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Wire cut EDM is a quite regularly used machining process in mechanical and electronic industries.�is research has attempted to
machine aluminum alloy for which experimental design was prepared using Box-Behnken design. Di�erent combinational
options of pulse-on time (P1), pulse-o� time (P2), servo wire feed (WF), and current (I) were investigated and surface roughness
after machining was observed. Collected 27 datasets were further used in Adaptive Neuro Fuzzy Inference System (ANFIS) to
produce about 500 datasets. �ese 500 datasets are approximated data derived from experimental datasets, known as synthetic
data. Data model was further developed and used in Gorilla Troops Optimizer (GTO) to locate the optimum machining pa-
rameters. With the excellent three search operators: move towards other gorillas, migrate towards unknown places, and migrate
towards known places, GTO has produced the lowest surface roughness value of 0.500953 μmwhen the machining parameters of
pulse-on time, pulse-o� time, wire feed, and current values were set as 121 μs, 52 μs, 3m/min, and 166A, respectively. To ensure the
accuracy of the synthetic data-based model and optimality, veri�cation and validation were conducted. Wilcoxon signed rank test
was conducted for the pairwise comparison of GTO with each of its competing algorithms at the signi�cance level of σ � 0.05.
Friedman test was conducted to calculate the average ranking of each algorithm and to detect the global di�erences between all
compared algorithms. Outperforming performance by GTO algorithm in machining of the selected material is found.

1. Introduction

Among unconventional machining processes available, wire
cut electric discharge machining (WEDM) is much e�ective
process to prepare intricate shapes and delicate objects. �is
thermal erosion method uses the localized thermal energy to
remove the material from the substrate metal. �e supply of
current and voltage to electrode produces plasma between
the substrate metal and tool. A small amount of heat is
transferred to the substrate metal to melt and evaporate.
Besides, the electrolyte used in the process removes the
machined metals away from the machine. Swift toggling of

pulse-on time (P1) and pulse-o� time (P2) causes fast heating
and cooling e�ects over the surface. �is advantage of
WEDM has attracted this process to use for supper alloys,
hard-cutting metals, and conductive materials. Khan et al.
[1] investigated machining of ASTM A572-grade 50 steel,
where grey rational analysis (GRA) was used to locate the
optimal machining condition. Abbasi et al. [2] also
attempted the same material and analyzed it to report that
pulse-on time is the predominant parameter for surface
�nish. Takayama et al. [3] developed a high precision rotary
table with many sensors to detect wire breakage, water
leakage, and machining quality. �e erosion of metal
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destabilizes at some depth of cutting due to accumulation of
debris and it affects the process time. Ayesta et al. [4] used
camera vision system to monitor the debris removal. +ey
reported that debris removal is affected by the process pa-
rameters and hence optimal process parameters must be
used not only to have high surface finish, but also to have
high debris removal rate. Since electrolyte is important in
this process, kerosene oil, EDM oil, and distilled water were
also evaluated by hazard and operability analysis [5]. +ey
revealed that aerosol concentration and dielectric con-
sumption affect the environment and hence new dielectric
fluid must be invented. Liu et al. [6] developed a pulse power
source to avoid back-off error, which occurs in WEDM of
semiconductors as discharge of silicon affects the servo
controller. Newly developed power source has stabilized the
discharge probability. Significant research contributions
[7–25] in the recent years are reviewed and listed in Table 1.

Alam et al. [26] recently reviewed optimization of WEDM
parameters, in which they detailed the past published research
using GRA and RSMmethods. Abidi et al. [27] used MOGA-II
algorithm to optimize the parameters to machine nickel-tita-
nium-based shape memory alloy. At this end, it is acknowl-
edged that onlyminimal research has been conducted in finding
the best machining condition using optimization algorithm.

Metaheuristic algorithms aremore efficient in locating the
optimal solutions for single or multiobjective problems
[28, 29] and hence Gorilla Troops Optimizer (GTO) is
attempted in this research to search for optimal solution in
machining of Al alloy. In a brief of method of research,
experiments were conducted using L27 orthogonal array.
Surface roughness of machined samples and their respective
cutting parameters were used to develop an Adaptive Neuro
Fuzzy Inference System (ANFIS) from which about 500
synthetic data were further generated. Response surface
model (RSM) was developed with these data and applied to
GTO algorithm to locate the optimal process parameters. At
this end, the paper is organized as below; Section 2 presents
the material, experimentation, ANFIS model, and GTO al-
gorithm, while Section 3 presents and discusses the results,
while conclusion of current research is presented in Section 4.

2. Materials and Methods

2.1. Materials. Aluminum 7075 alloy was the material inves-
tigated in this research, as this material is the most suitable
material for structural application including transport, aero-
space, marine, and defence. Aluminum alloys are famous for
their mechanical properties and weight-strength ratio. Ma-
chining this alloy using a conventional machining process does
not result in the dimensional accuracy every time. Besides,
rejection of parts is also there due to no alignwith near net shape.
WEDM is one of the unconventional machining processes that
perfectly suits this scenario and gives better surface finish.
Mechanical properties and chemical properties of Al7075 alloy
are listed in Tables 2 and 3, respectively.

2.2. Experimentation. Al7075 alloy plate in
200mm × 150mm × 10mm and WEDM SPRINTCUT
model with CNC control was used for experimentation.

Brass wire electrode of 0.25mm diameter was used as
cathode and deionised water was used as the dielectric
fluid. Initially, the plate was machined using arbitrary
chosen parameter setting to identify the sparking con-
dition and wire breakage. After conducting a few pre-
liminary experiments, the parameter setting range was
fixed for pulse-on time (P1), pulse-off time (P2), servo wire
feed (WF), and current (I) as shown in Table 4. Box-
Behnken design (BBD) is the best method for threelevel
design [25] and hence design of experiments (L27 DoE)
was prepared using BBD. +e machining was carried out
as per DoE and surface roughness was measured in three
different locations using surface roughness tester (Mitu-
toyo make Surftest 211). Figure 1 shows the machining
and machined samples, while Table 5 reports the exper-
imental results.

