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Hard turning has become an attractive method of machining for most manufacturers in the last few years due to its low cost and
superior surface quality compared to grinding. In this experimental study, the machinability of hardened steel under dry
machining on a CNC lathe is undertaken to optimize the cutting parameters for minimum surface roughness and energy
consumption with the cutting speed (320, 450, and 575), tool type (coated and uncoated), and feed rate (0.1, 0.18, and 0.26) as the
input parameters.�e Taguchi method, based on the L18 orthogonal array, the variance analysis, the signal-to-noise ratios, and the
response surface methodology have been used to optimize surface roughness (Ra) and cutting power (Cp). Optimum cutting
parameters and levels were determined, and the relationship between cutting parameters and output variables was analyzed with
the aid of two-dimensional and three-dimensional graphics. �e results show that the most e�ective parameter on the surface
roughness was the tool type (78%), while the most e�ective parameter on energy consumption was the cutting speed (90%). �e
combination of low feed rate and high cutting speed is necessary for minimizing the surface roughness. Besides, the impact of two-
factor interactions of the feed rate-cutting speed and depth of cut-cutting speed appears to be substantial. �e linear regression
models were validated using con�rmation tests. Finally, regression coe�cients were determined as a mathematical model, and it
was observed that this estimated model yielded results that were very similar to those achieved via real experiment (correlation
values: 97.64% for surface roughness and 98.72% for energy consumption).

1. Introduction

In the modern times, steels are the highest used material for
the manufacturing of mechanical parts around the world
due to their excellent mechanical properties [1].
Manufacturing industries are currently faced with multiple
challenges like CO2 emissions, productivity, quality surface
�nish, wear resistance, energy utilization among others as
they strive to produce critical mechanical components and
products using hardened steel. Hard turning which has been
an important research topic in both the industry and aca-
demia is the phenomenon of machining at extremely high
cutting speeds. It is an exceedingly di�cult and delicate
procedure since a better surface quality is achieved minus a
grinding operation [2]. Hard machining o�ers a range of
bene�ts including greater process �exibility [3], reduced
number of steps and a shorter processing time [4], and

reduction of production costs and saving of resources [5].
Issues like elevated cutting temperature, increased cutting
force, material softening, poor surface quality, premature
tool failure, and accelerated tool wear hinder e�ective de-
ployment of the material which thus needs to be checked.
Due to these factors, the energy consumed for hardened steel
machining is more signi�cant than that required to cut
normalized or nonhardened materials. Hence, there is the
necessity to craft ways and methods that will ensure energy
e�ciency and surface quality during the machining of the
hardened steels.

As reported by [6], energy savings in machining can be
classi�ed into two: machine improvements and parameter
optimization. Advanced energy-saving devices have been
conjured with a promise of making some energy-e�cient
improvements. �ese devices come at a very high cost, in
both acquisitions and installation. �ere is a second
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approach to ensuring energy efficiency using optimized
parameters, which both is inexpensive and requires less
effort [7]. Saving time, energy, and scrap can be achieved by
optimizing the input parameters in machining [8]. &is
method can be considered positive and be deployed in the
improvement of energy efficiency in machining.

&ere has been an increased uptake of studies in pa-
rameter optimization to ensure energy efficiency without
compromising productivity. &is optimization has been
applied in turning, drilling, and milling [9–14]. While
studying the optimization of process parameters on surface
roughness using Taguchi robust design principles, Deepak
and Rajendra concluded that themost influential parameters
on the surface roughness were the feed rate followed by
cutting speed and depth of cut [15]. An increase in feed rate
and depth of cut is found to increase the surface roughness
too [16]. While machining EN 24 grade steel, [17] used
design of experiments (DoE) and analysis of variance
(ANOVA) to analyze the effects of the parameters on the
surface roughness and concluded that feed rate was the most
influencing factor. In examining the surface roughness of
AISI 1045 using RSA and GA, [18] concluded that surface
roughness decreases with an increase in depth of cut and
spindle speed. While using a multilayer regression analysis
and GRA in milling AISI 1045, [19] determined the opti-
mum cutting conditions as feed per tooth fz � 0.25mm/
tooth, cutting speed vc � 392.6m/min, and machined length
l� 5mm and feed per tooth fz � 0.125mm/tooth, cutting
speed vc � 392.6m/min, and machined length l� 5mm for a
fast manufacturing and resource conservation cases, re-
spectively. In a CNC face milling of grade-H steel, [20]
optimized a set of machining parameters to obtain mini-
mum cutting power where artificial neural network (ANN)
with the Edgeworth–Pareto method was used. Employing
multi-objective optimization based on ratio analysis
(MOORA), VIseKriterijumska Optimizacija I Kompro-
misno Resenje (VIKOR), and technique for order of pref-
erence by similarity to ideal solution (TOPSIS) during
AISI304 steel turning with minimum quantity lubrication,
[21] found that the use of hybrid nanofluid (alumina–
graphene) reduces response parameters by approximately
13% in forces, 31% in surface roughness, and 14% in
temperature, as compared to alumina nanofluid. &ey fur-
ther analyzed the response parameters using ANOVA where
they concluded that the depth of cut and feed rate had a
significant impact on the responses.

