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+is study investigates crack growth and stress intensity factors via finite element methods in linear elastic fracturemechanics.+e
procedure involves estimating stress intensity factors (SIFs), crack trajectory, and fatigue life, using two different softwares in both
two and three-dimensional analyses. Crackmodeling was done in a variety of ways depending on the software. ANSYSMechanical
R19.2 and FRANC2D/L software were used to prognosticate fatigue crack growth, fatigue life, and associated stress intensity
factors under plane stress state. Fatigue analysis was governed by Paris’s law and crack growth direction by the theory of maximum
circumferential stress. +e results show that the fatigue growth was attracted to the hole and either changes its direction to reach
the hole or floats by the hole and grows as the hole is missed. +e findings of the study agree with other experimental and
numerical crack propagation studies presented in the literature.

1. Introduction

Fatigue accounts for one of the more well-known
mechanical and structural failures prevalent in industries,
including aerospace and automotive components. Structural
failure impairs components and poses health risks to people.
Consequently, in obtaining an accurate solution, the study of
such failures may involve significant complexity in evalu-
ating a component’s expected service life, which is the sum
of the number of loading cycles needed to initiate a fatigue
crack and the number of cycles needed to propagate to the
critical size [1, 2]. +e assessment of fatigue crack growth
includes identifying the direction of crack, equivalent stress
intensity factor range (∆Keq), and crack growth rate per
cycle number (da/dN). It is possible to ascertain the failure of
the crack members subjected to static or fatigue loading by
comparing the ∆Keq value to a certain characteristic of each
material (known as fracture toughness or threshold stress
intensity factor, respectively). Crack initiation and propa-
gation should be associated to SIFs in a complicated state
[3–6]. To address fatigue crack propagation, the linear elastic

fracture mechanics (LEFM) method was developed. +e
LEFM techniques have been mostly accepted for long cracks
with small-scale yielding characteristics at the crack front,
i.e., the Paris regime [7, 8]. +e stress intensity factors (SIFs)
under the concept of LEFM were used in identifying the
status of crack propagation, i.e., whether the crack propa-
gates or not. Internal crack propagation is important in
engineering practice because it has a significant effect on the
performance and stability of structural engineering. As a
result, crack propagation path prediction is essential for
engineering structural reliability. Preliminary investigations
are necessary in estimating fatigue in aerospace,
manufacturing, and aviation industry, this being cost-pro-
hibitive, an alternative, but accurate estimation is necessary
in predicting crack growth, orientation, and fatigue life in
static and dynamic loads [9–11]. +e finite element method
(FEM) is a powerful computative approach in predicting the
performance of complicated geometries and structures in
engineering practice. +e remeshing technique allows FEM
to model fatigue crack propagation and simulates irregular
crack growth by piecemeal mesh regeneration [12–15].
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Several approaches were employed in simulating fatigue
crack growth: discrete elements method (DEM) [16–18],
elements-free Galerkin (EFG) method [19], XFEM [20–23],
cohesive elements method [24, 25], and phase-field method
[26].

Incorporating a simulation methodology involving two
and three-dimensional numerical analyses combining
FRANC2D/L and ANSYS Mechanical R19.2 is an efficient
way to reduce laboratory effort, time, and costs. Various
computational techniques in terms of simulation for simple
and complicated geometries in 2D and 3D have been re-
ported in many fatigue crack problems [9, 27–36].

+is work compares the fatigue crack growth under
constant amplitude load between two softwares, ANSYS
Mechanical R19.2 and FRANC2D/L, as an alternative tool
for modeling fatigue crack growth problems in mixed-mode
loads. Four different configurations of the modified compact
tension were simulated in both softwares. +e crack growth
trajectory, SIFs, stresses distribution, and fatigue life cycles
were predicted using both softwares, and the outcome from
other researchers validated the results.

Fatigue assessment of materials can be mostly illustrated
by three approaches: the fracture mechanics method pro-
posed by Paris and Erdogan [37], the method of strain-life
independently obtained by Coffin [38], and the stress-life
method proposed by Wöhler [39]. +e first method was
employed (in the present work) in estimating fatigue life,
and the crack tip was characterized independently by the
SIFs.