ANOVA, a statistical tool, was used to find the goodness
of fit of the experimental data. +e two-way ANOVA with
95% confidence level was carried out as the value of
probability <5% is considered significant. Table 6 shows the
results from ANOVA. Each parameter and cross product of
parameters are found significant. +e model is significant
with R2 � 99.41% and standard deviation� 0.0201349.

2.3. Adaptive Neurofuzzy Inference System (ANFIS).
ANFIS is a soft computing technique that utilizes artificial
neural network (ANN) and fuzzy logic theory to predict the
data samples. It is a simple and accurate adaptive technique
to build a prediction model. +e reason for using ANFIS in
this research is that we wanted to generate as many datasets
as possible from a small size of experimental data (27
datasets). Two-tier approach of using ANFIS and RSM was
tested and reported as a better method [30]. Optimal
searching was more accurate when data population was
large. Hence, the above tabulated twenty-seven datasets were
used in ANFIS for training the Neurofuzzy Interference
System, which could result in plentiful datasets.

ANFIS has different types of membership function (MF)
such as triangular shaped membership function (trimf),
trapezoidal-shaped membership function (trapmf), gener-
alized bell-shapedmembership function (gbellmf), Gaussian
curve membership function (gaussmf), Gaussian combi-
nation membership function (gauss2mf), P-shaped mem-
bership function (pimf), difference between two sigmoidal
membership functions (dsigmf), and product of two sig-
moid membership functions (psigmf). We attempted all
these MFs to build predictive models and finally selected
generalized bell-shaped membership function (gbellmf)
based on minimum root mean square error (RMSE). +is
MF is Sugeno type IF-THEN rules to predict the outcomes.
RMSE value observed in each model is listed as Trimf
model� 1.1394, Trapmf model� 1.1696, Gbelmf mod-
el� 0.9605, Gausmf model� 0.9701, Gaus2mf mod-
el� 1.1677, Sigmf model� 0.832, Dsigmf model� 1.1672,
Psigmf model� 1.1666, Pimf model� 1.7280, Smf mod-
el� 1.1728, and Zmf model� 1.1728.

Training of model was done with 27 experimental data.
Six additional experiments were conducted with arbitrarily



selected input parameters and these data as shown in Table 7
were used for testing the ANFIS model. Once training and
testing of ANFIS model were completed, about 500 datasets
were generated from the ANFIS model. +ese 500 datasets
were used to build a response surface methodology (RSM)
model shown below.

Ra � −190.05 + 2.037P1 + 2.595P2 − 3.699WF − 0.0353I

− 0.006571P
2
1 − 0.06374P

2
2 + 0.22117WF

2
− 0.005201I

2

− 0.006053P1 × P2 + 0.02109P1 × WF − 0.000594P1

× I − 0.00083P2 × WF + 0.03226P2 × I.

(1)

Table 1: Significant published articles on WEDM in recent years.

Reference Material used Contribution

[7] Al6061/SiC/graphite Brass wire, zinc coated wire, and diffused coated wires were investigated based on the
speed. +ey reported that diffused coated wire is the best of these wire materials.

[8] Carbon steel 1017 and aluminum
alloy 6060

Wire feed rate (3, 5 and 7mm/minute) was investigated and it was reported that low feed
rate is the best to improve the surface finish.

[9] High speed steel (HSS) M2 grade
Material removal rate, surface roughness, and width of kerf were analyzed using GRA.
+ey used tool makers’ microscope to measure the amount of material wasted during

machining, known as kerf width.

[10] Titanium alloy

Cause of wire rupture which subsequently affects the production and productivity was
investigated. +ey reported that stay of debris caused by low flushing pressure and high
wire tension caused by instantaneous high temperature during the machining are two

major reasons for wire rupture.

[11] Friction stir welded 5754 aluminum
alloy

RSM was used to optimize the process variables in machining friction stir welded 5754
aluminum alloy.

[12]
Dry cutting, cryogenic cutting, minimum quantity lubrication (MQL), nanocutting
fluids, and MQL nanofluids were investigated and it was reported that MQL nanofluid

and cryogenic machining showed the best sustainable strategies.

[13] LM13 aluminum alloy Slotted copper tool was used to drill aluminum alloy and it was reported that modified
tool design has given higher surface finish and material removal rate.

[14] AISI 304 stainless steel
+e influence of various parameters was investigated and it was reported than wire
tension influences greatly the surface finish, removal rate, and microhardness of the

material. It does not influence the kerf width.

[15] High carbon high chromium steel Zirconium powder mixed dielectric fluid was used and it was reported that it has
improved the performance of the machining.

[16] Pure titanium
Multiresponse optimization was conducted using integrated approach of RSM and
GRA. +ey reported the optimal parameters are Ton � 6µs, Toff � 4µs, and discharge

current� 6A.

[17] LM13 Al alloy/10ZrB2/5TiC hybrid
composite

Multiresponse optimization was conducted using RSM and GRA. +eir aim was to
investigate the effect of process parameters on material removal rate (MRR), electrode
wear rate (EWR), and overcut (OC). +ey finally reported that current is the highly

influencing parameter on these responses.

[18] AZ61 magnesium alloy /B4C/SiC
hybrid composite

+e influencing parameter among percentage of filler reinforcement, stirring speed, time
of stirring, and process temperature.

[19] Al-Si12/B4C/Fly ash hybrid
composite

Material removal rate was investigated and it was reported that it highly depends on
pulse-on time and fly ash reinforcement.

