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Steel, also known as iron alloy, is found 35% of the whole mass of the Earth. It is found in many applications due to its unique
properties. Alloying elements provide the backbone support for iron, improving its mechanical, physical, chemical, and structural
properties. Failure of steel is due to chemical reaction i.e., corrosion, and it is unavoidable, but it can be prolonged. Applications
such as marine have a salt corrosive environment. High-temperature applications such as power plants, gas turbines components,
and combustion engine components accelerate air oxidization at higher temperatures. Protection coating alters the chemical
composition of alloy surfaces by using techniques like conversion coating, mechanical alloying, ion beam implantation, laser
cladding, and thermochemical treatments. Protection coatings adhere to the steel surface and prevent steel from direct contact
with the environment, which is formed by chemical vapor deposition, physical vapor deposition, electroplating, chemical bath,
sol-gel, thermal spraying, and hot-dip coating. (ese coatings are used to reduce the chemical reaction in accelerated corrosion
environments so that the life span of the steel is further enhanced, thereby decreasing the replacement cost.(ese coating methods
and coating materials play a vital role in corrosion and other corrosion-associated failure protection. (e coating materials like
chromium and cadmium produce carcinogenic gases. Coating methods such as thermal spraying, hot-dip coating, and ther-
mochemical treatment produce by-products that affect the environment by releasing pollutants. It is essential to choose coating
materials and methods that do not influence the environment and ecosystem. In this work, processing techniques available to
prepare the protective coating for steel are discussed.(emethods used to enhance the properties of steel and the various real-time
characterizations are also discussed. In addition, challenges and opportunities in the proposed scope are also included.

1. Introduction

Steel is the iron alloy that has been used in a wide range of
applications since 2000BC [1]. Steel is earth-abundant
than any other metal, which leads to more vital interest

than other metals in areas such as construction,
manufacturing, automobiles, shipping, chemical indus-
tries, oil and gas industries, food and beverage industries,
power plants, gas turbines, piping, household appliances,
and so on [2].
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Figure 1 shows the steel usage in 2018 in various appli-
cations. Even though it has broad availability, it has a notable
setback of corrosion, which is unavoidable. Steel corrosion is
due to electrochemical reactions or chemical reactions with its
surrounding environment. Corrosion in pressure vessels,
boilers, metallic containers for toxic chemicals, and turbine
blades leads to failure with catastrophic consequences for safety.
Corrosion loss is divided into two types: direct and indirect loss.
In direct loss, the loss is associated with the replacement of
corroded components, whereas in indirect loss, the loss is due to
shut down in power plants, loss of product in oil and gas re-
fineries, and loss of efficiency in machines and equipment.
Based on reports, the cost of corrosion globally is in the range of
3–4% of the Gross National Product [3]. Reports say that
corrosion depleted the world’s 20% global energy [4]. Corrosion
was found to be the leading cause of failure, along with other
causes such as erosion, wear, and hoop stress [5].(e corrosion
driving force of steel was prolonged or nullified by adding
alloying elements such as chromium and nickel, which formed
their oxides and acted as a corrosion protection layer.

Predominantly, the majority of the components in
power plants consist of steel-based components [6]. (e
higher operating temperature of the power plant decreases
the activation energy and results in oxidization; in general,
oxides are brittle, which is why they easily wear out. In a
coal-based power plant, sulfur penetrates through the
chromium oxide layer at a higher temperature, causing high
nickel alloy to experience localized pitting corrosion, and so
the alloying element is found to be unworthy [7]. Coal-fired
power plants in India produce a large amount of ash, about

50% [8], and 20% of ash is deposited over boiler compo-
nents, which leads to hot corrosion and erosion [9]. Cor-
rosion, along with erosion, leads to a volumetric reduction of
components, reducing their lifetime and thereby increasing
their maintenance and replacement cost [10]. Protective
coating overcomes the accelerated failure rate by acting as a
barrier for corrosion and erosion. (e coatings process is
divided based on the method of the coat as follows: vapour
deposition, galvanic, thermal spraying, metallic coatings,
diffusion techniques, polymeric and glass coatings, and
high-density beam and ion implantation [11]. (is report
critically reviews the various protective coatings and
methods employed for steel and discusses them in detail.