&e effects of cutting tool materials and geometry on the
energy efficiency of drilling and turning processes were
investigated by [22]. Venkatesan opined that feed rate hugely
affects surface roughness, and he suggested that on top of
optimal process parameters (high speed, depth of cut, and
low feed rate) the point angle was the most predominant
factor in milling [23]. Moreover, [24] recommended po-
tential solutions to reduce energy consumption in drilling
and turning. Using genetic programming to predict tool
flank wear, [25] applied the particle swarm optimization
algorithm in turning operation of hardened AISI D2 where
surface roughness was estimated by neural networks. &ey
concluded that a higher efficiency was achieved by the

intelligent optimization methodology than conventional
techniques with constant optimized cutting parameters. In
turning ASI 52100 hardened steel, Serra et al. used full
factorial, multiple linear regression (MLR) analysis, and
ANOVA to design, develop, and optimize cutting param-
eters where the empirical models obtained were used to
determine the optimal machining parameters based on
weighting factors and genetic algorithm (GA) optimization
method [26]. Mustafa investigated the effect of cutting speed,
feed rate, and depth of cut on surface roughness experi-
mentally in the turning of AISI 409 (ferritic chromium
stainless steel). He used Taguchi L27 orthogonal array and
the signal/noise (S/N) ratios. He concluded that the most
important parameters affecting the surface roughness were
feed rate, depth of cut, and cutting speed, respectively [27].

Altering various parameters, such as cutting speeds, feed
rates, the nose radius, edge radius, rake angle, and relief
angle, have contributed to variations in cutting power and
energy efficiency.&erefore, a practical approach optimizing
cutting parameters in terms of energy efficiency can con-
tribute significantly to energy reduction, and this is,
therefore, an essential area of research. While turning EN
10503 steel, [28] successfully deployed Taguchi combination
method and MOORA techniques to tackle the multi-ob-
jective optimization problem where insert nose radius,
cutting velocity, feed rate, and depth of cut were considered.
&e evaluated parameters were the surface roughness, the
cutting force amplitudes in X, Y, Z directions, and the
material removal rate.&ey determined the optimal values as
1.2mm, 76.82m/min, 0.194mm/rev, and 0.15mm for insert
nose radius, cutting velocity, feed rate, and cutting depth,
respectively. Corresponding to these optimal values of the
input parameters, the surface roughness, cutting force
amplitudes in X, Y, Z directions, and material removal rate
were 0.675 µm, 124.969N, 40.545N, 164.206N, and
38.130mm3/s, respectively.

For consumers, product quality is very essential and one
of the most prominent indicators for quality is the surface
quality which also exerts a massive influence on the service
life and reliability of manufactured objects. Other factors of a
machined part, like fatigue strength, corrosion resistance,
wear behavior, and the overall appearance of the product,
depend on the surface quality [29–31]. A rough surface
usually wears more quickly and has an elevated friction
coefficient than a smoother surface does. &us, decreasing
the roughness of a surface will increase manufacturing costs
[32]. In their experimental investigation of the effects of
cutting speed and feed rate on tool wear, surface roughness,
and cutting forces in turning of AISI 4340 hardened steel
using cBN–TiN-coated carbide inserts and PCBN compact
inserts, More et al. concluded that the wear of the former is
less than that of the later due to the lubricity of a TiN capping
layer on the coating [33]. During the examination of the tool
wear mechanisms and surface integrity in the hard-speed
turning of AISI D2 cold work tool steel, [34] showed that at
high cutting speeds, the stress was minimal, thus concluding
that it is possible to optimize cutting parameters for fa-
vorable residual stress levels. In their study, [35] concluded
that a better surface finish could be achieved using a large
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tool nose radius on finish turning of AISI 52100 bearing
steel. &ey used alumina titanium-carbide tools, which
generated deeper white layers. While studying the influence
of machining parameters and tool nose radius on surface
quality of AA7075/15wt.% SiC (20–40 μm) composites
using tungsten carbide inserts, [36] employed response
surface method (RSM) while considering both a single and
multiple objective optimizations of turning parameters. A
minimum surface roughness was obtained at a nose radius of
1.2mm and 0.4mm, respectively. During the turning of
Ti–6Al-4V (ELI) to examine the impact of cutting speed,
feed, depth of cut, and tool nose radius on surface roughness,
cutting temperature, and cutting force, [37] developed
mathematical models using RSM while assessing each pa-
rameter’s contribution by ANOVA. Using PVD-TiN-coated
(Al2O3–TiCN) mixed ceramic tool inserts in hard turning of
hardened AISI grade die steel D3, [38] carried out modeling
and optimization of parameters to quantify their contri-
butions. Experiments were based on Taguchi’s L18 orthog-
onal array design of experiments.