[20] AA1050/5 wt.% SiC composite Zinc coated copper wire was used tomachine SiC reinforced aluminum composite and it
was reported that open voltage is the significant parameter.

[21] Monel K-500, a nickel–copper based
alloy

WEDM was applied to super alloy machining. Pulse-on time and pulse-off time affect
cutting rate proportionally and inverse proportionally, respectively. Spark gap decreases

the cutting rate and surface roughness.

[22] Inconel-800 superalloy

Trapezoidal interval type-2 fuzzy numbers were applied for handling the uncertainties
associated with the subjective assessment of the criteria. +e integration of T2FS with

additive ratio assessment (ARAS) method resulted in the best WEDM process
parameters.

[23] Cemented carbide +is research attempted to compare edges made using WEDM techniques and
conventional edges made in the grinding process.

[24] Ti6Al4V alloy
+is work combines integrated fuzzy analytic hierarchy process (AHP) and fuzzy

technique for order preference by similarity to ideal situation (TOPSIS) to optimize the
WEDM process.

[25] AZ31 alloy +ey used Box-Behnken design (BBD) to conduct experiments and multiobjective
particle swarm optimization (MOPSO) to optimize cutting rate and recast layer.
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2.4. Gorilla Troops Optimizer (GTO). Gorilla Troops Opti-
mizer (GTO) is one of the emerging metaheuristic search
algorithms proposed by Abdollahzadeh et al. [31] in 2021 to
solve global optimization problems, where its search
mechanisms are essentially inspired by the collective be-
havior and social intelligence of gorilla life in nature. Similar
to other species of apes, gorillas live in the troops consisting
of an adult male gorilla known as silverback, multiple female
and male gorillas, and offspring. Silverback refers to the
strongest gorilla with unique silver-colored hair on its back
and it is considered as troop leader that is responsible for
decision making and conflict resolution, as well as spear-
heading other troop activities such as food searching and
strategic retreat for troop safety. On the contrary, other male
gorillas that do not have silver-colored hair on their back are
relatively weaker and hence affiliated to silverback as the
backup defenders of troops. Five typical behaviors are
generally observed from gorilla troops to enable the for-
mulation of search operators with different exploration and
exploitation strengths. +ese behaviors include the moving
to other gorillas, migration to unknown areas, migration to
the surrounding of known areas, staying in original troop to
follow silverback, and competition to mate with female
gorillas upon the decease of silverback. Similar to other
metaheuristic search algorithms, the optimization process
using GTO can be expressed in three main stages, i.e.,
population initialization, exploration phase, and exploita-
tion phase as explained in next subsections.

2.4.1. Population Initialization. Suppose that a group of
gorillas with population size of N is used to solve a given
optimization problem with dimensional size of D. +e
position of each i-th gorilla in solution space at any t-th
iteration is considered as a potential solution and expressed
as Xi(t) � [xi,1(t), . . . , xi,d(t), . . . , xi,D(t)], where
i � 1, . . . , N and d � 1, . . . , D represent the population in-
dex of gorilla and dimensional index of problem, respec-
tively. Let LB and UB be the lower and upper boundary

limits of solution, respectively. At t � 0, the position value of
every i-th gorilla, i.e., Xi(0), can be initialized as

Xi(0) � LB + r1 ×(UB − LB), (2)

where r1 ∈ [0, 1] is a real-valued number randomly gener-
ated from uniform distribution.

2.4.2. Exploration Phase. From the perspective of meta-
heuristic search algorithms, an exploration process is es-
sential in early stage of optimization to enable the population
for discovering the unvisited regions in solution space. For
the exploration phase of GTO, three search operators are
incorporated by emulating different behaviors of gorilla
troops, i.e., move towards other gorillas, migrate towards
unknown places, and migrate towards known places.

Definep ∈ [0, 1] as a constant parameter used to indicate
the likelihood of i-th gorilla to migrate towards unknown
places and rand ∈ [0, 1] as a real-valued number randomly
generated from uniform distribution. If rand <p, the i-th
gorilla chooses migration towards an unknown region to
further enhance the exploration strength of GTO. For the
scenario of rand≥ 0.5, the i-th gorilla tends to move towards
a randomly selected gorilla denoted as Xr(t) to attain good
balancing of exploration and exploitation searches. Finally,
the i-th gorilla chooses migration towards a known region to
maintain good population diversity when rand < 0.5. Let
GXr(t) be candidate position of a randomly selected gorilla
created in the t-th iteration, whereas GXi(t + 1) refers to the
candidate position of each i-th gorilla created in the next
(t + 1)-th iteration. Define r2, r3 ∈ [0, 1] as two real-valued
numbers randomly generated from uniform distribution;
then

GXi(t + 1) �

r1 ×(UB − LB) + LB, rand<p,

r2 − C(  × Xr(t) + L × Z × Xi(t), rand≥ 0.5,

Xi(t) − L × L × Xi(t) − GXr(t)  + r3 × Xi(t) − GXr(t)  , rand < 0.5.

⎧⎪⎪⎨

⎪⎪⎩
(3)

Table 2: Mechanical properties of aluminum 7075 alloy.

Property Value
Density 2.81 g/cc
Ultimate tensile strength 572MPa
Modulus of elasticity 71.7GPa
Brinell hardness 150
Fatigue strength 159MPa
Machinability 70%
+ermal conductivity 130W/m-k
Melting point 477–635°C
Electrical resistivity 5.15×10−006 ohm-cm

Table 3: Chemical composition of aluminum 7075 alloy (as re-
ceived from the supplier).

Al Si Fe Cu Mn Mg Cr Zn Ti Others
86.77 0.4 0.5 2.0 0.3 2.9 0.28 6.1 0.2 0.15
All values mentioned in wt%.

Table 4: Machining parameters and fixed levels.

