial provide a porous scaffold that facilitates
internal bone growth [118, 130]. &e following examples
demonstrate two effective strategies. According to Jung,
recombinant BMP-2 has the potential to enhance and ex-
pedite gingival resorption in humans, as well as for a wide
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range of bone defects. &ese include (1) rhBMP-2 injected
into absorbable collagen for sinus lift and local augmenta-
tion of alveolar ridges, (2) OP-1 putty and rhBMP-7 for
nonbonded fractures, and (3) TCP injected with rhPDGF for
periodontal tissue [131]. Another study revealed that human
periodontal ligament cells developed early osteoblasts when
recombinant BMP-7 was added [132]. In bone development,
bone production, and homeostasis, BMPs function in tan-
dem with transforming growth factor-beta (TGF-beta) by
activating signaling pathways [133].

6.2. Stem Cell Delivery Vehicles. Biomaterials can also be
used for the delivery of stem cells. Embedded cells can be
connected and developed using biomaterials rather than
native ECM, avoiding ankylosis. In many cases, biomaterials
can be altered to activate the cellular processes required for
tissue regeneration and to prevent a host immune response
[134, 135]. Hydrogels allow stem cells to be delivered
minimally invasively to the face and jaw to repair deformities
and disorders of the skull. Adipose tissue, dental pulp
placenta, bone marrow, and limbus adult progenitor and
stem cells were utilized in clinical studies [136]. Only a few
commercially accessible materials based on mesenchymal
stem cells are available for clinical uses such as DBM, Trinity
Evolution Matrix™, Map3™, Osteocel Plus®, and AlloStem®[137]. A report by Soe and others indicated that mesen-
chymal stem cells existed in the periodontal ligament [138].
Overall, stem cell administration via biomaterials appears to
help regenerate and restructure the oral cavity. Nevertheless,
further research is required to evaluate the safety of the
medication and its effectiveness in the long run [139].

6.3. Gene Delivery. &e short half-lives of many growth
factors used in tissue engineering restrict their availability at
the right time and in the right amount. Recently, genes have

been used to stimulate cells to create growth factors. Bio-
materials have been preferred over other virus vector sys-
tems for their safety and ease of modification and
mutagenesis [118]. A study by Giannobile et al. successfully
transferred BMP-7 and PDGF genes to fibroblast, cemen-
toblasts, and other periodontal cells [140]. Transplantation
of cells expressing these genes into periodontal wounds
stimulated bone and cement regeneration in rats [141].
Using this technology, periodontal repair simulations can be
simulated, although additional studies on the efficiency and
safety of the method are necessary [142].

6.4. Scaffold and Cell-Free Technologies. To diagnose prog-
nostic human illness, scientists continually develop new
models for diseases, detect early indicators, and experiment
with new treatments. Humans are capable of curing a variety
of illnesses through multipotent stem cells. Cells of the
mesenchymal stem cell line may differentiate into a variety
of cell types and function as paracrine glands that secrete
endogenous chemicals that affect the immune response and
aid tissue repair [143]. It is difficult to safely use MSC
banking for rapid regenerative applications due to the
unique challenges specific to each MSC type, including
technical, legal, and ethical issues. EVs are a group of small
vesicles that are released from a different cell types and
heterogeneous cultures by budding from the plasma
membrane. &ere are many different vesicles that are seen in
EVs, such as exosomes, shed vesicles, nanoparticles, and
apoptotic bodies [144]. &e terms ectosome, microparticle,
and nanoparticle refer to single vesicles released directly
from the plasma membrane. &e origin of exosomes has
been implicated in numerous studies; however, reliable
information regarding EV origins is often lacking. Nano- or
microvesicles are classified according to their size. &e
secretome of a cell includes extracellular vesicles. &e major
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Figure 2: Current methods for fabrication of growth factor-loaded scaffolds [117].
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components of exosomes are nucleic acids, proteins, cyto-
kines, enzymes, and misfolded proteins [143]. In light of
their many features to be utilized for diagnosing, prog-
nosticating, and therapeutic purposes, EVs are regarded as
new and clever theranostic instruments [144]. Studies have
examined how MSC-derived exosomes can be used in the
regeneration of kidney, liver, hearts, and neurological
damage in a variety of model illnesses and conditions.
Scientists have recently focused on ESC-MSCs. Several
methods were employed for examining the components in
the conditioned medium, including multidimensional
protein identification technologies, gene microarrays, and
cytokine antibody arrays [144]. Based on computational
analysis of the acquired data, computational analysis of the
gene products involved in immune response and tissue
differentiation was predicted [145]. According to Zhang
et al., exosomes produced from human embryonicMSCs can
be used to heal cartilage and subchondral bones and can
therefore be considered a “cell-free” therapeutic method for
osteochondral disorders [146].