2. Experiment

2.1. Vapour Deposition. (e vapour deposition method
vaporizes the coating material and allows it to coat the
substrate. (e chemical reaction between the gaseous re-
action species results from the formation of a coating on a
substrate. Vapour deposition is categorized into two types:
chemical vapour deposition (CVD) and physical vapour
deposition (PVD).

2.1.1. Chemical Vapour Deposition. Chemical vapour de-
position involved four steps. Initial step: precursor and inert
gas are introduced into the chamber, then the substrate
absorbs it, and thermal energy activates it. In the third step,
gases undergo surface diffusion, and decomposition on the
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Figure 1: Conception of Steel in various applications. Reprinted with permission of World Steel Association (worldsteel).
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substrate leads to nucleation. With time, the nucleation site
grows to form the required thin film on the substrate.

At the final stage, the by-product formed in the chamber
inside is carried away [12]. Chemical vapour deposition on
steel substrate is majorly carried out inside a fluidized bed
reactor to form a deposition of metallic and metal oxide
coating [13, 14]. Sánchez et al. used additives to improve the
coating thickness, morphology, and properties [15]. Post-
coating heat treatment with an inert or air atmosphere
increases the bond between the coating and steel substrates
[16, 17]. Marulanda et al. prepared coating followed by a heat
treatment process can be done with a one-step of placing the
HF heater inside the reactor itself, which is very useful for
direct application. Simulation software is used to predict the
possible chemical formation upon the air, gas, and thermal
oxidization testing [13]. Corrosion resistance property
studies by steam oxidization, thermos cyclic oxidization,
coal environment oxidization, corrosive gas environment
oxidization at a temperature above 600 °C [15, 17, 18].
Saarivirta et al. used a whirling arm fluidized bed rig used for
hot erosion and wear tests on the coated sample [19].

2.1.2. Physical Vapour Deposition Process. In the physical
vapour deposition process, coating material is converted
from the solid-state to the gaseous phase at an ultra-high
vacuum condition.(e heat source for phase transformation
is from laser beam or arc discharge, ion sputtering, ion-
isation, and plasma decomposition. (e nucleation of gas-
eous specious follows layer growth, Stranski–Krastanov
growth, and island growth techniques [20]. Figure 2 rep-
resents the physical vapor deposition process.

Baker et al. prepared PVD on the steel substrate with
cooling or heating, resulting in different morphologies of
coating material [21]. Pech et al. identify amorphous nature
and nanostructured coating material to show excellent me-
chanical properties [22]. Jarmo and others used PVD coating
for filling the pinholes on coated substrates [23]. Lamastra
et al. studied residual stress in thin-films determined by XRD
studies using the sin2ψ method [24]. (e mechanical prop-
erties of the substrate are increased by the PVD-assisted
coating of ceramic materials on steel substrates. Molten salt
corrosion, salt corrosion, and air oxidization are carried out to
obtain surface property enhancement [25, 26].

2.2. Galvanic Techniques. Electrodeposition, the dissolving
of coating material salt into the electrolyte, upon applying an
electric field to the electrode, initiates the electrochemical
reaction and results in the metal ions or coating suspension
present on the electrolyte being coated uniformly over the
electrode [27]. Metal oxides added to the electrolyte to form
a colloidal suspension along with metal ion species paved the
way for the coating of oxides on a steel substrate. Figure 3
illustrates the galvanic techniques.

Electrodeposition is carried out using pulsed current, direct
current, and galvanostatic method [28–30]. Xu et al. used
optimization techniques to determine the best process pa-
rameters for deposition [29]. Nanostructured material is also

coated using electrodeposition techniques [28, 31–33]. Addi-
tives used to reduce the pitting, buffers used for stabilizing the
coating, and surfactant used for reducing the water contact
angle of coated material on a steel substrate [34, 35]. Nano-
sized material is used for filling the pores, gaps, and cavities
formed during electrodeposition [33, 35]. Surfactants reduce
the agglomeration of nanoparticles, with ultra-sonication
employed to obtain uniform dispersion [31, 36]. Postheat
treatment is carried out to obtain an excellent adherent, dense
layer, and increased hardness on the coating [32, 37].