In a display of the advances made in the machining field
including theoretical and experimental aspects, the corre-
lations between process parameters and surface integrity
were shown and analyzed by [39] for turning, milling, EDM,
and grinding processes. &e authors described the devel-
opment of predictive models for the correlation of the
surface integrity to the functional performance of machined
components to the set parameters of the surface integrity.
While trying to reduce energy consumption and improve the
cutting quality and production rate, Su et al. applied grey
relational analysis and response surface methodology (RSM)
to turn AISI 304 austenitic stainless steel. &ey determined
the optimal turning parameters as (ap � 2.2mm, f� 0.15mm/
rev, and v � 90m/s) which decreased the surface roughness
by 66.90%, material removal rate (MRR) increased 8.82%,
and specific energy consumption (SEC) decreased 81.46%
simultaneously [40]. An endeavor has been made to predict
and optimize surface roughness and the power consumed in
terms of cutting speed, feed rate, and cutting tool type in the
machining of hardened steel.

According to the literature reviewed, the primary dif-
ficulty that most manufacturing companies face, particularly
in the metal-cutting industry, is the requirement to improve
manufacturing quality while lowering production costs. &is
attribute is paramount to the sectors that utilize the steels
since the power consumed during machining provides an
array of knowledge into the material workability. A variety
of factors not limited to the cutting parameters, tool ma-
terial, coating technologies, lubricants, tool geometry, etc.,
do affect both the product quality and the production cost
since the energy consumption during operation is greater
than the energy required to meet the demands of the ma-
chine. Manufacturing organizations have been utilizing the
trial-and-error method for a long time to try to achieve a
balance. &is method consumes a lot of time and resources,
thus defeating the overall goal of attempting in the first place.
In this context, the objective of this study is to correlate
cutting parameters with surface roughness and cutting
power during the machining of hardened steel using the

Taguchi method. ANOVA is used to determine the con-
tribution of each machining parameter to surface roughness
and cutting power. &e development of a second-order
model is adopted to predict the technological parameters (Ra
and Pc). &e final goal of this work is to optimize cutting
conditions using the desirability function.

2. Materials and Methods

2.1. Materials. &is research was carried out at the High-
Speed Machining Laboratory, NUAA, Nanjing, China. &e
machining was carried out using a CNC lathe machine fitted
with a 22-kW spindle power and a maximum spindle speed
of 5000 rpm. Both the axial and radial run-outs were checked
on themachine and were within the acceptable limit of error.
Ten (10) pieces of 300mm length and 50mm diameter from
a single bar (L/D ratio is 6 :1) of hardened and tempered
high carbon steel with a hardness of 69 HRCwere used. Both
the chemical compositions and mechanical properties of the
material are given in Table 1. &is material has been chosen
due to its extensive industrial and engineering applications
like extrusion and die forging, engine mounting, gears, and
bearings. Notable material properties are excellent fatigue
and torsional strength, toughness, high resistance to abra-
sion, and impact [41]. &e experimental setup is shown in
Figure 1.

Two types of carbide tool inserts (PVD-coated and
uncoated) from Sandvik Coromant with a specification of
SNMG120408 with a −6° rake angle, 75° principle cutting
edge angle, −6° inclination angle, and a nose radius of
0.8mm rigidly mounted on a right-hand style tool holder
(MTFNR2525M22C) were selected due to their low cost,
high wear resistance, and impact shock resistance properties.
A new insert was used for each experiment. &e experi-
mental conditions are shown in Table 2. &e machining was
done under dry-cutting conditions.