6.5.Other Potential Biomaterials. &ese days, smart material
research focuses on allotropic materials that have unique
properties including medicinal applications that make them
valuable components. Smart two-dimensional materials are
being studied mainly due to their unique allotropic prop-
erties, which have shown potential in a number of appli-
cations. Two-dimensional materials that are nanometer
scalable can be used to enhance the interaction between cells
and human tissue. Biocompatible and bioactive interfaces
are needed between cells and biomaterials. Recent studies
have demonstrated the effectiveness of MoS2, WSe2, and
h-BN as biomedical device fabrication materials [147]. It has
been consistently found that two-dimensional materials
exhibit distinct physical, chemical, electrical, and optical
properties. &e antimicrobial and physical properties of
graphene have been widely reported in recent years, but the
material also has certain limitations. In the coming years,
black phosphorene (BP) could replace graphene as a po-
tential material for biomedical applications due to its ma-
terial structure and biological properties. In the same way as
other 2D materials, BP may be used to make colorimetric
and fluorescence detectors and biosensors. Furthermore, BP
produces nontoxic byproducts in the body after in vivo
biodegradation. &e property of this material could be
beneficial for pharmaceuticals, prosthetic coatings, and
scaffolds. Because BP is a low cytotoxic agent, there are no
local effects [147].

Inzana and others focused their 2014 research on cre-
ating calcium phosphate scaffolds using low-temperature 3D
printing. Biolinking these scaffolds to bone tissue chemicals
is possible because these scaffolds showed good cyto-
compatibility and osteoconductive properties [148]. &ere is
already BP in bone, but in tiny amounts, comprising 1%
(slightly more than 660 grams) of the total body weight
[149]. A biolinkage may use this characteristic to combine
with chemicals that enhance osteoconduction [148].&e role
of calcium and phosphate in bone healing is well known in

tissue engineering. &e researchers focused on bioglass-
based scaffolds made from BP nanosheets. A variety of
scaffolds can be created using bio-printing. A 3D printing
technique that uses biomaterials that have been doped or
coated with BP might be a viable way of improving oste-
osarcoma therapy [150]. Wang et al. created experimental
scaffolds that mimickedmedullary bone by creating reticular
damage to promote and enhance cellular attachment and
colonization. Nanosheets of BP (200–400 nm) were applied
to the scaffolds to bind them safely and effectively. Based on
results from in vitro testing, the coated scaffolds were very
capable of promoting bone formation due to increased cell
proliferation on their surfaces, which may have been
explained by their unique shape. &e BP-BG scaffolds have
been demonstrated to be more effective at treating post-
oncological bone abnormalities in a mouse model of oste-
osarcoma [150]. &e BP coating was also applied to
hydrogels. In particular, gels were created by photo-retic-
ulation of gelatin containing methacrylamide with ultravi-
olet light (GelMA). GelMA and BP were coated with
arginine and poly(ester amide). A functionalized hydrogel
facilitated bone development. &e hydrogel’s compression
modulus and biodegradability time were measured in vitro,
where BP submerged in mimicked physiological fluids
produced a positive response. In addition, BP-based
hydrogels promoted the proliferation of human dental pulp
stem cells (hDPSCs) when differentiation into osteoblasts
occurred. Based on the results of this study, BP-coated
hydrogels may be suitable for use in dentistry if they provide
the optimal environment for hDPSCs [151]. &en, 2D boron
sheets have been grown on Ag substrates to produce two-
dimensional triangular structures known as borophene
(BO). As with graphene, boreophene regularly exhibits
anisotropic properties. Because of its simple 3D structure,
borons are classified as metalloids because neither metals
nor nonmetals can be formed from their structure. Several
semiconductors are fabricated using this material. &e metal
properties of boron are more apparent when it is arranged in
a two-dimensional structure. &is is comparable to allo-
tropes such as graphene [152]. A borophene ridge’s form and
size are determined by how strongly boron atoms bond
together. Because of this, the surfaces of graphene and
borophene are significantly different. Borophene is a poly-
morphous and anisotropic compound due to its structural
feature [153]. &e properties of borophene make it a fas-
cinating material for biomedical applications. &is material
is known as the “chameleon” of biomedical materials be-
cause it exhibits a variety of chemistry and physical prop-
erties that are suitable for both medical devices and
customized biomedicine, exhibiting a variety of behavior
and existence in many phases.