2.3. Ion Implantation Technique. Ion implantation is a
surface modification process that increases roughness,
surface hardness, and corrosion resistance. Ion implantation
associated with other coating techniques increases the ad-
hesive strength of the coating and steel substrate [38].
Figure 4 is a pictorial representation of the ion beam im-
plantation techniques. (e ion implantation technique en-
ables an environmentally friendly and clean method for
carcinogenic coating materials such as chromium and
cadmium on steel substrates [39, 40]. Hatada et al. carried
out surface pretreatment and preheating to increase the
adhesion of the coating [41]. Sudjatmoko and others used
ion implantation to increase the hardness of coated material
and identified that implanted ion reacting with surface
atoms result in multiphase formation, which increases
hardness, wear, and physical/chemical properties on a steel
substrate [42]. Hartwig et al. carried out postheat treatment
and implantation energy to increase the surface properties.
Surface energy and the nature of coating material play a
significant role in corrosion property [43].

Mello et al. identified an amorphous phase coating that
shows higher mechanical properties than the alloy phase
coating [44]. Eshghi et al. found that increases in ion
concentration decrease the corrosion resistance due to
surface damage caused by irradiation [45]. Ovchinnikov and
others prepared mono, double, and three-layer coatings by
ion implantation techniques [40].

2.4.9ermal Spraying. (e coating is carried by heating the
coating material followed by spraying towards the steel
substrate and allowing it to adhere through the thermal
spraying process categorized as flame spraying, plasma
spraying, and high-velocity oxygen fuel spraying [46].

2.4.1. Flame Spray Process. In the flame spray process, or
powder flame spray process, the powder particles are heated
to near melting point and welded with the steel substrate
when encountered on the substrate surface. (e result is a
coating of powder on the steel substrate through the flame
spray process [47]. Ball milling is used to obtain the coating
material at the required composition [48]. Pacheco et al.
used bond coating and preheat treatment to improve the
adhesion between the substrate and coating material [49].
Bonetti et al. prepared flame spray-coated steel substrate
coating contains porosity due to less cohesion between
nearer coating materials [50].
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Figure 4: Schematic diagram of ion beam implantation technique.
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Figure 3: Schematic diagram of Electrodeposition process.
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2.4.2. Plasma Spraying Process. Plasma spraying process is
similar to the flame spraying process in which the heat
source is a plasma thruster, an inert gas used for powder
carrier. (e coating properties are based on the coating
material, gas flow rate, power supply, nozzle torch shape,
spray distance, and spraying angle [51]. Kiahosseini et al.
identified surfaces to be coated as being sandblasted and
preheat treated before coating to increase the adhesion
between steel and coating material [52].

Ghahabi et al. used iron powder mixed with a coating
material to improve adhesion [53]. Kiahosseini et al.
identified grain growth increases with thickness increases so
that the hardness of the coating decreases [52]. HO and
others. prepared WC coating above 2mm thickness using
RF low-pressure plasma spray and DC vacuum plasma spray
method [54].

2.4.3. High-Velocity Oxygen Flame Process [HVOF]. (e
HVOF process is similar to the thermal spray process in that
the coating material is deposited over the steel substrate
through thermal and kinetic energy. HVOF form thick
coating increases hardness, erosion, wear resistance, and
corrosion resistance on steel substrates [55]. Steel substrate
preheat treatment, grit blasting, and shoot peening are
carried out to improve coating adhesive property. Fatigue
strength of the coated sample increases with coating and
steel substrate by pretreatment like shot peening and grit
blasting [56, 57]. Figure 5 and Figure 6 show schematic
diagrams of the DC vacuum plasma spray system and the RF
low-pressure spray system. Monticelli et al. studied the
coating consisting of interporosity, which reduces the cor-
rosion resistance and induces scale spalling off and cracking
[58]. Kuroda et al. reported that postheat treatment reduces
porosity [59].

2.5. High-Density Beam. Laser cladding coating material is
sprayed over the substrate using a solvent binder after
completely drying the substrate, which is then laser irra-
diated to obtain the coating layer. Figure 7 represents the
schematic diagram of the laser cladding system.