2. Materials and Methods

2.1. Mixed-Mode Fatigue Life Evaluation Procedure Using
ANSYS Mechanical R19.2. ANSYS models three types of
cracks: arbitrary, semielliptical, and premeshed. +e latest

feature presented in ANSYS Mechanical R19.2 is the Sep-
arating Morphing and Adaptive Remeshing Technology
(SMART), and the crack growth in which mesh-based is a
tetrahedron.+e premeshed method requires the crack front
used by the SMART crack growth analysis tool, where the
stress intensity factor is the criterion of failure. Rendered
node sets are distributed in the front, top, and bottom of the
crack. Surrounding mesh at the crack tip is refined through
the sphere of the influence process around the geometric
sides that passes across the width. +e geometric regions to
be described are crack tip, top, and bottom surfaces of crack.
Subsequently, these regions are linked with a node set for
analysis. ANSYS Mechanical R19.2 software considers
mixed-mode loading where the maximum circumferential
stress criterion is implemented. +e following are the for-
mulas for the direction of crack propagation in ANSYS
[40, 41]:
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where KI �Max KI during cyclic loading and KII �Max KII
during cyclic loading.

In ANSYS Mechanical R19.2, by using XFEM, crack
growth simulation is restricted to region II, and typical
fatigue crack growth graph is represented as

da

dN
� C ΔKeq 

m
, (2)

where a is the length of the crack, N is the number of cycles,
C is the Paris constant, and m is the Paris exponent. Both C
and m are dependent strongly on the cyclic hardening
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Figure 1: ANSYS flowchart for SMART crack growth.
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exponent and mechanical properties [42], and they are
obtained experimentally. Several authors [43, 44] identified a
very consistent empirical relationship between Paris’ law
parameters, which was supported by experimental results,
such as [45, 46].

From equation (2), the number of fatigue life cycles for
crack increment is


Δa

0

da

C ΔKeq 
m � 

ΔN

0
dN � ΔN. (3)

+e equivalent range for SIFs formula is represented as
[47]

ΔKeq �
1
2
cos

θ
2
ΔKI(1 + cos θ)(  − 3ΔKII sin θ , (4)

where ΔKI represents the SIFs range in mode I loading and
ΔKII represents the SIFs in mode II loading. ANSYS
flowchart is shown in Figure 1.

2.2. FRANC2D/L Procedure. +e Cornell Fracture Me-
chanics Group at Cornell University developed the free two-
dimensional fracture analysis software FRANC2D/L, which
was funded by the US National Science Foundation, NASA,
the US Navy, and other agencies [19]. +e FRANC2D/L
analysis is carried out in two stages, with CASCA which is
used as a mesh generator with different types of mesh and
associated with FRANC2D/L. In the second part, the
boundary constraints, problem characteristics, stress
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Figure 3: Geometrical details of the modified compact tension specimen (MCTS) (all dimensions in mm).

Table 1: Properties of the considered material.

Property Value in metric unit
Elasticity modulus, E 205GPa
Poisson’s ratio, υ 0.29
Yield strength, σy 285MPa
Ultimate strength, σu 491MPa
Paris’ law coefficient, C 8.59×10−14mm/(cycle MPamm0.5)
Paris law exponent, m 4.26
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computation, input crack singularity, crack growth, and
problem outcomes were determined [48, 49]. SIFs were
computed using three approaches in FRANC2D/L: method
of displacement correlation, method of modified crack
closure integral, and method of J-integral. +e crack ori-
entation was estimated via maximum circumferential stress
criterion, while fatigue crack growth rate was calculated
based on Paris law equation with the same procedure used in
ANSYS as represented in equations (1) and (2), respectively.
+e step-by-step procedure of the FRANCD2D/L software is
shown in Figure 2.

3. Results and Discussion

3.1. Modified Compact Tension Specimens (MCTS).
Figure 3 shows the modified CT specimen’s geometrical
dimensions in two and three-dimensional representations.
According to this figure, the hole’s diameter is 7mm from
the crack’s initiation position, which is located on horizontal
and vertical distancesK and C; for isotropic and linear elastic
material at 0.1 load ratio, the test was performed under
fatigue load. A total of four specimens were simulated in
both programs. +e material properties are given in Table 1,
as well as for the initial mesh for the first specimen, CT01 in
both softwares is shown in Figure 4. Table 2 provides a total
number of nodes and elements for every specimen with
different values in two softwares. +e size of the mesh el-
ement was set as 1mm.