One of the prime indices for defining the surface quality
is the average arithmetic value of the surface roughness
(Ra). A Mahr Perthometer M1 Concept (Germany) shown
in Figure 2 was used to measure the workpiece’s Ra over a
sampling length of 8mm at a stylus speed of 0.5mm/s with
a cut-off length of 0.8mm. Nine measurements were made
at uniformly distributed surfaces along the circumference
for each machined surface at the end of every machining
cycle, and an average value was reported for an accurate
reading.

A custom-made energy measurement system-dubbed
“smart meter” was used to measure the cutting power
consumed duringmachining.&e energy values presented in
this study only account for the machining duration.

2.2. Experimental Design. It is an uphill task to utilize the
traditional experimental design due to its complexities since
it will require a huge number of experiments to be carried
out, thus soaring the costs and consuming a lot of time. As a
result, the variation causing factors must be determined and
verified under laboratory conditions [42, 43]. &ese studies
are considered under the scope of offline quality
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improvement [44]. &e Taguchi method is used in the in-
dustry to decrease the product development period for the
design and production, which also decreases the costs, thus
increasing the profit of the organization. &e Taguchi
method is applied in the determination of the loss function
which is converted to a signal-to-noise (S/N) ratio. &e S/N
ratio is defined as the desired signal ratio for the undesired
random noise value and shows the quality characteristics of
the experimental data [45]. &e experiments are planned,
and tests run according to L18’s mixed orthogonal array.&e
variables and their levels are shown in Table 3. &e aim is to
achieve minimum values for surface roughness and the
power consumed. &ere are three different functions used
which are known as the objective function and also defined
as S/N ratio: “the-larger-the-better,” “the-smaller-the-bet-
ter,” and “the-nominal-the-best.”

2.2.1. S/N Ratio Analysis. &e S/N ratio is the ratio of the
mean to the standard deviation (M.S.D). It is used to de-
termine the quality characteristic deviating from the desired
value. As described by [46], the S/N ratio is given by

η � −10 log(M.S.D). (1)

For optimal cutting performance, “the-lower-the-better”
quality characteristics for surface roughness and energy
must be considered. &e M.S.D. for a “the-lower-the-better”
quality characteristic of surface roughness and energy effi-
ciency can be given by the following equations, as discussed
by [46], respectively.

M.S.Dsr �
1
j

􏽘

j

i�1
S
2
i , (2)

M.S.Dee �
1
j

􏽘

j

i�1
E
2
i , (3)

where j is the number of experiments, and Si and Ei are the
observed data values for surface roughness and consumed
power, respectively, for the ith test.&e estimated S/N ratio
(ή) at the optimal level of the design parameters can be
calculated by equation (4), as discussed by [46], and is used
to predict and verify the quality characteristic at the op-
timal level.

ή � ηj + 􏽘

p

i�1
ηi − ηj􏼐 􏼑. (4)

Here, ηj is the total mean S/N ratio, ηi is the mean S/N
ratio at the optimal level, and p is the number of the main
design parameters affecting the quality characteristic.

2.2.2. Analysis of Variance. &e analysis of variance
(ANOVA) is applied to experimental results to determine in
percentage the contribution of each factor and whether a
factor requires control or not. &e ANOVA test establishes
the relative significance of the individual factors and their
interaction effects. &e total sum of the squared deviations
SST was computed by equation (5), as discussed by [46].

SST � 􏽘
k

i�1
ηi − ηj􏼐 􏼑

2
. (5)

3. Results and Discussion

&e experimental data presented herein were analyzed, and
results interpreted via statistical analysis. Signal-to-noise
(S/N) ratios with the analysis of variance (ANOVA)
method were utilized according to the L18 orthogonal
array. Given in Table 4 are the experimental results and S/N
ratios calculated according to Taguchi’s “the-smaller-the-
better” quality characteristics.

3.1. S/N Ratio Analysis. Surface roughness (Ra) and cutting
power (Cp) were measured via the experimental design for
each combination of the control factors. &e optimization of
the measured control factors was provided by signal-to-
noise (S/N) ratios. For quality improvement of the product
and lowering production costs, the lowest values of surface
roughness and cutting power are essential. After machining,
the average values of Ra and Cp were calculated by equations
(2) and (3) to be 1.1 µm and 589 kW, respectively. Similarly,
the average values of the S/N ratio for surface roughness and
cutting power were calculated to be 2.2 dB and 55 dB,
respectively.