Laser cladding coating properties vary with the beam
diameter, beam overlapping, beam feed, and power. Laser
cladding coating reduces porosity, provides uniform coat-
ing, and increases hardness, wear-resistance, and corrosion
resistance [60].

Nickel primary coating increases the adhesion between
the steel substrate and coating material [61, 62]. Coating
material prepared at the required composition by using
mechanical milling [63]. Coating material is mixed with
binders to form a slurry and sprayed over a steel substrate
before being laser cladded [64, 65]. Xiong et al. identified
laser cladding, followed by friction stir processing, as in-
creasing the adhesion between coating and substrate by
forming mechanical interlocking [66]. Li et al. found beam
overlapping forms a uniform coating, increases laser beam
power, and beam diameter reduces the hardness of the
coating material. Higher coating thickness results in a pore
and crack-free coating [67].

2.6. Polymeric or Vitreous Coating. Sol-gel coating is also
known as glass coating/vitreous coating, carried out by dip
coating, spin coating, and spray coating. Dip coating, coating
thickness based on withdrawal rate, steel substrate surface
wettability, and sol viscosity. Spin coating, coating thickness
based on rotation speed, duration of coating, surface wet-
tability, and sol viscosity [68]. Steel substrates are preheated
by sandblasting, shot peening, and prereduction heat
treatment to improve the coating adhesion [69–71]. Pre-
pared sol is allowed to age at room temperature for 24h,
obtaining the uniform monomer formation [72, 73]. Dip
coating the steel substrate immersed in a sol solution to
obtain the coating sol stabilization with a substrate [74].

Liu et al. prepared coated samples dried in the air at a
temperature range from room temperature to 150°C to
remove the solvents such as ethanol and water. Postcoating
heat treatment is carried out to obtain the dense coating with
increased microhardness and grain size. Heat treatment
results in microcracks and pores due to the densification of
sol molecules at higher temperatures, which results in
shrinking of the coating [69]. Ezz et al. carried out laser
sintering to reduce the formation of cracks, unlike the heat
treatment [75]. Functionalized nanoparticles increase
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Figure 5: Schematic diagram of DC vacuum plasma spray system.
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adhesion between the substrate and coating, hardness, and
Young’s modulus [76, 77]. Liu et al. used sol-gel coating as a
filler coating for pores formed on HVOF coating [78]. In
general, sol-gel coating is the passivation type of coating,
which results in corrosion resistance, increases in contact
angle, and hardness increases on the substrate of steel.

2.7. Diffusion Techniques. (ermochemical treatment cre-
ates a diffusion coating that provides mechanical inter-
locking between the coating and the steel substrate, so the
adhesion strength is fair enough to avoid delamination of the
coating and substrate.(e parameters such as heat, duration,
and the chemical composition of the substrate and coating
material alter the surface mechanical properties [79]. Liu
et al. carried out thermochemical treatment on steel surfaces
to increase the surface hardness, mean grain size, Young’s
modulus, and corrosion resistance [80].

Marteau and others identified sample substrate pre-
treated by shot peening to improve surface creep properties
and provide mechanical interlocking of coating to improve
coating adhesion on a steel substrate surface [81].

2.8. Metallic Coatings

2.8.1. Mechanical Alloying. Mechanical alloying on the steel
substrate with mechanical ball milled alloy powder results in
the cold-welded dry coating. (e impact of a ball on the
substrate increases the creep resistance of the substrate. Long-
duration mechanical alloying results in a thick coating with
uniform grains. Mechanical alloying creates the diffused alloy
phase due to stress deformation caused by ball milling on a
steel substrate, and alloy powder results in increased coating
adhesion [82]. Steel substrate to be coated is subjected to
preheat treatment and postcoating heat treatment to obtain
excellent adhesion between substrates and coating materials
[83, 84]. Aykut and others identified increasing milling du-
ration results in increases in coating thickness decrease in
hardness, lower roughness, form uniform coating, increase
porosity, and increase the wear ratio [85].