Simulation from FRAN2D/L and ANSYS was juxtaposed
with experimental [50] and numerical fatigue crack growth
paths [32] using the boundary elements method (BEM) with
BemCracker 2D software and FEM with Quebra2D software
for CT01, CT02, CT03, and CT04 as shown in Figures 5–8,
respectively. +e crack pathways in this work in all cases

using FRANC2D/L and ANSYS align with the experimental
and numerical results of [32, 50]. Moreover, the growth of
the fatigue crack was consistently captivated by the hole; it
curves and grows into the hole (sinks in the hole behavior),
as shown in Figures 6 and 8, or deflect and propagate after
missing the hole (missing the hole’s behavior), as shown in
Figures 5 and 7. +e fatigue life cycles in individual struc-
tures significantly vary, depending on crack path, though
hole location is only slightly differentiated. +e fatigue crack
was still captivated to the hole, according to the simulations,
so it could curve its path and grow toward the hole or merely
deflect and propagate.

Maximum and minimum principal stresses of the four
specimens are compared in both programs as shown in
Figures 9–12. +ere is a small percentage of error between
the values obtained between the software due to the number
of steps used in both softwares and the numerical procedure
of the programs. For CT01, the higher value of themaximum
principal stress in FRANC2D was 310.2MPa, whereas it was
355MPa in ANSYS. For CT02, the higher value of the
maximum principal stress in FRANC2D was 90.3MPa,
whereas it was 123.4MPa in ANSYS. For CT03, the higher
value of the maximum principal stress in FRANC2D was
250.36MPa, whereas it was 274.4MPa in ANSYS. For CT04,
the higher value of the maximum principal stress in
FRANC2D was 56MPa, whereas it was 72MPa in ANSYS.

+e predicted values of stress intensity factors for mode I
and mode II (KI and KII) associated with the crack length for
CT01, CT02, CT03, and CT03 are shown in Figures 13–16,
respectively.

It has worth noting that when there is a hole in the crack
path, KI decreases to a certain amount while KII increases.
+is is visible in the crack path’s trajectory; when the crack
continues in a straight line, KI increases, but as the direction

(a) (b)

Figure 4: Initial meshes of CT01. (a) FRANC2D/L and (b) ANSYS Mechanical R19.2.
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changes, KII increases. +e previous figures for the stress
intensity factors demonstrate that all simulated specimens in
FRANC2D/L and ANSYS have nearly the same values of KI

and KII over the crack growth duration. +ese minor var-
iations in the results are influenced by the number of steps
used in each program as well as the numerical approach
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Figure 5: +e predicted crack path of CTS01. (a) ANSYS results, (b) FRANC2D/L, (c) experimental and numerical outcome of [50],
(d) BemCracker2D software [32], and (e) Quebra2D software [32].

Table 2: Number of nodes and elements of the specimens in FRANC2D/L and ANSYS APDL 19.2.

MCTS
FRANC2D/L ANSYS Mechanical

Nodes Elements Nodes Elements
CT01 4606 2172 491691 326808
CT02 4594 2166 1989912 1307107
CT03 4598 2168 1819895 1193704
CT04 4634 2186 1848501 1214092
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used. +e number of steps used in ANSYS for specimen
simulation ranges from 11 to 20, with the number of in-
crements controlled by the software. In FRANC2D/L, the
steps range from 32 to 92 with 0.1–0.13 increment.

Figures 17–20 show comparisons of FRANC2D/L and
ANSYS fatigue life simulations with experimental outcomes
[32] for CT01, CT02, CT03, and CT04 MCTS geometries,
respectively. +e simulated fatigue crack growth life using
FRANC2D/L and ANSYS agrees very well with the