Machining parameter
Levels

I II III
Pulse-on time (P1 in µs) 120 125 130
Pulse-off time (P2 in µs) 50 55 60
Servo wire feed (WF in m/min) 1 2 3
Current (I in ampere) 150 160 170
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+e parameters of C, L, and Z presented in equation (3)
can be calculated as follows:

C � cos 2 × r4(  + 1  × 1 −
t

Tmax
 , (4)

L � C × l, (5)

Z ∈ [−C, C], (6)

where cos(.) is a cosine operator; Tmax is the maximum
iteration numbers set for GTO; r4 ∈ [0, 1] and l ∈ [−1, 1] are
the real-valued numbers randomly generated from uniform

distribution. Equation (4) is used to simulate the tendency of
GTO to perform searching with larger interval of changes in
the earlier stage of optimization process and these search
ranges are gradually reduced in later stage. Meanwhile,
equation (5) is designed to emulate the variation of silver-
back’s leadership throughout the optimization process.

Upon the completion of exploration phase, the candidate
position of each i-th gorilla is obtained as GXi(t + 1) and its
fitness value is evaluated as F[GXi(t + 1)]. +e current
fitness value of each i-th gorilla, i.e.,F[Xi(t)], is then
compared with F[GXi(t + 1)]. +e new candidate position
GXi(t + 1) is used to update the current position Xi(t) if the
former solution has more superior fitness. Otherwise, the

X and Y axis Table Electrode Wire Machined Sample

Upper Nozzle for Flushing

Z axis HeadControl PanelWire Electrode Reel

Figure 1: WEDM machining and machined sample.

Table 5: Experimental results.

Expt. No Pulse-on time, P1 (µs) Pulse-off time, P2 (µs) Servo wire feed, WF (m/min) Current, I (A) Surface roughness, Ra (µm)
1 120 50 1 150 1.92
2 120 50 2 160 1.77
3 120 50 3 170 1.56
4 120 55 1 160 1.85
5 120 55 2 170 1.77
6 120 55 3 150 1.47
7 120 60 1 170 2.06
8 120 60 2 150 1.99
9 120 60 3 160 1.76
10 125 50 1 150 2.22
11 125 50 2 160 2.09
12 125 50 3 170 1.82
13 125 55 1 160 1.97
14 125 55 2 170 1.90
15 125 55 3 150 1.78
16 125 60 1 170 1.98
17 125 60 2 150 2.13
18 125 60 3 160 1.92
19 130 50 1 150 2.21
20 130 50 2 160 2.10
21 130 50 3 170 1.78
22 130 55 1 160 1.77
23 130 55 2 170 1.73
24 130 55 3 150 1.85
25 130 60 1 170 1.64
26 130 60 2 150 1.96
27 130 60 3 160 1.77
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solution GXi(t + 1) is discarded if it has more inferior fit-
ness. Similar mechanism is used to update the position of
silverback Xsilverback(t) by comparing its fitness value of
F[Xsilverback(t)] with that of F[GXi(t + 1)].

2.4.3. Exploitation Phase. On the contrary to exploration,
exploitation has crucial role in the later stage of optimization
process because it can further refine the solutions found in
promising regions of search space. For the exploitation
phase of GTO, two search operators are designed by sim-
ulating the behaviors of gorilla troops to follow the silver-
back for food searching and to compete for mating with the
adult female gorillas.

Suppose that W is a parameter used to determine the
behavior of each i-th gorilla in exploitation phase and C is a
parameter obtained from equation (4).When C≥W, the i-th
gorilla chooses to obey the instructions of silverback in
exploitation phase and its candidate position at the next
(t + 1)-th iteration; i.e., GXi(t + 1), is updated as follows:

GXi(t + 1) � L × M × Xi(t) − Xsilverback(t)  + Xi(t), (7)

where L is a parameter obtained from equation (5);
Xsilverback(t) refers to the position of silverback at the t-th
iteration. Meanwhile, the parameter M in equation (7) is
calculated as

M �
1
N



N

i�1
GXi(t)





2L

⎛⎜⎝ ⎞⎟⎠

1/2L

, (8)

where N refers to population size of GTO; GXi(t) represents
the candidate position of each i-th gorilla at the current t-th
iteration.

On the contrary, the i-th gorilla tends to compete with
other male gorillas for mating with the adult female gorillas
during exploitation phase if C<W. +e mathematical
models used to simulate this behavior are formulated as

GXi(t + 1) � Xsilverback(t)

− Xsilverback(t) × Q − Xi(t) × Q  + A,
(9)

where Q represents the impact force; A is a vector used to
indicate the degree of violence encountered in competition.
Both of Q and A can be computed as

Q � 2 × r5 − 1, (10)

A � β × E, (11)

E �
N1, r6 ≥ 0.5
N2, r6 < 0.5

 , (12)

Table 6: Results from ANOVA.

Source Degrees of freedom (DF) Adj SS Adj MS F-value P-value Remarks
Model 13 0.885626 0.068125 168.04 0.000 Significant
Linear 4 0.191479 0.047870 118.08 0.000
P1 1 0.024200 0.024200 59.69 0.000
P2 1 0.003756 0.003756 9.26 0.009
WF 1 0.111111 0.111111 274.07 0.000
I 1 0.019136 0.019136 47.20 0.000
Square 4 0.278777 0.069694 171.91 0.000
P 1 ×P1 1 0.131030 0.131030 323.20 0.000
P 2 ×P2 1 0.115741 0.115741 285.49 0.000
WF×WF 1 0.029606 0.029606 73.03 0.000
I× I 1 0.000735 0.000735 1.81 0.201
2-Way 5 0.270307 0.054061 133.35 0.000
P 1 ×P2 1 0.136533 0.136533 336.78 0.000
P 1 ×WF 1 0.056033 0.056033 138.21 0.000
P 1 × I 1 0.064533 0.064533 159.18 0.000
P 2 ×WF 1 0.011756 0.011756 29.00 0.000
P 2 × I 1 0.000450 0.000450 1.11 0.311
Error 13 0.005270 0.000405
Total 26 0.890896
Standard deviation� 0.0201349 R2 � 99.41%, R2(adj)� 98.82%, R2(pred)� 96.67%.