Canakci et al. found that through XRD characterization
coating material forms a multiphase compound formation
between steel and coating material, which is responsible for
the adhesion of coatingmaterial to a substrate [83]. Figure 8 is
the schematic representation of mechanical alloying method.

2.8.2. Hot-Dip Coating. Hot-dip coating is unlike other
methods, where the coating material or alloy is in a molten
pool, which allows the steel substrate to dip into it and
adhere to the coating material on its surface. Coating ma-
terial, upon cooling, solidifies on the surface with uniform
grains along with diffusion. Hot-dip coating of zinc provided
galvanic corrosion resistance to the steel substrate, which is
found in the vast application. Likewise, aluminum, silica,
and the mixture of aluminum, silica, and zinc are also used
as molten metals. Both materials, based on the properties of
steel substrate, increase [86].

Huilgol et al. prepared an aluminummolten bath coating
on MDN 321 stainless steel and carried out a hot corrosion
test [87]. Prashant and others also prepared an aluminum
molten bath coating on AISI 321 steel and analyzed diffusion
heat treatment studies to find Fe2Al5, Al13Fe4, NiAl, and
AlFe four different layers [88]. Sehrish and others. prepared
Al-Si molten bath coating on SS 316L and analyzed coating
corrosion and mechanical properties [89].

3. Challenges and Opportunity

Based on the above study, the use of oxides and carbides as
coating materials provides a significant improvement in
surface properties. (e novel coating techniques such as ion
implantation, mechanical alloying, and vapour deposition
techniques are compared to other techniques requiring
substantial power consumption and taking a longer duration
for coating materials. (ermal spraying and electrodeposi-
tion are widespread techniques. (e electrodeposition of
oxide-based materials is more complex than that of con-
ductive materials.(ermal spraying results in the porosity of
the coating, which reduces the coating performance.(e use
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of metal matrix and nano-based oxide composites as a
coating material on electrodeposition is to pave a new way to
develop metal and metal oxide-based composite coatings on
steel. (e use of a sol-gel-based coating over the plasma
sprayed coating capsules the pores present on the surface of
the coating.

Multi-layered coatings and functionally graded coatings
are also promising methods to nullify the porosity-induced
effects on coatings. Combining thermal spraying and sol-gel,
electrodeposition, and ion implantation-based coatings
decreases the negativity of one over another.

4. Conclusion

Steel protective coating for various techniques, starting from
coating precursors used, parameters followed, and research
outcomes. (e work enables us to correlate the relationships
among these coatings for application aspects, technical
significance, and compatibility of combined coatings. (e
review concluded that the coating performance is purely
based on the coating material compatibility with the steel
substrate in terms of wettability, adhesiveness, thermal ex-
pansion coefficient, crystal structure, crystallinity, and dif-
fusion phenomena. (e defects associated with coatings are
unavoidable without adding filler material in nanoscale
materials, using sacrificial coatings, and using additional
filler coatings. Coating delamination is one of the significant
phenomena that occur due to surface defects and thermal
conductivity mismatch. To avoid delamination, pretreat-
ment such as shot peening, sandblasting, precoating heat
treatment, and precoating chemical etching was carried out
on the steel surface to improve the adhesive strength. In the
case of thermal spraying, a bond coat is applied. In the
present day, environmental consideration plays a vital role in
avoiding the coating process by-products toxic to the en-
vironment and living organisms. (erefore, those envi-
ronmentally sustainable coating methods such as ion beam
implantation, sol-gel techniques, electrochemical deposi-
tion, chemical deposition, LASER cladding, and mechanical
alloying provide zero-emission toxic chemicals into the
environment.

5. Future Scope

(e above review found that the use of rare-earth-based
nanoparticles as coating materials proved to have the best
enhancement of corrosion, erosion, and wear resistance

properties. (e thermal spraying method is the most
widespread method among all other methods for power
plant applications and is often found to be the easiest
method to repair or replace the coating.(e coating material
based on rare earth oxides and the thermal spraying tech-
nique provides a promisingly significant improvement of all
the surface properties of the steel components.

(at is the scope for the budding researchers to focus
their attention on the consent applications.

Data Availability

(e data used to support the findings of this study are in-
cluded in the article. Further data or information will be
available from the corresponding author upon request.
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