experimental results by Gomes and Miranda [32]. In ad-
dition, the current research results were far more precise in
predicting fatigue life compared to the numerical findings
obtained with [32] using the two softwares, VIDA and
BemCracker2D. +e results of this analysis are closely as-
sociated with Quera2D rather than BemCracker2D, as
shown in these figures. +ese findings further demonstrate
the influence of the hole position on the fatigue life of the
specimens.
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Figure 6: +e predicted crack path of CTS02. (a) ANSYS results, (b) FRANC2D/L, (c) experimental and numerical results of [50],
(d) BemCracker2D software [32], and (e) Quebra2D software [32].
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Figure 7: +e predicted crack path of CTS03. (a) ANSYS results, (b) FRANC2D/L, (c) experimental and numerical outcome of [50],
(d) BemCracker2D software [32], and (e) Quebra2D software [32].
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Figure 8: +e predicted crack path of CTS04. (a) ANSYS results, (b) FRANC2D/L, (c) experimental and numerical outcome of [50],
(d) BemCracker2D software [32], and (e) Quebra2D software [32].
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Figure 9: For CT01 specimen, (a) FRANC2D/L, maximum principal stress, (b) ANSYS, maximum principal stress, (c) FRANC2D/L,
minimum principal stress, and (d) ANSYS, minimum principal stress.
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Figure 10: For CT02 specimen, (a) FRANC2D/L, maximum principal stress, (b) ANSYS, maximum principal stress, (c) FRANC2D/L,
minimum principal stress, and (d) ANSYS, minimum principal stress.
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Figure 11: Continued.
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Figure 11: For CT03 specimen, (a) FRANC2D/L, maximum principal stress, (b) ANSYS, maximum principal stress, (c) FRANC2D/L,
minimum principal stress, and (d) ANSYS, minimum principal stress.
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Figure 12: For CT04 specimen, (a) FRANC2D/L, maximum principal stress, (b) ANSYS, maximum principal stress, (c) FRANC2D/L,
minimum principal stress, and (d) ANSYS, minimum principal stress.
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4. Conclusion

According to the predicted results, the fatigue crack grows
approach the hole due to the unequal stresses at the crack
extremities as a result of the hole. Furthermore, different
positions of the hole had a remarkable impact on the fatigue
crack growth path. +e crack direction bends more severely
as the hole’s core distance approaches the initial crack. +e
position of the hole influences the crack and modifies its
path, either changing its pathway and growing into it or
deviating from it and growing. +e predicted fatigue crack
growth paths, as well as the fatigue life cycles, were validated
by the experimental and numerical findings performed by
other researchers. Due to the available computing resources,
the two-dimensional analysis offers a faster computational
time than three-dimensional analysis while also allowing for
a finer mesh to be generated on the geometry. In 3D models,
the time increases dramatically as the mesh density in-
creases. It is not always possible to simulate a complex
geometry in 2D, necessitating the use of 3D software. As a
result, the 2D and 3D analytical results were nearly identical
for plane stress geometries. For all geometries, the repre-
sentations of stresses distribution in both software were
visualized.
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[44] L. Tóth and A. J. Krasowsky, “Fracture as the result of self-
organised damage process,” Journal of Materials Processing
Technology, vol. 53, pp. 441–451, 1995.

[45] F. Iacoviello, D. Iacoviello, and M. Cavallini, “Analysis of
stress ratio effects on fatigue propagation in a sintered duplex
steel by experimentation and artificial neural network ap-
proaches,” International Journal of Fatigue, vol. 26, no. 8,
pp. 819–828, 2004.

[46] J. Petit, J. De Fouquet, G. Henaff, and A. Carpenteri,
Handbook of Fatigue Crack Propagation inMetallic Structures,
Sciencedirect, Carpinteri A, California, pp. 1159–1203, 1994.

[47] Y. Xiangqiao, D. Shanyi, and Z. Zehua, “Mixed-mode fatigue
crack growth prediction in biaxially stretched sheets,” Engi-
neering Fracture Mechanics, vol. 43, no. 3, pp. 471–475, 1992.

[48] P. Kumar, M. E. Makhatha, S. Sengupta, and A. K. Dutt,
Prediction of the Propagation of Fatigue Cracks in Part-
Erough Cracked Pipes with CASCA and FRANC2D, pp. 1–4,
Transactions of the Indian Institute of Metals, India, 2020.

[49] A. Ahola, T. Björk, and Z. Barsoum, “Fatigue strength ca-
pacity of load-carrying fillet welds on ultra-high-strength steel
plates subjected to out-of-plane bending,” Engineering
Structures, vol. 196, Article ID 109282, 2019.

[50] A. C. O. Miranda, M. A. Meggiolaro, J. T. P. Castro,
L. F. Martha, and T. N. Bittencourt, “Fatigue life and crack
path predictions in generic 2D structural components,” En-
gineering Fracture Mechanics, vol. 70, no. 10, pp. 1259–1279,
2003.

Advances in Materials Science and Engineering 17