Table 7: Test datasets used in ANFIS model.

Expt. No Puls-on Pulse-off Wire feed rate Current Surface roughness
Units P1 (µs) P2 (µs) WF (m/min) I (A) R a (µm)
1. 122 52 1 155 2.06
2. 122 52 2 165 1.66
3. 124 54 3 165 1.98
4. 124 54 1 155 2.01
5. 126 56 2 165 1.69
6. 126 56 3 155 1.88
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where r5, r6 ∈ [0, 1] are two real-valued numbers randomly
generated from uniform distribution; β is a constant; E is
used to simulate the violence effect on each dimension of
solution based on two normal distributions of N1 and N2.

Ifr6 ≥ 0.5, E is assigned as an array with size of1 × D, where
N1 is used to randomly generate different values for each
dimension. On the other hand, only a single random number
is generated by N2 and assigned to E when r6 < 0.5.

Similar with exploration phase, the fitness value of each
i-th gorilla’s candidate position GXi(t + 1) is evaluated as
F[GXi(t + 1)] and then compared with the current fitness
F[Xi(t)]. If GXi(t + 1) has more superior fitness than Xi(t),
the latter solution will be replaced by the former one.
Otherwise, GXi(t + 1) will be discarded due to its inferior
fitness. Similar mechanism is also used to update the po-
sition of silverback Xsilverback(t) by comparing its fitness
value of F[Xsilverback(t)] with that of F[GXi(t + 1)].

2.4.4. Overall Search Mechanisms of GTO. +e overall
search mechanisms of GTO are presented in Figure 2.
Initially, the population of GTO is randomly generated by
using uniform distribution. Both of the exploration and
exploitation phases are switched alternately during the
optimization process of GTO. For exploration phase, three
different search operators can be used to determine the
candidate position of every i-th gorilla. Meanwhile, two
different search operators are devised in exploitation phase
to update the candidate position of every i-th gorilla. It is
notable that greedy selection is used to update the current
position of each i-th gorilla and position of silverback for
both exploration and exploitation phases. +e iterative
search processes of GTO in exploration and exploitation
phases are repeated until the predefined termination con-
dition, i.e., current iteration exceeding maximum iteration
(t>Tmax), is satisfied. At the end of optimization process, the
silverback’s position, i.e., Xsilverback(Tmax), is returned as the
best solution to solve given problem. Due to the promising
optimization performance of GTO, it has been applied to
solve some real-world optimization problems such as feature
selection [32], image segmentation [33], and parameter
estimation of fuel cell [34] and solar panel [35]. To the best of
authors’ knowledge, the feasibility of GTO to solve ma-
chining optimization problem is one of the areas that re-
mains unexplored.

3. Performance Evaluation of Proposed WEDM
Machining Optimization Problem

3.1. Simulation Settings of All Compared Algorithms.
Extensive simulation studies are conducted to evaluate the
performance of GTO in solving the proposed WEDM
machining optimization problem. +e simulation results
produced by GTO are then compared with another six
metaheuristic search algorithms known as particle swarm
optimization (PSO) [36], differential evolution (DE) [37],
teaching learning-based optimization (TLBO) [28], grey
wolf optimizer (GWO) [38], sine cosine algorithm (SCA)
[39], and arithmetic optimization algorithm (AOA) [40].

+e optimal parameter settings of all compared algorithms
are determined based on the recommendations in their
respective literature as shown in Table 8 and original source
codes are obtained from their authors to ensure fair com-
parison. +e same population size of N� 10 and maximum
iteration numbers of Tmax � 100 are also set to ensure all
seven metaheuristic algorithms are compared in fair man-
ner. When solving real-world optimization problem such as
WEDM machining considered in current study, it is es-
sential to achieve proper tradeoff between the solution ac-
curacy and computational overhead of algorithm. Although
it is more likely for metaheuristic search algorithm such as
GTO to obtain the solutions with better accuracy when
larger population size is set, the computational complexity of
algorithm is estimated as O (N × (1 +Tmax +TmaxD)× 2) [31]
using Big-O notation that tends to increase with population
size, where N, Tmax, and D refer to the population size,
maximum iteration numbers, and total dimensional size of
problems, respectively. +e increasing computational
complexity of GTO is undesirable and not computationally
feasible for real-world optimization problems. Furthermore,
our simulation studies indicate that GTO can solve the
WEDM machining optimization problems with better ac-
curacy than other competing algorithms when the pop-
ulation size of N� 10 is set. +is is a crucial finding to reveal
the competitive optimization performances of GTO when
solving real-world optimization problems. In order to al-
leviate the random discrepancy issue, all compared algo-
rithms are simulated independently for 20 runs under the
same simulation environment of Matlab (R2021a) installed
in a personal computer with Intel® Core™ i5-7400 CPU
processor with 24.0GB RAM when solving the proposed
WEDM machining optimization problems.