7. Conclusion

To place a suitable implant, doctors have examined the tissue
and bone repair to put a crown/root ratio that is ideal, as well
as long-term stability of soft tissue. &e epithelium is sep-
arated from the damaged tissue with the help of different
kinds of degradable septic membranes in GTR and GBR
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treatments. Because e-PTFE membranes are indestructible,
additional surgery is required to remove them.&ey have the
greatest flaw of all. Despite their biodegradability and cell
adhesion, natural polymer-based membranes have poor
mechanical strength and short degradation cycles. Synthetic
polymer-based membranes can be controlled for their
biodegradability and mechanical strength. &ey, however,
have a lower biological activity than natural polymers.
Additionally, their decomposition products might trigger
inflammatory responses outside the body. Despite some
drawbacks, the importance and irreplaceability of biode-
gradable polymers cannot be overstated in GTR and GBR
procedures, while periodontal biomaterials have become
increasingly popular over the past several decades, owing to
their many benefits ranging from testing membranes to
everyday use. Biomaterials will be determined by factors
found in genes and stem cells that control cell growth.
Furthermore, membrane ossification activity needs to be
studied to maintain a balance between their mechanical and
biological features.
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[10] M. Toledano Pérez, Á. Carrasco-Carmona, A. L. Medina-
Castillo, M. Toledano-Osorio, and R. Osorio, “Protein ad-
sorption and bioactivity of functionalized electrospun
membranes for bone regeneration,” Journal of Dentistry,
vol. 102, p. 103473, 2020.

[11] I. Sanz-Sánchez, A. Carrillo de Albornoz, E. Figuero,
F. Schwarz, R. Jung, and M. Sanz, “Effects of lateral bone
augmentation procedures on peri-implant health or disease:

Advances in Materials Science and Engineering 9



a systematic review and meta-analysis,” Clinical Oral Im-
plants Research, vol. 29, pp. 18–31, 2018.

[12] M. Chiapasco and M. Zaniboni, “Clinical outcomes of GBR
procedures to correct peri-implant dehiscences and fenes-
trations: a systematic review,” Clinical Oral Implants Re-
search, vol. 20, pp. 113–123, 2009.

[13] A. V. Imbronito, J. H. Todescan, C. V. Carvalho, and
V. E. Arana-Chavez, “Healing of alveolar bone in resorbable
and non-resorbable membrane-protected defects. A histo-
logic pilot study in dogs,” Biomaterials, vol. 23, no. 20,
pp. 4079–4086, 2002.

[14] F. Donnaloja, E. Jacchetti, M. Soncini, and M. T. Raimondi,
“Natural and synthetic polymers for bone scaffolds opti-
mization,” Polymers, vol. 12, no. 4, p. 905, 2020.

[15] N. Iqbal, A. S. Khan, A. Asif, M. Yar, J. W. Haycock, and
I. U. Rehman, “Recent concepts in biodegradable polymers
for tissue engineering paradigms: a critical review,” Inter-
national Materials Reviews, vol. 64, no. 2, pp. 91–126, 2019.

[16] L. S. Nair and C. T. Laurencin, “Biodegradable polymers as
biomaterials,” Progress in Polymer Science, vol. 32, no. 8-9,
pp. 762–798, 2007.
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