&e results of the experimental tests are supported by
graphs depicting the impact of control parameters on Ra
values obtained using the Taguchi method (Figure 3) and
on Cp values (Figure 4). &e values closest to the vertical on
the main effects plot for S/N ratios are the most effective
parameters. &e most effective parameter for surface
roughness was found to be cutting speed. &e S/N re-
sponses for each control factor and their ranks are pre-
sented in Table 5.

Figures 5-6 show 3D surface plots depicting the rela-
tionship between the cutting parameters and the considered
output variables.

From the 3D surface plots in Figure 5, it is evident that
surface roughness value increases with the increase of
cutting speed. &e same phenomenon is evident with an
increase of the feed rate though the magnitude is not very
pronounced as observed by [47]. &erefore, low feed is

Table 1: &e composition and properties of AISI 4340 steel.

Composition Properties
Element Content (%) Physical properties
Fe 95.195–96.33 Properties Metric
Ni 1.65–2.00 Density 7.85 g/cm3

Cr 0.700–0.900 Melting point 1427°C
Mn 0.600–0.800
C 0.370–0.430 Mechanical properties
Mo 0.200–0.300 Tensile strength 745MPa
Si 0.150–0.300 Yield strength 470MPa
S 0.0400 Elastic modulus 190–210Gpa
P 0.0350 Poisson’s ratio 0.27–0.30
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advantageous for good surface quality as long as the speed
is reasonably high. �e increased cutting speed increases
the average surface roughness for the uncoated cutting tool,
while there is a marginal change for the coated tool. �is
behavior tallies with results presented by [48, 49]. �is is
because the rapid deformation of the uncoated tools brings
about an increase in surface roughness due to the material’s
deformation hardening property. Olsson et al. in their
study also noted this behavior [50]. �e cutting tool type
demonstrated a signi�cant change in the overall values of
surface roughness. For the coated tools, there is an im-
proved wear resistance due to a low thermal conductivity
resulting in improved surface quality. Comparatively less
irregular surface while machining with coated tools has
been found than uncoated tools just as determined by [51].
�e poor surface quality is partly attributed to the abrupt
increase in the chip volume due to the increased cutting

speed that translates into high cutting forces as observed by
[52] in their study.

From the 3D plots in Figure 6, it is seen that the cutting
power value increases tremendously with an increase in the
cutting speed. �is increase is not discriminatory since it
depicts the same trend for both the coated and uncoated
cutting inserts. �e feed rate and the tool type have a slight
signi�cance over the cutting power.

Surface roughness and cutting power increase with
cutting speed.�is phenomenon is attributed to the thermal
and mechanical load increase as a result of an increase in the
cutting speed. �is increase raises the temperatures in the
cutting area, thus speeding up the deformation of the
cutting tool. �is phenomenon is rampant in uncoated
cutting tools.

From the plots and contours presented, it was observed
that the feed rate was the most e�ective parameter in the
increase of surface roughness. Since the surface roughness is
a function of feed rate, an increasing feed rate caused a
signi�cant increase in the Ra values. Likewise, an increase in
feed rate increased cutting power.

3.2.Analysis ofVariance (ANOVA). �e analysis of variance
(ANOVA) used was to analyze the e�ects of the cutting
speeds, the cutting tool types, and the feed rates on Ra and
Cp. �e F, P, and DoF values shown in the ANOVA table
(Table 6) are the variance ratio, signi�cant factor, and the
degrees of freedom, respectively. �ese analyses were
performed at a con�dence level of 95% (α� 0.05 signi�-
cance level), thus showing that values with P values less
than 0.05 represent signi�cant results. Marked in bold in
the ANOVA table are the signi�cant P values. �e per-
centage value of each parameter contribution is shown in
the last column of Table 6. �is percentage indicates the
degree of in�uence on the process performance. According
to the ANOVA in Table 6, the most in�uential parameter
was the feed rate for surface roughness. Likewise, the
cutting speed was the most e�ective parameter for cutting
power.

Table 6 shows that the most e�ective parameter for
surface roughness is the cutting with 70.53%, followed by
feed rate (9.828%), while the tool type has a minor con-
tribution of 4.73%. It is clear that the cutting speed is the

Table 2: Summary of experimental conditions.

Machine tool CNC lathe
Work material AISI 4340 steel
Hardness, HRC 69
Dimensions 300× 50mm
Cutting tool Carbide inserts

Workpiece

Ra Measurement area 
Ra Measurement Unit

Figure 2: Surface roughness measurement setup.