3.2. Simulation Results and Discussion. +e optimal ma-
chining parameters (i.e., pulse-on time, pulse-off time, wire
feed, and current values) obtained by GTO and their cor-
responding response variable of surface roughness (Ra)
when solving the proposed WEDMmachining optimization
problems for 20 consecutive times are presented in Table 9.
+e number of iteration numbers Tbest consumed by GTO to
achieve the best machining result in every simulation run is
also recorded in Table 9. Accordingly, GTO is able to
consistently search for the optimal values of pulse-on time,
pulse-off time, wire feed, and current that lead to the low
values of surface roughness. It is also noteworthy that GTO
has consumed an average iteration number of 24 to find the
optimal machining parameters in these 20 simulations runs,
implying the promising search efficiency of this algorithm.
From Table 9, it is observed that GTO has produced the
lowest surface roughness value of 0.500953 μm when the
machining parameters of pulse-on time, pulse-off time, wire
feed, and current values are set as 121 μs, 52μs, 3m/min, and
166 A, respectively, at the 18th simulation run with 8 it-
erations and 19th simulation run with 15 iterations. +ese
optimal machining parameters are further validated by
measuring the experimental value of surface roughness as
0.500μm, i.e., only 0.2% of deviation from the predicted
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value of surface roughness. Given the small performance
di�erence, it can be concluded that there is good consistency
between the simulated and actual results.

Table 10 presents the best, worst, mean, and standard
deviation (SD) values of surface roughness obtained by all
compared seven metaheuristic search algorithms when
solving the proposed WEDM machining optimization
problems for 20 consecutive times. �e best (i.e., lowest)
surface roughness values produced by each algorithm are
highlighted in bold. Although there are four algorithms (i.e.,
PSO, DE, TLBO, and GTO) that are able to produce the
lowest values, GTO is the only algorithm that can solve the
proposed WEDM machining optimization problems with
the lowest values of worst and mean surface roughness. �e
promising performance of GTO to consistently solve the
WEDM machining problem with low surface roughness
value is also re£ected from the lowest SD value. On the
contrary, the optimization performances of algorithms such
as PSO, DE, TLBO, and AOA are observed to be inconsistent
as revealed by the inferior values of worst surface roughness
and SD. �ese �ndings imply the high tendencies of PSO,
DE, TLBO, and AOA to be trapped into local optima and
su�er with premature convergence issues in certain trials of
simulations. Although GWO and SCA can deliver more
consistent performances when dealing with the proposed

WEDM machining optimization problem, the overall sur-
face roughness values obtained by these two competing
algorithms are generally more inferior than those of GTO.

Figure 3 depicts the convergence curves obtained by all
metaheuristic search algorithms when solving the proposed
WEDM machining problem to further analyze their op-
timization performances in real-world application. Ac-
cordingly, each compared algorithm has exhibited di�erent
accuracy and e¤ciency in searching for the best combi-
nations of machining parameters (i.e., pulse-on time,
pulse-o� time, wire feed, and current) that aim to minimize
the surface roughness value. Among all compared meta-
heuristic search algorithms, AOA is identi�ed to have worst
performance because it has very slow convergence speed
during the early stage of search process and its population
only starts to converge towards the promising solution
regions at the middle stage of optimization. �e poor
convergence characteristic of AOA is considered as a main
contributing factor that prohibits its population to locate
the global optimum in earlier stage, hence resulting in its
inferior performance to solve the proposed WEDM ma-
chining problems with undesirably large surface roughness
value. Although both PSO and DE have started the opti-
mization processes with relatively lower surface roughness
values, these two algorithms are observed to su�er with

Figure 2: Pseudocode of GTO.
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premature convergence issues as demonstrated by the
plateau regions of their convergence curves in early stage of
optimization, i.e., before 20th iteration. +e high tendency
of PSO and DE populations to be trapped into the local
optima regions can be justified by their relatively simple
search mechanisms that are unable to achieve good bal-
ancing of exploration and exploitation when dealing with
fitness landscapes of real-world optimization problems.
+e inferior performances of PSO and DE to avoid mis-
leading information of local optima regions tend to prevent
these two algorithms consistently solving the proposed
WEDM machining problems with lower surface roughness
values. +e remaining algorithms such as TLBO, GWO,
SCA, and GTO have better robustness to handle premature
convergence issues as demonstrated by their convergence
curves with more promising convergence characteristics
and lower surface roughness values. Among these four
algorithms, GTO is proven as the best performing algo-
rithm to solve the proposed WEDM machining optimi-
zation problem because it shows fastest convergence rate
and is able to locate the solution that is nearest to the global

optimum. +e competitive optimization performances
demonstrated by GTO against TLBO, GWO, and SCA can
be justified by its inherent mechanisms used to achieve
proper balancing of exploration and exploitation searches
of algorithm. As compared to the latter three algorithms
equipped with lesser numbers of search operators, GTO is
designed to have two optimization phases (i.e., exploration
and exploitation) with five search operators with different
exploration and exploitation strengths. Depending on the
optimization stage and location of each individual solution
in search space, one of the embedded search operators can
be triggered and play dominant role to guide the individual
solution searching towards the promising regions of search
space. +e excellent capability of GTO in balancing its
exploration and exploitation searches enables its pop-
ulation to locate the global optimum of WEDM machining
optimization problem rapidly without requiring large
numbers of population size for effective searching.

Different nonparametric statistical procedures [41, 42]
are further used for performance evaluation of all competing
metaheuristic search algorithms by referring to their surface

Table 8: Parameter settings of all compared metaheuristic search algorithms used to solve WEDM machining optimization problems.

Algorithm Parameter settings
PSO Inertia weight ω: 0.9⟶ 0.2, acceleration coefficients c1 � c2 � 2.0
DE Scaling factor F � 0.5, crossover rate CR � 0.9
TLBO Teaching factor Tf ∈ 1, 2{ }

GWO Convergence coefficient a: 2.0⟶ 0.0
SCA Constant used to balance exploration and exploitation, ASCA � 2

AOA Control parameter used to adjust search process μ � 0.5, control parameter used to
define exploitation accuracy over iterations α � 5

GTO
Constant parameter used to multiply with violence effect β � 3, constant parameter used to
determine the behavior of gorilla in exploitation phase W � 0.8, constant parameter used to

indicate the likelihood of gorilla to migrate towards unknown places p � 0.03

Table 9: Optimal machining parameters and the corresponding response variables produced by GTO in 20 consecutive simulation runs.

Run Pulse-on time, P1
(μs)

Pulse-off time, P2
(μs)

Wire feed, WF
(m/min)

Current, I
(A)

Surface roughness, Ra
(μm)

Iteration numbers to achieve best
result, Tbest

1 121 54, 3 173 0.520676 3
2 120 52 2 166 0.503164 7
3 130 50 4 164 0.501744 37
4 127 52 3 168 0.504061 35
5 121 53 1 173 0.512619 38
6 121 54 3 173 0.520676 8
7 128 53 1 173 0.500999 23
8 128 53 1 173 0.500999 45
9 120 53 3 169 0.508859 29
10 121 52 3 166 0.500953 24
11 120 53 3 169 0.508859 24
12 128 59 4 154 0.507776 12
13 120 53 3 169 0.508859 43
14 120 53 3 169 0.508859 50
15 130 50 4 164 0.501744 31
16 120 53 3 169 0.508859 12
17 120 53 3 169 0.508859 16
18 121 52 3 166 0.500953 8
19 121 52 3 166 0.500953 15
20 120 53 3 169 0.508859 19
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roughness values obtained. Wilcoxon signed rank test
[41, 42] is employed for the pairwise comparison of GTO
with each of its competing algorithms at the signi�cance
level of σ � 0.05. �e results of Wilcoxon signed rank test are
reported in terms of the sum of rank (i.e., R+ anR− d) and the
associated p-values. R+ and R− shown in Table 11 indicate
the sum of rank for GTO to perform better and perform
worse than a given competing algorithm, respectively.
Meanwhile, p-value is the minimum level of signi�cance for
detecting performance di�erences between algorithms. If
p< σ, it implies the existence of strong evidence to reject null
hypothesis and the best results achieved by better per-
forming algorithms are statistically signi�cant. �e pairwise
comparison results reported in Table 12 show that GTO can
perform signi�cantly better than PSO, GWO, SCA, and
AOA because their corresponding p-values are all smaller
than the threshold signi�cance value of σ � 0.05. In other
words, the competitive performances of GTO against PSO,
GWO, SCA, and AOA are evident and not achieved by any
random chances. On the other hand, there are no signi�-
cance performance di�erences detected between GTO and

DE as well as GTO and TLBO as indicated by their relatively
large p-values. �is implies that the poor performances of
DE and TLBOmight only happen in certain simulation runs.
GTO is still considered as a better performing algorithm due
to excellent consistency to solve the proposed WEDM
machining optimization problem with low surface rough-
ness values.

Multiple comparison analyses [41, 42] are also con-
ducted for more thorough evaluations of GTO and its
competing algorithms. Friedman test was �rst employed to
calculate the average ranking of each algorithm and detect
the global di�erences between all compared algorithms. As
reported in Table 12, GTO with lowest average rank value
emerges as the best performing algorithm to solve the
proposed WEDM problem with lowest surface roughness
values. �e remaining compared algorithms are ranked as
follows: TLBO, DE, SCA, GWO, PSO, and AOA.�e p-value
presented in Table 12 also detects the signi�cant global
di�erences between all compared algorithms because p< σ,
where σ � 0.05 is de�ned as the threshold signi�cance level.
Referring to the �ndings from Friedman test, another three
post hoc analyses known as Bonferroni-Dunn, Holm, and
Hochberg methods are employed to further compare the
performance di�erences between GTO and each peer al-
gorithm [41, 42]. Table 13 presents the results of each post
hoc analysis in terms of z values, unadjusted p-values, and
adjusted p-values. It is observed that all post hoc analyses
have validated that GTO can outperform AOA and PSO
signi�cantly in terms of surface roughness value because all
adjusted p-values obtained are smaller than σ � 0.05. If the
threshold signi�cance level is adjusted to σ � 0.10, GTO is
veri�ed by all post hoc analyses to perform signi�cantly
better than GWO. Finally, both of Holm and Hochberg
analyses can verify the signi�cant performance of GTO
against SCA when σ � 0.10.

Table 10: �e best, worst, mean, and standard deviation (SD) values of surface roughness produced by all compared algorithms.

Algorithm
Surface roughness, Ra

Best Worst Mean SD
PSO 0.500953 1.210000 0.58860 0.1672400
DE 0.500953 1.006769 0.53508 0.1113500
TLBO 0.500953 1.151530 0.53999 0.1440400
GWO 0.501744 0.570686 0.52383 0.0187180
SCA 0.501744 0.586320 0.52038 0.0195790
AOA 0.501744 0.790220 0.59673 0.0666010
GTO 0.500953 0.520676 0.50697 0.0060295
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Figure 3: Convergence curves produced by all compared meta-
heuristic search algorithms.

Table 11: Wilcoxon signed rank test for the pairwise comparison
between GTO and its peer algorithms.

Algorithm compared with GTO R + R - p-value
PSO 177.0 13.0 0.000900
DE 127.5 62.5 0.173118
TLBO 117.0 93.0 0.637602
GWO 185.5 24.5 0.002060
SCA 171.5 18.5 0.001844
AOA 208.0 2.0 0.000104
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4. Conclusion

+is research was aimed at using an emerging metaheuristic
algorithm known as Gorilla Troops Optimizer (GTO) to
solve WEDM machining problem by searching for the
optimal machining parameters that can lead to the best (i.e.,
lowest) surface finish.

+e machining of aluminum alloy was done with brass
wire as a cathode tool and deionised water as a dielectric
medium. ANFIS was used to generate about 500 datasets
from 27 experimental datasets. On the contrary to many
existing metaheuristic search algorithms, GTO has two
different optimization phases with five search operators. It
was able to search for the optimal machining parameters in
solution space effectively and efficiently without having large
population number. At the end of optimization processes,
the optimal machining parameters as stored in silverback
solution of GTO were pulse-on time� 121 μs, pulse-off
time� 52 μs, wire feed� 3m/min, and current value� 166
A. +ese parameters are the best process parameters to
achieve the minimum surface roughness of 0.500953
microns.