Table 3: Input variables and levels.

Symbol Variable Levels 1 2 3
Vc Cutting speed, m/min 3 320 450 575
F Feed rate, mm/rev 3 0.1 0.18 0.26
T Tool type 2 Coated Uncoated —

CNC Lathe machine

Cutting Tool

Workpiece

Figure 1: Experimental setup.
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main parameter theoretically, and this observation is cor-
roborated by [53–56]. As for the cutting power, the most
effective parameters were cutting speed (93.61) and tool type
(3.32%). Feed rate had a negligible effect compared to others.
&is observation was in tandemwith the study carried out by
[57]. &e observed percent error was at 14.91% for Ra and
0.94% for Cp.

3.3. Regression Analysis of Ra and Cp. To model and an-
alyze a relationship between a dependent variable and one
or more independent variables, regression analysis is
utilized. &e surface roughness (Ra) and cutting power
(Cp) are the dependent variables, whereas the cutting tool
type (Ct), cutting speed (Vc), and feed rate (f ) are the
independent variables. Using the outcomes from the ex-
perimental values in MINITAB 18, the mathematical re-
gression RA’s linear and quadratic models, predictive
equations were developed with backward elimination
method for the considered parameters, were obtained, and
are given below.

Ra � −1.718 + 0.279Ct + 0.004958V + 3.07f, (6)

R-sq� 85.09% R-sq (adj)� 78.87%,

Cp � 81.2 − 47.3Ct + 1.1924V + 186f, (7)

R-sq� 97.87% R-sq (adj)� 96.98%
&e obtained R2 values by a linear regression model for

Ra and Cp equations were found to be 85.09% and 97.87%,
respectively.

&e quadratic regression predictive equations for the
surface roughness and cutting power are given below:

Table 4: &e results of experiments and S/N ratio values.

Exp. no.
Control factors

Surface roughness, Ra
(um) S/N ratio for Ra (dB)

Cutting power, Cp
(kW)

S/N ratio for Cp
(dB)Tool

type
Cutting
speed

Feed
rate

1. 1 320 0.1 1.9008 15.8635 400 −52.0412
2. 1 320 0.18 1.2460 1.1698 416 −52.3819
3. 1 320 0.26 1.2484 −0.3072 450 −53.0643
4. 1 450 0.1 1.1564 −1.2215 615 −55.7775
5. 1 450 0.18 0.9371 −1.4229 620 −55.8478
6. 1 450 0.26 1.2001 −2.8353 640 −56.1236
7. 1 575 0.1 0.8501 −4.0770 722 −57.1707
8. 1 575 0.18 0.9792 −5.4739 765 −57.6732
9. 1 575 0.26 1.2236 −8.8245 788 −57.9305
10. 2 320 0.1 0.4162 −2.7976 385 −51.7092
11. 2 320 0.18 0.6624 −1.2742 395 −51.9319
12. 2 320 0.26 1.2525 −0.6443 421 −52.4856
13. 2 450 0.1 0.3642 −1.4008 580 −55.2686
14. 2 450 0.18 1.1123 −2.3785 594 −55.4757
15. 2 450 0.26 1.8492 −2.7661 602 −55.5919
16. 2 575 0.1 0.5494 −5.2822 691 −56.7896
17. 2 575 0.18 0.6016 −8.3361 751 −56.2716
18. 2 575 0.26 2.5646 −8.3361 771 −56.5345
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Figure 3: Effect of process parameters on average S/N ratio for Ra.
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Figure 4: Effect of process parameters on average S/N ratio for Cp.

Table 5: S/N response table for Ra and Cp factor.

Levels
Control factors

Surface roughness (Ra) Cutting power (Cp)
A B C A B C

Level 1 −0.7921 2.0017 0.1807 −55.33 −52.27 −54.79
Level 2 −3.6907 −2.0042 −2.9526 −54.67 −55.68 −54.93
Level 3 −6.7216 −3.9522 −57.06 −55.29
Delta 2.8985 8.7233 4.1330 0.66 4.79 0.50
Rank 3 1 2 2 1 3
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Figure 5: E�ect of the cutting parameters on surface roughness.
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Figure 6: E�ect of the cutting parameters on cutting power.

Table 6: Surface roughness and cutting power ANOVA results.