+e current metaheuristic algorithm was able to solve
WEDMmachining problem in 20 independent simulation
runs with small standard deviation value of
SD � 0.0060295, implying the high consistency of the al-
gorithm to search for the optimal machining parameters.
Various statistical analyses such as Wilcoxon signed rank
test, Friedman test, and post hoc analyses were also
performed to verify the significant performance gain of
GTO against other metaheuristic search algorithms when
solving the current machining problem. To ensure the
practicability of optimization results produced by GTO,
validation experiments were also performed and found
deviation of ∆ � 0.2% between the predicted and measured
surface roughness values. +e negligible error value im-
plies the feasibility of GTO to solve real-world WEDM
machining optimization problems.

Nomenclature

ANFIS: Adaptive Neurofuzzy Inference System
WEDM: Wire cut electric discharge machining
GRA: Grey rational analysis
HSS: High speed steel
MQL: Minimum quantity lubrication
MRR: Material removal rate
EWR: Electrode wear rate
OC: Overcut
RSM: Response surface model
ARAS: Additive ratio assessment
AHP: Analytic hierarchy process
TOPSIS: Technique for order preference by similarity to

ideal situation
BBD: Box-Behnken design
MOPSO: Multiobjective particle swarm optimization
GTO: Gorilla Troops Optimizer
DoE: Design of experiment
ANN: Artificial neural network
MF: Membership function
trimf: Triangular shaped membership function
trapmf: Trapezoidal-shaped membership function
gbellmf: Generalized bell-shaped membership function
gaussmf: Gaussian curve membership function
gauss2mf: Gaussian combination membership function
pimf: P-shaped membership function
dsigmf: Difference between two sigmoidal membership

functions
psigmf: Product of two sigmoid membership functions
gbellmf: Generalized bell-shaped membership function
RMSE: Root mean square error
PSO: Particle swarm optimization
DE: Differential evolution
TLBO: Teaching learning-based optimization
GWO: Grey wolf optimizer
SCA: Sine cosine algorithm
AOA: Arithmetic optimization algorithm

Table 12: Friedman test for the multiple comparison between GTO and its peer algorithms.

Algorithm compared with GTO Ranking Chi-square statistic p-value
PSO 4.825

3.99E+ 01 0.00E+ 00

DE 3.225
TLBO 2.775
GWO 4.325
SCA 4.1
AOA 6.125
GTO 2.625

Table 13: Post hoc analyses for the multiple comparison between GTO and its peer algorithms.

Algorithm compared with GTO Unadjusted p Bonferroni-Dunn p Holm p Hochberg p
AOA 0.000000 0.000002 0.000002 0.000002
PSO 0.001280 0.007679 0.006399 0.006399
GWO 0.012827 0.076960 0.051307 0.051307
SCA 0.030836 0.185018 0.092509 0.092509
DE 0.379775 2.278653 0.759551 0.759551
TLBO 0.826200 4.957201 0.826200 0.826200
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Indices

i: Population index of gorilla in GTO
d: Dimension index
t: Iteration index
cos(∙): Cosine operator
F[∙]: Operator used to calculate the fitness value of a

given position value
O (∙): Complexity of algorithm estimated using Big-O

notation

Parameter and Variables

P1: Pulse-on time
P2: Pulse-off time
WF: Servo wire feed
I: Current
R a: Surface roughness
D: Total dimension size of optimization

problem
N: Population size
Xi(t): Position value of ith gorilla at the tth

iteration
xi,d(t): Position value of ith gorilla in dth

dimension at the tth iteration
r1, r2, r3, r4, r5,
r6, rand:

Real-valued number within [0, 1]
randomly generated from uniform
distribution

l: Real-valued number within [-1, 1]
randomly generated from uniform
distribution.

LB: Lower boundary limits
UB: Upper boundary limits
p: Constant parameter within [0, 1] used to

indicate the likelihood of gorilla to
migrate towards unknown places

Xr(t): Position value of a randomly selected
gorilla at the tth iteration

GXr(t): Candidate position value of a randomly
selected gorilla at the tth iteration

GXi(t): Candidate position value of ith gorilla at
the tth iteration

C: Search range of gorilla
L: Variation of silverback’s leadership
Tmax: Maximum iteration numbers
W: Parameter used to determine the

behavior of gorilla in exploitation phase
M: Mean position of gorilla population
Q: Impact force
A: Degree of violence encountered by gorilla

in competition
β: Constant parameter used to determine

violence effect of gorilla
E: Parameter used to simulate the violence

effect on each dimension of solution
N1, N2: Normal distributions used to model the

violence effect
ω: Inertia weight of particle swarm

optimization

c1, c2: Acceleration coefficient of particle swarm
optimization

F: Scaling factor of differential evolution
CR: Crossover rate of differential evolution
Tf: Teaching factor of teaching learning

based optimization
a: Convergence coefficient of grey wolf

optimizer
ASCA: Constant used to balance exploration and

exploitation of sine cosine algorithm
μ: Control parameter used to adjust the

search process of arithmetic optimization
algorithm

α: Control parameter used to define
exploitation accuracy of arithmetic
optimization algorithm over iterations

Tbest: Iteration number consumed by an
algorithm to achieve best result

SD: Standard deviation
σ: Significant level of nonparametric

statistical procedures
R+: Sum of rank for GTO to perform better

than a given competing algorithm
R− : Sum of rank for GTO to perform worse

than a given competing algorithm.
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+e data associated with this research can be obtained from
the corresponding author upon request.
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