Variance source Degrees of freedom (DoF) Sum of squares (SS) Mean squares (MS) F ratio P-value Contribution rate (%)
Ra
Tool type 1 0.3511 0.35112 3.81 0.075 4.73
Cutting speed 2 5.2347 2.61737 28.38 ≤0.001 70.53
Feed rate 2 0.7286 0.36430 3.95 0.048 9.82
Error 12 1.1069 0.09224 14.92
Total 17 7.4213 100
Cp
Tool type 1 10082 10082 18.69 ≤0.001 3.32
Cutting speed 2 284648 142324 263.88 ≤0.001 93.61
Feed rate 2 2861 1431 2.65 0.111 0.94
Error 12 6472 539 2.13
Total 17 304064 100
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Raq � − 0.105 + 0.000002V
2

− 3.9f
2

+ 0.000799CtV

− 0.77Ctf + 0.01250Vf.

(8)

R-Sq� 82.56%R-Sq (adj)� 75.30%

Cpq �318.2 + 0.001301V
2

+ 679f
2

− 0.045CtV

− 159Ctf + 0.41Vf.
(9)

R-Sq� 92.93% R-Sq (adj)� 88.99%
&e obtained R2 values by the quadratic regression

model of the equations derived for Ra and Cp were found to
be 82.56% and 92.93%, respectively. Hence, we can observe
that the quadratic regression model obtained more intensive
predicted values when compared to the linear regression
model. As a result, we may conclude that the quadratic
regression model has performed better in approximating
both surface roughness and cutting power.

3.4. Optimum Parameter Estimation. Optimum levels are
determined as the lowest values of the considered output
parameters. When using the Taguchi method, optimization
is verified by confirmation experiments [58]. &e following
equations (equations (10) and (11)) are applied in the es-
timation of the optimum surface roughness and cutting
power. &e optimum input parameter levels and values are
shown in Table 7, and the average optimumoutput values for
each cutting parameter are in bold fonts.

Raopt � A1 − TRa( 􏼁 + B1 − TRa( 􏼁 + C1 − TRa( 􏼁 + TRa, (10)

Cpopt � A2 − Tcp􏼐 􏼑 + B1 − Tcp􏼐 􏼑 + C1 − Tcp􏼐 􏼑 + Tcp, (11)

where (A1B1C1) and (A2B1C1) denote the optimum level
mean values of Ra and Cp, respectively (Table 4), while TRa
and TCp are the mean values of all the Ra and Cp determined
as stated in Table 7.

&e observed optimum levels and values for surface
roughness are tool type (level 1), cutting speed (level 1), and
most importantly feed rate (level 1). From the published
literature, the lowest surface roughness values were obtained
at high cutting speeds [48, 55]. As for the cutting power, the
optimum cutting parameters were determined to be tool
type (level 2), cutting speed (level 1), and feed rate (level 1).

It is paramount to establish if some of the objectives of
the study have been met or not. &erefore, equations (10)
and (11) are used to evaluate if the system achieved its
optimization demands.

CLi �

���������������������

F0.05 1, ]e( 􏼁Ve

1
ηeff

+
1
r

􏼠 􏼡

􏽳

,

ηeff �
N

1 + ]T

,

(12)

where ]e is the error degree of freedom,Ve is the error variance,
ηeff is the repeating number of experiments, r is the number of
confirmation experiments, N is the total number of the ex-
periments, and ]T is the variable’s degree of freedom.

&e response confidence intervals were calculated as
CLRa �±0.024 and CLCp �±0.041. &e estimated average
optimal surface roughness and cutting power with the
confidence interval at 95% confidence are given by solutions
to the following inequalities:

Raopt − ClRa􏽨 􏽩<Raexp < Raopt + ClRa􏽨 􏽩,

Cpopt − ClCp􏽨 􏽩<Cpexp < Cpopt + ClCp􏽨 􏽩.
(13)

Table 7: Mean response table for Ra and Cp factors.

Levels
Control factors

Surface roughness (Ra) Cutting power (Cp)
Tool type Cutting speed Feed rate Tool type Cutting speed Feed rate

Level 1 1.3361 0.9477 1.2172 601.8 411.2 565.5
Level 2 1.6154 1.2633 1.5023 554.4 608.5 573.5
Level 3 2.2163 1.7078 714.7 595.3
Delta 0.2793 1.2687 0.4907 47.3 303.5 29.8
Rank 3 1 2 2 1 3

Table 8: Predicted values and confirmation test results by the Taguchi method and regression equations.

Level
Taguchi Linear regression Quadratic regression

Exp Pred % Error Exp Pred. % Error Exp Pred. % Error
Ra (um)
Optimum 0.56 0.52 7.14 0.56 0.46 17.85 0.56 0.63 12.50
Random 0.72 0.65 9.72 0.72 0.73 1.38 0.72 0.73 1.38
Cp (kW)
Optimum 415.2 408.6 1.59 415.2 386.57 6.89 415.2 473.73 13.91
Random 401.4 418.3 4.21 401.4 448.74 11.79 401.4 454.03 13.2
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&e Raexp andCpexp values that were obtained from the
study were within the confidence interval limits. &us, we
can comfortably conclude that by the use of that Taguchi
method and at a significance level of 5%, parameter opti-
mization was realized.

3.5. Confirmation Tests. In the Taguchi method, confirma-
tory experiments are carried out to verify the optimization
after the determination of the variable levels that will give the
optimal results. Confirmation experiment tests of the con-
trol factors were made for both the Taguchi method and
regression equations at both the optimum and random
levels. &e comparison of the test results and the predicted
values obtained by using the Taguchi method and regression
equations (equations (2)–(5)) is given in Table 8. &e results
from the predictive and the experimental processes are very
close to each other.

For reliable statistical analyses, error values must be less
than 20% [59]. &erefore, the results obtained from the
confirmation tests reflect successful optimization since the
percentage error is within the allowed limits.

4. Conclusion

In this study, hard turning of hardened AISI 4340 steel was
done under a dry machining environment to determine the
optimal variable levels for the minimization of both the
surface roughness and the energy consumed. &e experi-
mental design was based on Taguchi L18 orthogonal array
where the surface roughness and energy consumed were
determined. &e statistical methods of signal-to-noise (S/N)
ratio and the analysis of variance (ANOVA) are used to
determine the relationship between input parameters (tool
type, cutting speed, feed rate) and output variables (surface
roughness, energy consumption) and the effect of the pa-
rameters on surface roughness and energy consumed, re-
spectively. To test the validity of the optimization,
confirmation experiments were undertaken and the fol-
lowing conclusions were drawn:

(i) During machining, the surface roughness increased
for both types of cutting tool used.

(ii) Optimum values for the minimization of the cutting
power and surface roughness were determined.
&ese conditions were observed at (A2B1C1) and
(A1B1C1) for Cp and Ra, respectively, leading to
conclusions that coated tools exhibited much better
performance for both responses and therefore are
recommended for the machining of hardened steel.

(iii) Analysis of variance revealed the influence of input
parameters on the response parameters. &e
ANOVA results determined the most important
parameter effective on Ra and Cp to be the cutting
speed, at 70.53% and 93.61%, respectively.

(iv) Taguchi’s “smaller-the-better” objective function was
adequate to ascertain the influence exerted by the
control factors.&is methodology has revealed that the
tool type (coated or uncoated) has the most significant

influence on Ra at 78%, and the cutting speed is the
parameter with the enormous impact on Cp at 90%.

(v) &ere is absolutely a high correlation coefficient
between measured and predicted values for Cp and
Ra as exhibited by the estimated statistical param-
eters “S,” R-sq., and R-sq. (adj) for Cp and Ra, thus
implying that the developed models can be used in
the machining of hardened steel since they give
sufficient values that are within the allowed ranges.

(vi) Results from the confirmation test measured values
were found to be within the permitted confidence
interval of 95% showing that the Taguchi method
was quite effective in the optimization of machining
parameters. Measured values were within the per-
mitted confidence levels, as demonstrated by the
confirmation test results.

&e results from this study have demonstrated the re-
liability of the Taguchi method in the evaluation of mini-
mizing the cutting power and surface roughness in the
machining of hardened steel. &e optimum values achieved
can be used in the future for both academic research and
industrial applications like the aerospace, automotive, and
marine industries where other factors like cutting tool ge-
ometry, machining environment, nose radius, lubricants,
etc., would be considered.&e environment can be protected
adequately with proper energy savings. Energy consumption
should be minimized to save energy. In this vein, machining
time can be shortened by selecting the cutting parameter
values to optimum levels to reduce energy consumption. In
addition to low energy consumption, the material must be
processed with a good surface quality.

Nomenclature

ANOVA: Analysis of variance
BU: Built-up edge
CI: Confidence interval
Cp: Cutting power
CNC: Computer numerical control
DoC: Depth of cut
DoF: Degree of freedom
EC: Energy consumption
f: Feed rate
fz: Feed per tooth
neff: Effective number of replications
R: Number of confirmation experiment replications
Ra: Surface roughness
Vc: Cutting speed
Ve: Error variance.
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